Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
J Anat ; 240(3): 466-474, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34648184

RESUMO

Body size is a key factor that influences antipredator behavior. For animals that rely on jumping to escape from predators, there is a theoretical trade-off between jump distance and acceleration as body size changes at both the inter- and intraspecific levels. Assuming geometric similarity, acceleration will decrease with increasing body size due to a smaller increase in muscle cross-sectional area than body mass. Smaller animals will likely have a similar jump distance as larger animals due to their shorter limbs and faster accelerations. Therefore, in order to maintain acceleration in a jump across different body sizes, hind limbs must be disproportionately bigger for larger animals. We explored this prediction using four species of kangaroo rats (Dipodomys spp.), a genus of bipedal rodent with similar morphology across a range of body sizes (40-150 g). Kangaroo rat jump performance was measured by simulating snake strikes to free-ranging individuals. Additionally, morphological measurements of hind limb muscles and segment lengths were obtained from thawed frozen specimens. Overall, jump acceleration was constant across body sizes and jump distance increased with increasing size. Additionally, kangaroo rat hind limb muscle mass and cross-sectional area scaled with positive allometry. Ankle extensor tendon cross-sectional area also scaled with positive allometry. Hind limb segment length scaled isometrically, with the exception of the metatarsals, which scaled with negative allometry. Overall, these findings support the hypothesis that kangaroo rat hind limbs are built to maintain jump acceleration rather than jump distance. Selective pressure from single-strike predators, such as snakes and owls, likely drives this relationship.


Assuntos
Dipodomys , Músculo Esquelético , Animais , Articulação do Tornozelo/fisiologia , Dipodomys/fisiologia , Membro Posterior/anatomia & histologia , Locomoção/fisiologia , Músculo Esquelético/anatomia & histologia , Tendões/anatomia & histologia
2.
Integr Comp Biol ; 61(2): 442-454, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-33940620

RESUMO

Tails are widespread in the animal world and play important roles in locomotor tasks, such as propulsion, maneuvering, stability, and manipulation of objects. Kangaroo rats, bipedal hopping rodents, use their tail for balancing during hopping, but the role of their tail during the vertical evasive escape jumps they perform when attacked by predators is yet to be determined. Because we observed kangaroo rats swinging their tails around their bodies while airborne following escape jumps, we hypothesized that kangaroo rats use their tails to not only stabilize their bodies while airborne, but also to perform aerial re-orientations. We collected video data from free-ranging desert kangaroo rats (Dipodomys deserti) performing escape jumps in response to a simulated predator attack and analyzed the rotation of their bodies and tails in the yaw plane (about the vertical-axis). Kangaroo rat escape responses were highly variable. The magnitude of body re-orientation in yaw was independent of jump height, jump distance, and aerial time. Kangaroo rats exhibited a stepwise re-orientation while airborne, in which slower turning periods corresponded with the tail center of mass being aligned close to the vertical rotation axis of the body. To examine the effect of tail motion on body re-orientation during a jump, we compared average rate of change in angular momentum. Rate of change in tail angular momentum was nearly proportional to that of the body, indicating that the tail reorients the body in the yaw plane during aerial escape leaps by kangaroo rats. Although kangaroo rats make dynamic 3D movements during their escape leaps, our data suggest that kangaroo rats use their tails to control orientation in the yaw plane. Additionally, we show that kangaroo rats rarely use their tail length at full potential in yaw, suggesting the importance of tail movement through multiple planes simultaneously.


Assuntos
Dipodomys , Cauda , Animais , Fenômenos Biomecânicos , Dipodomys/fisiologia , Cauda/fisiologia
3.
Proc Biol Sci ; 286(1917): 20192269, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31822258

RESUMO

Human activities alter processes that control local biodiversity, causing changes in the abundance and identity of species in ecosystems. However, restoring biodiversity to a previous state is rarely as simple as reintroducing lost species or restoring processes to their pre-disturbance state. Theory suggests that established species can impede shifts in species composition via a variety of mechanisms, including direct interference, pre-empting resources or habitat alteration. These mechanisms can create transitory dynamics that delay convergence to an expected end state. We use an experimental manipulation of a desert rodent community to examine differences in recolonization dynamics of a dominant competitor (kangaroo rats of the genus Dipodomys) when patches were already occupied by an existing rodent community relative to when patches were empty. Recovery of kangaroo rat populations was slow on plots with an established community, taking approximately 2 years, in contrast with rapid recovery on empty plots with no established residents (approx. three months). These results demonstrate that the presence of an established alternate community inhibits recolonization by new species, even those that should be dominant in the community. This has important implications for understanding how biodiversity may change in the future, and what processes may slow or prevent this change.


Assuntos
Comportamento Competitivo , Dipodomys/fisiologia , Animais , Comportamento Animal , Biodiversidade , Clima Desértico , Ecossistema , Roedores
4.
Artif Life ; 25(3): 236-249, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31397600

RESUMO

Bipedal hopping is an efficient form of locomotion, yet it remains relatively rare in the natural world. Previous research has suggested that the tail balances the angular momentum of the legs to produce steady state bipedal hopping. In this study, we employ a 3D physics simulation engine to optimize gaits for an animat whose control and morphological characteristics are subject to computational evolution, which emulates properties of natural evolution. Results indicate that the order of gene fixation during the evolutionary process influences whether a bipedal hopping or quadrupedal bounding gait emerges. Furthermore, we found that in the most effective bipedal hoppers the tail balances the angular momentum of the torso, rather than the legs as previously thought. Finally, there appears to be a specific range of tail masses, as a proportion of total body mass, wherein the most effective bipedal hoppers evolve.


Assuntos
Simulação por Computador , Dipodomys , Marcha , Locomoção , Algoritmos , Animais , Comportamento Animal , Evolução Biológica , Biologia Computacional , Dipodomys/genética , Dipodomys/fisiologia , Marcha/genética , Genoma/genética , Locomoção/genética , Extremidade Inferior/fisiologia , Cauda/fisiologia
5.
Pest Manag Sci ; 75(7): 1847-1854, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30632260

RESUMO

BACKGROUND: Effective management of ground squirrels relies on an integrated pest management (IPM) approach. Rodenticides may be included in an IPM program, but they must be efficacious with minimal impact on nontarget species. A zinc phosphide-coated green bait may meet these requirements. We established a study in northeastern California to test zinc phosphide-coated cabbage as a management tool for Belding's ground squirrels (Urocitellus beldingi). We specifically addressed factors that would influence the efficacy of a baiting program, as well as potential exposure risk to nontarget species. RESULTS: We found that prebaiting was an important application strategy, and efficacy increased as ground squirrel abundance increased. Efficacy was also greater in western portions of the study area, likely due to greater bait consumption at western sites. Belding's ground squirrels fed most heavily on cabbage during mid-morning and late afternoon; bait applications shortly before these time periods would increase bait consumption while minimizing nontarget risk. Bait uptake was greatest around burrow entrances. The only nontarget species observed feeding on cabbage was the California kangaroo rat (Dipodomys californicus), although they were never observed feeding on treated cabbage. CONCLUSION: Zinc phosphide-coated cabbage can be an efficacious tool for managing ground squirrels, but there will be limitations on where and how it can be used effectively. It posed a low risk to nontarget species present in our study area, but nontarget risk could vary regionally. The use of a zinc phosphide-coated green bait should only be one part of an IPM strategy for managing ground squirrels. © 2019 Society of Chemical Industry.


Assuntos
Fosfinas/farmacologia , Controle de Roedores/métodos , Rodenticidas/farmacologia , Sciuridae/fisiologia , Compostos de Zinco/farmacologia , Animais , Brassica , California , Dipodomys/fisiologia , Comportamento Alimentar
6.
J Exp Biol ; 221(Pt 22)2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-30420493

RESUMO

Kangaroo rats are small bipedal desert rodents that use erratic vertical jumps to escape predator strikes. In this study we examined how individual hind limb joints of desert kangaroo rats (Dipodomys deserti) power vertical jumps across a range of heights. We hypothesized that increases in net work would be equally divided across hind limb joints with increases in jump height. To test this hypothesis, we used an inverse dynamics analysis to quantify the mechanical output from the hind limb joints of kangaroo rats jumping vertically over a wide range of heights. The kangaroo rats in this study reached maximal jump heights up to ∼9-times hip height. Net joint work increased significantly with jump height at the hip, knee and ankle, and decreased significantly at the metatarsal-phalangeal joint. The increase in net work generated by each joint was not proportional across joints but was dominated by the ankle, which ranged from contributing 56% of the work done on the center of mass at low jumps to 70% during the highest jumps. Therefore, the results of this study did not support our hypothesis. However, using an anatomical model, we estimated that a substantial proportion of the work delivered at the ankle (48%) was transferred from proximal muscles via the biarticular ankle extensors.


Assuntos
Dipodomys/fisiologia , Membro Posterior/fisiologia , Locomoção/fisiologia , Animais , Fenômenos Biomecânicos , Membro Posterior/anatomia & histologia , Articulações/fisiologia , Músculo Esquelético/fisiologia
7.
J R Soc Interface ; 15(144)2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29997260

RESUMO

Many cursorial and large hopping species are extremely efficient locomotors with various morphological adaptations believed to reduce mechanical demand and improve movement efficiency, including elongated distal limb segments. However, despite having elongated limbs, small hoppers such as desert kangaroo rats (Dipodomys deserti) are less efficient locomotors than their larger counterparts, which may be in part due to avoiding predators through explosive jumping movements. Despite potentially conflicting mechanical demands between the two movements, kangaroo rats are both excellent jumpers and attain high hopping speeds, likely due to a specialized hindlimb musculoskeletal morphology. This study combined experimental dissection data with a static analysis of muscle moment generating capacities using a newly developed musculoskeletal model to characterize kangaroo rat hindlimb musculoskeletal architecture and investigate how morphology has evolved to meet hopping and jumping mechanical demands. Hindlimb morphology appears biased towards generating constant moment arms over large joint ranges of motion in this species, which may balance competing requirements by reducing the need for posture and movement specific excitation patterns. The ankle extensors are a major exception to the strong positive relationship exhibited by most muscles between muscle architecture parameters (e.g. Lfibre) and joint moment arms. These muscles appear suited to meeting the high moments required for jumping: the biarticular nature of the ankle extensors is leveraged to reduce MTU strain and create a four-bar linkage that facilitates proximal force transfer. The kangaroo rat hindlimb provides an interesting case study for understanding how morphology balances the sometimes competing demands of hopping and jumping.


Assuntos
Adaptação Fisiológica , Dipodomys , Membro Posterior , Locomoção/fisiologia , Músculo Esquelético , Tendões , Animais , Articulação do Tornozelo , Dipodomys/anatomia & histologia , Dipodomys/fisiologia , Membro Posterior/anatomia & histologia , Membro Posterior/fisiologia , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/fisiologia , Tendões/anatomia & histologia , Tendões/fisiologia
8.
Physiol Behav ; 173: 174-178, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28188761

RESUMO

Predator presence causes acute stress in mammals. A prey animal's stress response increases its chance of survival during life-threatening situations through adaptive changes in behavior and physiology. Some components of the physiological stress response can lead to changes in body surface temperatures. Body temperature changes in prey could provide information about prey state to predators that sense heat, such as pit vipers. We determined whether wild rodents undergo a stress-induced change in body surface temperature upon detecting and investigating rattlesnake predators. We staged encounters between free-ranging Merriam's kangaroo rats (Dipodomys merriami) and tethered Mojave rattlesnakes (Crotalus scutulatus) at baited feeding stations, and recorded interactions with a thermal-imaging camera. Kangaroo rats showed a significant change in maximum head temperature, snout temperature, and hind leg temperature during interactions with rattlesnakes. This supports the hypothesis that presence of a predator induces body temperature changes in prey animals. If changes in prey heat signature are detectable by heat-sensitive rattlesnakes, rattlesnakes could use this information to evaluate prey vigilance or arousal before striking; however, more detailed information on the sensory ecology of the pit organ under field conditions is needed to evaluate this possibility.


Assuntos
Temperatura Corporal/fisiologia , Dipodomys/fisiologia , Comportamento Predatório/fisiologia , Estresse Psicológico/fisiopatologia , Animais , Crotalus , Modelos Lineares , Termografia
9.
Sci Rep ; 7: 40412, 2017 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-28084400

RESUMO

Predation plays a central role in the lives of most organisms. Predators must find and subdue prey to survive and reproduce, whereas prey must avoid predators to do the same. The resultant antagonistic coevolution often leads to extreme adaptations in both parties. Few examples capture the imagination like a rapid strike from a venomous snake. However, almost nothing is known about strike performance of viperid snakes under natural conditions. We obtained high-speed (500 fps) three-dimensional video in the field (at night using infrared lights) of Mohave rattlesnakes (Crotalus scutulatus) attempting to capture Merriam's kangaroo rats (Dipodomys merriami). Strikes occurred from a range of distances (4.6 to 20.6 cm), and rattlesnake performance was highly variable. Missed capture attempts resulted from both rapid escape maneuvers and poor strike accuracy. Maximum velocity and acceleration of some rattlesnake strikes fell within the range of reported laboratory values, but some far exceeded most observations. Thus, quantifying rapid predator-prey interactions in the wild will propel our understanding of animal performance.


Assuntos
Crotalus/fisiologia , Dipodomys/fisiologia , Imageamento Tridimensional/métodos , Gravação em Vídeo/métodos , Adaptação Fisiológica , Animais , Fenômenos Biomecânicos , Comportamento Predatório/fisiologia
10.
Conserv Biol ; 29(6): 1674-83, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26032147

RESUMO

Population sinks present unique conservation challenges. The loss of individuals in sinks can compromise persistence; but conversely, sinks can improve viability by improving connectivity and facilitating the recolonization of vacant sources. To assess the contribution of sinks to regional population persistence of declining populations, we simulated source-sink dynamics for 3 very different endangered species: Black-capped Vireos (Vireo atricapilla) at Fort Hood, Texas, Ord's kangaroo rats (Dipodomys ordii) in Alberta, and Northern Spotted Owls (Strix occidentalis caurina) in the northwestern United States. We used empirical data from these case studies to parameterize spatially explicit individual-based models. We then used the models to quantify population abundance and persistence with and without long-term sinks. The contributions of sink habitats varied widely. Sinks were detrimental, particularly when they functioned as strong sinks with few emigrants in declining populations (e.g., Alberta's Ord's kangaroo rat) and benign in robust populations (e.g., Black-capped Vireos) when Brown-headed Cowbird (Molothrus ater) parasitism was controlled. Sinks, including ecological traps, were also crucial in delaying declines when there were few sources (e.g., in Black-capped Vireo populations with no Cowbird control). Sink contributions were also nuanced. For example, sinks that supported large, variable populations were subject to greater extinction risk (e.g., Northern Spotted Owls). In each of our case studies, new context-dependent sinks emerged, underscoring the dynamic nature of sources and sinks and the need for frequent re-assessment. Our results imply that management actions based on assumptions that sink habitats are generally harmful or helpful risk undermining conservation efforts for declining populations.


Assuntos
Conservação dos Recursos Naturais , Dipodomys/fisiologia , Ecossistema , Espécies em Perigo de Extinção , Aves Canoras/fisiologia , Estrigiformes/fisiologia , Alberta , Animais , Feminino , Masculino , Modelos Biológicos , Noroeste dos Estados Unidos , Dinâmica Populacional , Texas
11.
J Hist Biol ; 48(2): 169-99, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25592808

RESUMO

During the decades following World War II diverse groups of American biologists established a variety of distinctive approaches to organismal biology. Rhetorically, organismal biology could be used defensively to distinguish established research traditions from perceived threats from newly emerging fields such as molecular biology. But, organismal biologists were also interested in integrating biological disciplines and using a focus on organisms to synthesize levels of organization from molecules and cells to populations and communities. Part of this broad movement was the development of an area of research variously referred to as physiological ecology, environmental physiology, or ecophysiology. This area of research was distinctive in its self-conscious blend of field and laboratory practices and its explicit integration with other areas of biology such as ecology, animal behavior, and evolution in order to study adaptation. Comparing the intersecting careers of Knut Schmidt-Nielsen and George Bartholomew highlights two strikingly different approaches to physiological ecology. These alternative approaches to studying the interactions of organisms and environments also differed in important ways from the organismal biology championed by leading figures in the modern synthesis.


Assuntos
Ecologia/história , Fisiologia/história , Animais , Aves/fisiologia , Camelus/fisiologia , Dipodomys/fisiologia , História do Século XX , Los Angeles , North Carolina
12.
PLoS One ; 9(9): e106638, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25237807

RESUMO

Species distributions are known to be limited by biotic and abiotic factors at multiple temporal and spatial scales. Species distribution models, however, frequently assume a population at equilibrium in both time and space. Studies of habitat selection have repeatedly shown the difficulty of estimating resource selection if the scale or extent of analysis is incorrect. Here, we present a multi-step approach to estimate the realized and potential distribution of the endangered giant kangaroo rat. First, we estimate the potential distribution by modeling suitability at a range-wide scale using static bioclimatic variables. We then examine annual changes in extent at a population-level. We define "available" habitat based on the total suitable potential distribution at the range-wide scale. Then, within the available habitat, model changes in population extent driven by multiple measures of resource availability. By modeling distributions for a population with robust estimates of population extent through time, and ecologically relevant predictor variables, we improved the predictive ability of SDMs, as well as revealed an unanticipated relationship between population extent and precipitation at multiple scales. At a range-wide scale, the best model indicated the giant kangaroo rat was limited to areas that received little to no precipitation in the summer months. In contrast, the best model for shorter time scales showed a positive relation with resource abundance, driven by precipitation, in the current and previous year. These results suggest that the distribution of the giant kangaroo rat was limited to the wettest parts of the drier areas within the study region. This multi-step approach reinforces the differing relationship species may have with environmental variables at different scales, provides a novel method for defining "available" habitat in habitat selection studies, and suggests a way to create distribution models at spatial and temporal scales relevant to theoretical and applied ecologists.


Assuntos
Distribuição Animal , Dipodomys/fisiologia , Espécies em Perigo de Extinção , Modelos Teóricos , Animais , California , Conservação dos Recursos Naturais , Ecossistema , Densidade Demográfica , Dinâmica Populacional
13.
Ecology ; 95(5): 1141-52, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-25000746

RESUMO

Identifying factors that may be responsible for regulating the size of animal populations is a cornerstone in understanding population ecology. The main factors that are thought to influence population size are either resources (bottom-up), or predation (top-down), or interspecific competition (parallel). However, there are highly variable and often contradictory results regarding their relative strengths and influence. These varied results are often interpreted as indicating "shifting control" among the three main factors, or a complex, nonlinear relationship among environmental variables, resource availability, predation, and competition. We argue here that there is a "missing link" in our understanding of predator-prey dynamics. We explore whether the landscape-of-fear model can help us clarify the inconsistencies and increase our understanding of the roles, extent, and possible interactions of top-down, bottom-up, and parallel factors on prey population abundance. We propose two main predictions derived from the landscape-of-fear model: (1) for a single species, we suggest that as the makeup of the landscape of fear changes from relatively safe to relatively risky, bottom-up impacts switch from strong to weak as top-down impacts go from weak to strong; (2) for two or more species, interspecific competitive interactions produce various combinations of bottom-up, top-down, and parallel impacts depending on the dominant competing species and whether the landscapes of fear are shared or distinctive among competing species. We contend that these predictions could successfully explain many of the complex and contradictory results of current research. We test some of these predictions based on long-term data for small mammals from the Chihuahuan Desert in the United States, and Mexico. We conclude that the landscape-of-fear model does provide reasonable explanations for many of the reported studies and should be tested further to better understand the effects of bottom-up, top-down, and parallel factors on population dynamics.


Assuntos
Dipodomys/fisiologia , Medo , Modelos Biológicos , Comportamento Predatório , Animais , Ecossistema , Plantas , Densidade Demográfica
14.
Biometrics ; 70(2): 323-34, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24571715

RESUMO

In this article, we first extend the superpopulation capture-recapture model to multiple states (locations or populations) for two age groups., Wen et al., (2011; 2013) developed a new approach combining capture-recapture data with population assignment information to estimate the relative contributions of in situ births and immigrants to the growth of a single study population. Here, we first generalize Wen et al., (2011; 2013) approach to a system composed of multiple study populations (multi-state) with two age groups, where an imputation approach is employed to account for the uncertainty inherent in the population assignment information. Then we develop a different, individual-level mixture model approach to integrate the individual-level population assignment information with the capture-recapture data. Our simulation and real data analyses show that the fusion of population assignment information with capture-recapture data allows us to estimate the origination-specific recruitment of new animals to the system and the dispersal process between populations within the system. Compared to a standard capture-recapture model, our new models improve the estimation of demographic parameters, including survival probability, origination-specific entry probability, and especially the probability of movement between populations, yielding higher accuracy and precision.


Assuntos
Migração Animal , Modelos Biológicos , Modelos Estatísticos , Algoritmos , Animais , Biometria/métodos , Simulação por Computador , Dipodomys/genética , Dipodomys/fisiologia , Ecologia/estatística & dados numéricos , Ecossistema , Feminino , Funções Verossimilhança , Masculino , Dinâmica Populacional/estatística & dados numéricos
15.
Ecology ; 94(6): 1287-95, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23923492

RESUMO

Using 20 years of demographic and genetic data from four populations of banner-tailed kangaroo rats (Dipodomys spectabilis), we asked whether dispersing individuals gain benefits during adulthood that might compensate for the substantial survival costs they experience as juveniles. Compared to philopatric animals, within- and between-population dispersers gained no measureable advantages in adult survival, fecundity, or probability of recruiting offspring to adulthood. Restricting analyses to members of two central populations living more than 15 times the median dispersal distance from the study site edge, and using peripheral populations only to detect dispersal or offspring recruitment "offsite," did not change this result. Population density during year of birth had small negative effects on adult survival and fecundity, but there were no interactions with dispersal phenotype. We found no evidence that dispersers gained access to superior habitat or that their offspring suffered less inbreeding depression. Our results are consistent with fitness advantages being indirect; by leaving, dispersers release their kin from competition. Our results are also consistent with the possibility that dispersal is the "best of a bad lot." If dispersal is a conditional strategy, then the benefits may be obscured in observational data that compare dispersing individuals to philopatric individuals rather than to individuals whose dispersal phenotype is experimentally manipulated.


Assuntos
Comportamento Animal/fisiologia , Dipodomys/fisiologia , Comportamento Social , Animais , Demografia , Longevidade , Reprodução
16.
Biol Lett ; 9(4): 20130418, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-23843217

RESUMO

The muscle work required to sustain steady-speed locomotion depends largely upon the mechanical energy needed to redirect the centre of mass and the degree to which this energy can be stored and returned elastically. Previous studies have found that large bipedal hoppers can elastically store and return a large fraction of the energy required to hop, whereas small bipedal hoppers can only elastically store and return a relatively small fraction. Here, we consider the extent to which large and small bipedal hoppers (tammar wallabies, approx. 7 kg, and desert kangaroo rats, approx. 0.1 kg) reduce the mechanical energy needed to redirect the centre of mass by reducing collisions. We hypothesize that kangaroo rats will reduce collisions to a greater extent than wallabies since kangaroo rats cannot elastically store and return as high a fraction of the mechanical energy of hopping as wallabies. We find that kangaroo rats use a significantly smaller collision angle than wallabies by employing ground reaction force vectors that are more vertical and center of mass velocity vectors that are more horizontal and thereby reduce their mechanical cost of transport. A collision-based approach paired with tendon morphometry may reveal this effect more generally among bipedal runners and quadrupedal trotters.


Assuntos
Dipodomys/fisiologia , Locomoção , Macropodidae/fisiologia , Animais , Fenômenos Biomecânicos , Orientação
17.
Am J Physiol Regul Integr Comp Physiol ; 303(7): R748-56, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22914749

RESUMO

We hypothesize that the inner medulla of the kangaroo rat Dipodomys merriami, a desert rodent that concentrates its urine to over 6,000 mosmol/kg H(2)O, provides unique examples of architectural features necessary for production of highly concentrated urine. To investigate this architecture, inner medullary vascular segments in the outer inner medulla were assessed with immunofluorescence and digital reconstructions from tissue sections. Descending vasa recta (DVR) expressing the urea transporter UT-B and the water channel aquaporin 1 lie at the periphery of groups of collecting ducts (CDs) that coalesce in their descent through the inner medulla. Ascending vasa recta (AVR) lie inside and outside groups of CDs. DVR peel away from vascular bundles at a uniform rate as they descend the inner medulla, and feed into networks of AVR that are associated with organized clusters of CDs. These AVR form interstitial nodal spaces, with each space composed of a single CD, two AVR, and one or more ascending thin limbs or prebend segments, an architecture that may lead to solute compartmentation and fluid fluxes essential to the urine concentrating mechanism. Although we have identified several apparent differences, the tubulovascular architecture of the kangaroo rat inner medulla is remarkably similar to that of the Munich Wistar rat at the level of our analyