Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 302
Filtrar
1.
J Biol Chem ; 298(10): 102392, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35988643

RESUMO

Enzymes involved in Staphylococcus aureus amino acid metabolism have recently gained traction as promising targets for the development of new antibiotics, however, not all aspects of this process are understood. The ATP-grasp superfamily includes enzymes that predominantly catalyze the ATP-dependent ligation of various carboxylate and amine substrates. One subset, ʟ-amino acid ligases (LALs), primarily catalyze the formation of dipeptide products in Gram-positive bacteria, however, their involvement in S. aureus amino acid metabolism has not been investigated. Here, we present the characterization of the putative ATP-grasp enzyme (SAOUHSC_02373) from S. aureus NCTC 8325 and its identification as a novel LAL. First, we interrogated the activity of SAOUHSC_02373 against a panel of ʟ-amino acid substrates. As a result, we identified SAOUHSC_02373 as an LAL with high selectivity for ʟ-aspartate and ʟ-methionine substrates, specifically forming an ʟ-aspartyl-ʟ-methionine dipeptide. Thus, we propose that SAOUHSC_02373 be assigned as ʟ-aspartate-ʟ-methionine ligase (LdmS). To further understand this unique activity, we investigated the mechanism of LdmS by X-ray crystallography, molecular modeling, and site-directed mutagenesis. Our results suggest that LdmS shares a similar mechanism to other ATP-grasp enzymes but possesses a distinctive active site architecture that confers selectivity for the ʟ-Asp and ʟ-Met substrates. Phylogenetic analysis revealed LdmS homologs are highly conserved in Staphylococcus and closely related Gram-positive Firmicutes. Subsequent genetic analysis upstream of the ldmS operon revealed several trans-acting regulatory elements associated with control of Met and Cys metabolism. Together, these findings support a role for LdmS in Staphylococcal sulfur amino acid metabolism.


Assuntos
Proteínas de Bactérias , Cisteína , Metionina , Peptídeo Sintases , Staphylococcus aureus , Trifosfato de Adenosina/metabolismo , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Dipeptídeos/biossíntese , Metionina/química , Metionina/metabolismo , Filogenia , Staphylococcus aureus/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Peptídeo Sintases/química , Peptídeo Sintases/classificação , Peptídeo Sintases/genética , Cisteína/química , Cisteína/metabolismo
2.
Biol Pharm Bull ; 44(12): 1832-1836, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34853266

RESUMO

γ-Glutamylcysteine (γ-EC) has antioxidant properties similar to those of glutathione (GSH) and acts as its precursor in mammals. There are a few procedures for the production of γ-EC, such as chemical synthesis or enzymatic synthesis from glutamate and cysteine; however, they are very costly and not suitable for industrial production. A phytochelatin synthase-like enzyme derived from Nostoc sp. Pasteur Culture Collection 7120 (NsPCS) catalyzes the hydrolysis of GSH to γ-EC and glycine in the absence of ATP or other additives. Our research aims to establish an alternative γ-EC production procedure with low cost and high productivity. To this end, we optimized the reaction conditions of NsPCS and characterized its properties in this study. We found that 200 mM potassium phosphate buffer, pH 8.0, at 37 °C, had the highest NsPCS activity among the conditions we tested. Under these conditions, NsPCS had a Km of 385 µM and a Vmax of 26 mol/min/mg-protein. In addition, NsPCS converted 100 mM GSH into γ-EC with high yields. These results suggest that the NsPCS reaction has great potential for the low-cost, industrial-scale production of γ-EC.


Assuntos
Aminoaciltransferases/metabolismo , Antioxidantes , Dipeptídeos/biossíntese , Glutationa/metabolismo , Nostoc/enzimologia , Sequência de Aminoácidos , Antioxidantes/farmacologia , Soluções Tampão , Catálise , Química Farmacêutica , Cisteína/metabolismo , Dipeptídeos/farmacologia , Ácido Glutâmico/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Fitoquelatinas , Temperatura
3.
Appl Environ Microbiol ; 87(23): e0160121, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34550751

RESUMO

Soybean root rot caused by the oomycete Phytophthora sojae is a serious soilborne disease threatening soybean production in China. Bacillus velezensis FZB42 is a model strain for Gram-positive plant growth-promoting rhizobacteria and is able to produce multiple antibiotics. In this study, we demonstrated that B. velezensis FZB42 can efficiently antagonize P. sojae. The underlying mechanism for the inhibition was then investigated. The FZB42 mutants deficient in the synthesis of lipopeptides (bacillomycin D and fengycin), known to have antifungal activities, and polyketides (bacillaene, difficidin, and macrolactin), known to have antibacterial activities, were not impaired in their antagonism toward P. sojae; in contrast, mutants deficient in bacilysin biosynthesis completely lost their antagonistic activities toward P. sojae, indicating that bacilysin was responsible for the activity. Isolated pure bacilysin confirmed this inference. Bacilysin was previously shown to be antagonistic mainly toward prokaryotic bacteria rather than eukaryotes. Here, we found that bacilysin could severely damage the hyphal structures of P. sojae and lead to the loss of its intracellular contents. A device was invented allowing interactions between P. sojae and B. velezensis FZB42 on nutrient agar. In this manner, the effect of FZB42 on P. sojae was studied by transcriptomics. FZB42 significantly inhibited the expression of P. sojae genes related to growth, macromolecule biosynthesis, pathogenicity, and ribosomes. Among them, the genes for pectate lyase were the most significantly downregulated. Additionally, we showed that bacilysin effectively prevents soybean sprouts from being infected by P. sojae and could antagonize diverse Phytophthora species, such as Phytophthora palmivora, P. melonis, P. capsici, P. litchi, and, most importantly, P. infestans. IMPORTANCEPhytophthora spp. are widespread eukaryotic phytopathogens and often extremely harmful. Phytophthora can infect many types of plants important to agriculture and forestry and thus cause large economic losses. Perhaps due to inappropriate recognition of Phytophthora as a common pathogen in history, research on the biological control of Phytophthora is limited. This study shows that B. velezensis FZB42 can antagonize various Phytophthora species and prevent the infection of soybean seedlings by P. sojae. The antibiotic produced by FZB42, bacilysin, which was already known to have antibacterial effectiveness, is responsible for the inhibitory action against Phytophthora. We further showed that some Phytophthora genes and pathways may be targeted in future biocontrol studies. Therefore, our data provide a basis for the development of new tools for the prevention and control of root and stem rot in soybean and other plant diseases caused by Phytophthora.


Assuntos
Antibiose , Bacillus/fisiologia , Glycine max/microbiologia , Phytophthora , Antibacterianos/biossíntese , Bacillus/metabolismo , Agentes de Controle Biológico , Dipeptídeos/biossíntese , Phytophthora/patogenicidade
4.
Microbiologyopen ; 10(3): e1192, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34180606

RESUMO

The application of endophytic bacteria, particularly members of the genus Bacillus, offers a promising strategy for the biocontrol of plant fungal diseases, owing to their sustainability and ecological safety. Although multiple secondary metabolites that demonstrate antifungal capacity have been identified in diverse endophytic bacteria, the regulatory mechanisms of their biosynthesis remain largely unknown. To elucidate this, we sequenced the entire genome of Bacillus amyloliquefaciens GKT04, a strain isolated from banana root, which showed high inhibitory activity against Fusarium oxysporum f. sp. cubense race 4 (FOC4). The GKT04 genome consists of a circular chromosome and a circular plasmid, which harbors 4,087 protein-coding genes and 113 RNA genes. Eight gene clusters that could potentially encode antifungal components were identified. We further applied RNA-Seq analysis to survey genome-wide changes in the gene expression of strain GKT04 during its inhibition of FOC4. In total, 575 upregulated and 242 downregulated genes enriched in several amino acid and carbohydrate metabolism pathways were identified. Specifically, gene clusters associated with difficidin, bacillibactin, and bacilysin were significantly upregulated, and their gene regulatory networks were constructed. Our work thereby provides insights into the genomic features and gene expression patterns of this B. amyloliquefaciens strain, which presents an excellent potential for the biocontrol of Fusarium wilt.


Assuntos
Antibiose , Bacillus amyloliquefaciens/genética , Fusarium/fisiologia , Doenças das Plantas/microbiologia , Bacillus amyloliquefaciens/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dipeptídeos/biossíntese , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Genômica , Família Multigênica , Musa/microbiologia , Oligopeptídeos/biossíntese , Raízes de Plantas/microbiologia , Transcriptoma
5.
Angew Chem Int Ed Engl ; 60(18): 10319-10325, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33624374

RESUMO

DON (6-diazo-5-oxo-l-norleucine), a diazo-containing amino acid, has been studied for more than 60 years as a potent antitumor agent, but its biosynthesis has not been elucidated. Here we reveal the complete biosynthetic pathway of alazopeptin, the tripeptide Ala-DON-DON, which has antitumor activity, by gene inactivation and in vitro analysis of recombinant enzymes. We also established heterologous production of N-acetyl-DON in Streptomyces albus. DON is synthesized from lysine by three enzymes and converted to alazopeptin by five enzymes and one carrier protein. Most interestingly, transmembrane protein AzpL was indicated to catalyze diazotization using 5-oxolysine and nitrous acid as substrates. Site-directed mutagenesis of AzpL indicated that the hydroxy group of Tyr-93 is important for the diazotization. These findings expand our knowledge of the enzymology of N-N bond formation.


Assuntos
Alanina/metabolismo , Diazo-Oxo-Norleucina/metabolismo , Dipeptídeos/biossíntese , Alanina/química , Diazo-Oxo-Norleucina/química , Dipeptídeos/química , Estrutura Molecular , Streptomyces/química
6.
J Appl Microbiol ; 131(2): 756-767, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33405271

RESUMO

AIMS: Endophytes are a rich source for structurally complex chemical scaffolds with interesting biological activities. Endophytes associated with Brugmansia aurea L. (family: Solanaceae), a medicinal plant, have not yet explored for the bioactive metabolites. METHOD AND RESULTS: Hence, Macrophomina phaseolina, a fungal endophyte, was isolated from the roots of the plant. Its methanolic extract was found active against human cancer cell lines with IC50 <20 µg ml-1 . Later, a di-peptide compound, serine-glycine-betaine, was isolated and characterized. Serine-glycine-betaine consists of a unit of an N-trimethyl glycine attached to serine. It exhibited potent activity against MIA PaCa-2 and HCT-116 cell lines with IC50 8·9 and 15·16 µmol l-1 , respectively. Furthermore, it induced apoptosis in MIA PaCa-2 cells confirmed by microscopy. The apoptotic cell death in MIA PaCa-2 cells was evidenced biochemically with the generation of intracellular reactive oxygen species level and leading to loss of mitochondrial membrane potential due to activation of the intrinsic pathway. This study describes the plausible biosynthesis of serine-glycine-betaine based on genomics (genome sequencing, annotation and genes alignment). CONCLUSIONS: A novel di-peptide, serine-glycine-betaine isolated from M. phaseolina induced apoptosis in MIA-Pa-Ca-2 cells. SIGNIFICANCE AND IMPACT OF THE STUDY: This study confirms that dipeptides like serine-glycine-betaine and tyrosine-betaine might be specific to fungal genera, hence being used for diagnostic purposes.


Assuntos
Antineoplásicos/farmacologia , Ascomicetos/metabolismo , Dipeptídeos/farmacologia , Antineoplásicos/isolamento & purificação , Antineoplásicos/metabolismo , Apoptose , Brugmansia/microbiologia , Linhagem Celular Tumoral , Dipeptídeos/biossíntese , Dipeptídeos/isolamento & purificação , Endófitos/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
7.
FEBS J ; 288(1): 281-292, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32301545

RESUMO

Proteogenic dipeptides are intermediates of proteolysis as well as an emerging class of small-molecule regulators with diverse and often dipeptide-specific functions. Herein, prompted by differential accumulation of dipeptides in a high-density Arabidopsis thaliana time-course stress experiment, we decided to pursue an identity of the proteolytic pathway responsible for the buildup of dipeptides under heat conditions. By querying dipeptide accumulation versus available transcript data, autophagy emerged as a top hit. To examine whether autophagy indeed contributes to the accumulation of dipeptides measured in response to heat stress, we characterized the loss-of-function mutants of crucial autophagy proteins to test whether interfering with autophagy would affect dipeptide accumulation in response to the heat treatment. This was indeed the case. This work implicates the involvement of autophagy in the accumulation of proteogenic dipeptides in response to heat stress in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas Relacionadas à Autofagia/genética , Dipeptídeos/genética , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/biossíntese , Autofagia , Proteínas Relacionadas à Autofagia/biossíntese , Dipeptídeos/biossíntese , Luz , Mutação , Proteólise , Espécies Reativas de Oxigênio/metabolismo , Transcriptoma , Triglicerídeos/metabolismo
8.
NPJ Biofilms Microbiomes ; 6(1): 30, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32764612

RESUMO

Bacteria display social behavior and establish cooperative or competitive interactions in the niches they occupy. The human skin is a densely populated environment where many bacterial species live. Thus, bacterial inhabitants are expected to find a balance in these interactions, which eventually defines their spatial distribution and the composition of our skin microbiota. Unraveling the physiological basis of the interactions between bacterial species in organized environments requires reductionist analyses using functionally relevant species. Here, we study the interaction between two members of our skin microbiota, Bacillus subtilis and Staphylococcus epidermidis. We show that B. subtilis actively responds to the presence of S. epidermidis in its proximity by two strategies: antimicrobial production and development of a subpopulation with migratory response. The initial response of B. subtilis is production of chlorotetain, which degrades the S. epidermidis at the colony level. Next, a subpopulation of B. subtilis motile cells emerges. Remarkably this subpopulation slides towards the remaining S. epidermidis colony and engulfs it. A slow response back from S. epidermidis cells give origin to resistant cells that prevent both attacks from B. subtilis. We hypothesized that this niche conquering and back-down response from B. subtilis and S. epidermidis, respectively, which resembles other conflicts in nature as the ones observed in animals, may play a role in defining the presence of certain bacterial species in the specific microenvironments that these bacteria occupy on our skin.


Assuntos
Bacillus subtilis/fisiologia , Dipeptídeos/farmacologia , Pele/microbiologia , Staphylococcus epidermidis/crescimento & desenvolvimento , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/farmacologia , Dipeptídeos/biossíntese , Humanos , Interações Microbianas , Viabilidade Microbiana/efeitos dos fármacos , Filogenia , Staphylococcus epidermidis/efeitos dos fármacos , Territorialidade
9.
Appl Biochem Biotechnol ; 192(2): 573-584, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32488610

RESUMO

Papain (PA) immobilized onto magnetic nanocrystalline cellulose (PA@MNCC) was successfully fabricated and adopted as an efficient biocatalyst for the synthesis of N-(benzyloxycarbonyl)-alanyl-histidine (Z-Ala-His) dipeptide. Introducing deep eutectic solvents (DESs) as reaction media promoted the synthesis of the Z-Ala-His dipeptide. The effects of reaction conditions on the yield of papain catalytic Z-Ala-His were systematically investigated with the highest yield of 68.4%, which was higher than free papain (63.3%). Besides, this novel PA@MNCC composite can be easily recycled from the reaction system by magnetic forces. In a word, the PA@MNCC composite exhibited great potential for efficient biosynthesis of dipeptide in DESs.


Assuntos
Biocatálise , Celulose/química , Dipeptídeos/biossíntese , Enzimas Imobilizadas/metabolismo , Nanoestruturas/química , Papaína/metabolismo , Solventes/química , Enzimas Imobilizadas/química , Fenômenos Magnéticos , Papaína/química
10.
Microb Cell Fact ; 19(1): 129, 2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32527330

RESUMO

BACKGROUND: L-Alanyl-L-glutamine (AQ) is a functional dipeptide with high water solubility, good thermal stability and high bioavailability. It is widely used in clinical treatment, post-operative rehabilitation, sports health care and other fields. AQ is mainly produced via chemical synthesis which is complicated, time-consuming, labor-intensive, and have a low yield accompanied with the generation of by-products. It is therefore highly desirable to develop an efficient biotechnological process for the industrial production of AQ. RESULTS: A metabolically engineered E. coli strain for AQ production was developed by over-expressing L-amino acid α-ligase (BacD) from Bacillus subtilis, and inactivating the peptidases PepA, PepB, PepD, and PepN, as well as the dipeptide transport system Dpp. In order to use the more readily available substrate glutamic acid, a module for glutamine synthesis from glutamic acid was constructed by introducing glutamine synthetase (GlnA). Additionally, we knocked out glsA-glsB to block the first step in glutamine metabolism, and glnE-glnB involved in the ATP-dependent addition of AMP/UMP to a subunit of glutamine synthetase, which resulted in increased glutamine supply. Then the glutamine synthesis module was combined with the AQ synthesis module to develop the engineered strain that uses glutamic acid and alanine for AQ production. The expression of BacD and GlnA was further balanced to improve AQ production. Using the final engineered strain p15/AQ10 as a whole-cell biocatalyst, 71.7 mM AQ was produced with a productivity of 3.98 mM/h and conversion rate of 71.7%. CONCLUSION: A metabolically engineered strain for AQ production was successfully developed via inactivation of peptidases, screening of BacD, introduction of glutamine synthesis module, and balancing the glutamine and AQ synthesis modules to improve the yield of AQ. This work provides a microbial cell factory for efficient production of AQ with industrial potential.


Assuntos
Dipeptídeos/biossíntese , Escherichia coli , Microbiologia Industrial , Engenharia Metabólica , Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Microrganismos Geneticamente Modificados/metabolismo
11.
Appl Microbiol Biotechnol ; 104(16): 6967-6976, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32594215

RESUMO

Production of Ala-Gln by the E. coli expressing α-amino acid ester acyltransferase was a promising technical route due to its high enzyme activity, but the continuous production ability still needs to improve. Therefore, the immobilized E. coli expressing α-amino acid ester acyltransferase was applied for the continuous production of Ala-Gln. Four materials were selected as embedding medium for the whole cell entrapment of recombinant bacteria. Calcium alginate beads were found to be the most proper entrapment carrier for production of Ala-Gln. The temperature, pH, and repeatability of the immobilized cell were compared with free cells. Results showed that immobilization cell could maintain a wider range of temperature/pH and better stability than free cell (20-35 °C/pH 8.0-9.0, and 25 °C/pH 8.5, respectively). On this basis, continuous production strategy was put forward by filling the immobilized cell in the tubular reactor with multiple control conditions. The Ala-Gln by immobilization cell achieved the productivity of 2.79 mg/(min*mL-CV) without intermittent time. Consequently, these findings suggest that the immobilization technique has potential applications in the production of Ala-Gln by biotechnological method. KEY POINTS: • Immobilization helps to achieve high efficiency production of Ala-Gln. • Immobilized cells have better stability than free cells. • Sodium alginate is the most suitable immobilized material.


Assuntos
Aciltransferases/metabolismo , Células Imobilizadas/metabolismo , Dipeptídeos/biossíntese , Escherichia coli/enzimologia , Aciltransferases/genética , Alginatos , Biotecnologia/métodos , Escherichia coli/genética , Glutamina/metabolismo
12.
Enzyme Microb Technol ; 136: 109537, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32331719

RESUMO

Given their special action mechanisms and structural simplicity, L-amino acid ligases (Lals) are considered to be desirable tools for the catalytic biosynthesis of dipeptides. Ywf E (BacD) was the first Lal identified and was shown to be involved in the biosynthesis of a potent antibacterial, bacilysin, since then, various novel Lals have been discovered. Each Lal has different substrate spectra and is capable of synthesizing different dipeptides. Owning to their great potentials for producing bioactive dipeptides of industrial importance, in this review, recent developments of Lals are discussed, including their structures, action mechanisms, applications and the advantages and disadvantages of different Lals. In addition, protein engineering of Lals to improve their substrate specificity and catalytic performance is also discussed.


Assuntos
Aminoácidos/metabolismo , Bactérias/enzimologia , Dipeptídeos/biossíntese , Ligases/metabolismo , Biocatálise , Microbiologia Industrial , Engenharia de Proteínas , Especificidade por Substrato
13.
Org Lett ; 21(17): 7094-7098, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31429295

RESUMO

Heterologous expression in Streptomyces coelicolor and in vitro enzyme characterization proved that two P450 enzymes, AspB and NasB, from Streptomyces sp. NRRL S-1868 catalyze two new dimerization patterns of tryptophan-containing cyclodipeptides. Structure elucidation of the metabolites revealed an N1-C7' dimer of two cWP molecules as the predominant product of AspB and C3-C7' connected cWP with cWA as that of NasB.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Dipeptídeos/biossíntese , Peptídeos Cíclicos/biossíntese , Streptomyces/enzimologia , Triptofano/metabolismo , Biocatálise , Dimerização , Dipeptídeos/química , Conformação Molecular , Peptídeos Cíclicos/química , Triptofano/química
14.
Org Biomol Chem ; 17(28): 6782-6785, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31276151

RESUMO

Gliocladiosin A (1) and B (2), two dipeptides conjugated with macrolides, were identified from a verM disruption mutant of the Cordycep-colonizing fungus Clonostachys rogersoniana. The structures and absolute configurations of 1 and 2 were determined on the basis of spectroscopic data analysis, including MS, NMR, CD and X-ray diffraction. A biogenetic pathway for 1 and 2 was proposed. These two compounds showed moderate antibacterial effects.


Assuntos
Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Dipeptídeos/farmacologia , Hypocreales/química , Klebsiella pneumoniae/efeitos dos fármacos , Antibacterianos/biossíntese , Antibacterianos/química , Cristalografia por Raios X , Dipeptídeos/biossíntese , Dipeptídeos/química , Testes de Sensibilidade Microbiana , Modelos Moleculares , Conformação Molecular
15.
Chem Commun (Camb) ; 55(58): 8390-8393, 2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-31257394

RESUMO

Diverse bioactive alkaloids with a tryptophan 2,5-diketopiperazine (DKP) core and an annulated structure forming a methylated pyrroloindoline-DKP assembly have been isolated from various microbial sources. However, little is known about their biosynthesis. In this study, a novel indole C3 methyltransferase from Streptomyces sp. HPH0547 was discovered and characterized. Structural elucidation of the products revealed that this enzyme catalyzed unique pyrroloindoline cyclization in tryptophan-containing cyclodipeptides. This is the first C3 methyltransferase reported to catalyze pyrroloindoline cyclization in cyclic dipeptides, which provides a feasible and simple method to access diverse alkaloids.


Assuntos
Alcaloides/biossíntese , Proteínas de Bactérias/metabolismo , Dipeptídeos/biossíntese , Metiltransferases/metabolismo , Peptídeos Cíclicos/biossíntese , Streptomyces/enzimologia , Ciclização , Dicetopiperazinas/metabolismo , Modelos Químicos , Especificidade por Substrato , Triptofano/química , Triptofano/metabolismo
16.
Microb Cell Fact ; 18(1): 27, 2019 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-30711013

RESUMO

BACKGROUND: L-Alanyl-L-glutamine (Ala-Gln) represents the great application potential in clinic due to the unique physicochemical properties. A new approach was developed to synthesize Ala-Gln by recombinant Escherichia coli OPA, which could overcome the disadvantages of traditional chemical synthesis. Although satisfactory results had been obtained with recombinant E. coli OPA, endotoxin and the use of multiple antibiotics along with toxic inducer brought the potential biosafety hazard for the clinical application of Ala-Gln. RESULTS: In this study, the safer host Pichia pastoris was applied as an alternative to E. coli. A recombinant P. pastoris (named GPA) with the original gene of α-amino acid ester acyltransferase (SsAet) from Sphingobacterium siyangensis SY1, was constructed to produce Ala-Gln. To improve the expression efficiency of SsAet in P. pastoris, codon optimization was conducted to obtain the strain GPAp. Here, we report that Ala-Gln production by GPAp was approximately 2.5-fold more than that of GPA. The optimal induction conditions (cultivated for 3 days at 26 °C with a daily 1.5% of methanol supplement), the optimum reaction conditions (28 °C and pH 8.5), and the suitable substrate conditions (AlaOMe/Gln = 1.5/1) were also achieved for GPAp. Although most of the metal ions had no effects, the catalytic activity of GPAp showed a slight decrease in the presence of Fe3+ and an obvious increase when cysteine or PMSF were added. Under the optimum conditions, the Ala-Gln generation by GPAp realized the maximum molar yield of 63.5% and the catalytic activity of GPAp by agar embedding maintained extremely stable after 10 cycles. CONCLUSIONS: Characterized by economy, efficiency and practicability, production of Ala-Gln by recycling immobilized GPAp (whole-cell biocatalyst) is represents a green and promising way in industrial.


Assuntos
Aciltransferases/metabolismo , Dipeptídeos/biossíntese , Pichia/genética , Aciltransferases/genética , Enzimas , Glutamina/metabolismo , Microbiologia Industrial/métodos , Pichia/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sphingobacterium/enzimologia , Sphingobacterium/genética
17.
J Org Chem ; 84(5): 2991-2996, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30680995

RESUMO

The azinomycins are a family of aziridine-containing antitumor antibiotics and represent a treasure trove of biosynthetic reactions. The formation of the azabicyclo[3.1.0]hexane ring and functionalization of this ring system remain the least understood aspects of the pathway. This study reports the incorporation of 18O-labeled molecular oxygen in azinomycin biosynthesis including both oxygens of the diol that ultimately adorn the aziridino[1,2- a]pyrrolidine moiety. Likewise, two other sites of heavy atom incorporation are observed.


Assuntos
Dipeptídeos/biossíntese , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Oxigênio/metabolismo , Streptomyces/metabolismo , Compostos Azabicíclicos , Cromatografia em Camada Fina , Peptídeos e Proteínas de Sinalização Intercelular/isolamento & purificação , Naftalenos/isolamento & purificação , Streptomyces/química
18.
EMBO Mol Med ; 11(2)2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30617154

RESUMO

Nucleotide repeat expansions (NREs) are prevalent mutations in a multitude of neurodegenerative diseases. Repeat-associated non-AUG (RAN) translation of these repeat regions produces mono or dipeptides that contribute to the pathogenesis of these diseases. However, the mechanisms and drivers of RAN translation are not well understood. Here we analyzed whether different cellular stressors promote RAN translation of dipeptide repeats (DPRs) associated with the G4C2 hexanucleotide expansions in C9orf72, the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). We found that activating glutamate receptors or optogenetically increasing neuronal activity by repetitive trains of depolarization induced DPR formation in primary cortical neurons and patient derived spinal motor neurons. Increases in the integrated stress response (ISR) were concomitant with increased RAN translation of DPRs, both in neurons and different cell lines. Targeting phosphorylated-PERK and the phosphorylated-eif2α complex reduces DPR levels revealing a potential therapeutic strategy to attenuate DPR-dependent disease pathogenesis in NRE-linked diseases.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Proteína C9orf72/genética , Dipeptídeos/biossíntese , Demência Frontotemporal/patologia , Neurônios/patologia , Biossíntese de Proteínas , Sequências Repetitivas de Ácido Nucleico , Células Cultivadas , Humanos
19.
J Gen Appl Microbiol ; 65(1): 1-10, 2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-29899192

RESUMO

The adenylation domain of nonribosomal peptide synthetase (NRPS) is responsible for its selective substrate recognition and activation of the substrate (yielding an acyl-O-AMP intermediate) on ATP consumption. DhbF is an NRPS involved in bacillibactin synthesis and consists of multiple domains [adenylation domain, condensation domain, peptidyl carrier protein (PCP) domain, and thioesterase domain]; DhbFA1 and DhbFA2 (here named) are "internal" adenylation domains in the multidomain enzyme DhbF. We firstly succeeded in expressing and purifying the "internal" adenylation domains DhbFA1 and DhbFA2 separately. Furthermore, we initially demonstrated dipeptide synthesis by "internal" adenylation domains. When glycine and L-cysteine were used as substrates of DhbFA1, the formation of N-glycyl-L-cysteine (Gly-Cys) was observed. Furthermore, when L-threonine and L-cysteine were used as substrates of DhbFA2, N-L-threonyl-L-cysteine (Thr-Cys) was formed. These findings showed that both adenylation domains produced dipeptides by forming a carbon-nitrogen bond comprising the carboxyl group of an amino acid and the amino group of L-cysteine, although these adenylation domains are acid-thiol ligase using 4'-phosphopantetheine (bound to the PCP domain) as a substrate. Furthermore, DhbFA1 and DhbFA2 synthesized oligopeptides as well as dipeptides.


Assuntos
Dipeptídeos/biossíntese , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Peptídeo Sintases/química , Peptídeo Sintases/metabolismo , Monofosfato de Adenosina/metabolismo , Coenzima A Ligases/metabolismo , Cisteína/metabolismo , Dipeptídeos/química , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Complexos Multienzimáticos/genética , Oligopeptídeos/biossíntese , Oligopeptídeos/química , Panteteína/análogos & derivados , Panteteína/metabolismo , Peptídeo Sintases/genética , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
20.
J Agric Food Chem ; 66(46): 12368-12375, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30354106

RESUMO

Kokumi-active γ-glutamyl dipeptides (γ-GPs) accumulate in fermented food. γ-Glutamyl transferase, glutaminase, glutathione synthetase, and γ-glutamyl cysteine ligase (GCL) may synthesize γ-GPs. The genome of Lactobacillus reuteri encodes GCL but not glutathione synthetase or glutamyl transferase; therefore, this study investigated the role of GCL in γ-GP synthesis by L. reuteri LTH5448. Phylogenomic analysis of gcl in lactobacilli demonstrated that three genes coding for GCL are present in L. reuteri; two of these are present in L. reuteri LTH5448. Two deletion mutants of L. reuteri LTH5448, L. reuteri LTH5448Δ gcl1 and LTH5448Δ gcl1Δ gcl2, were constructed by double crossover mutagenesis. Growth and oxygen resistance of the mutants were comparable to the wild type. γ-Glu-Glu, γ-Glu-Leu, γ-Glu-Ile, γ-Glu-Val, and γ-Glu-Cys were quantified in buffer and sourdough fermentations by liquid chromatography-mass spectrometry. The wild type and L. reuteri Δ gcl1 but not Δ gcl1Δ gcl2 converted amino acids to γ-Glu-Cys. γ-Glu-Ile accumulation was reduced in both mutants; however, the disruption of gcl did not alter the biosynthesis of the other γ-GPs. In conclusion, gcl1 in L. reuteri mediates γ-Glu-Ile synthesis, gcl2 mediates γ-Glu-Cys synthesis, but neither gene affected synthesis of other γ-GPs. This study facilitates selection of starter cultures that synthesize γ-Glu peptides with kokumi activity and, thus, improve the taste of fermented foods.


Assuntos
Proteínas de Bactérias/metabolismo , Dipeptídeos/biossíntese , Glutamato-Cisteína Ligase/metabolismo , Limosilactobacillus reuteri/enzimologia , Aminoácidos/análise , Aminoácidos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Pão/análise , Pão/microbiologia , Fermentação , Glutamato-Cisteína Ligase/química , Glutamato-Cisteína Ligase/genética , Limosilactobacillus reuteri/química , Limosilactobacillus reuteri/classificação , Limosilactobacillus reuteri/genética , Filogenia , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA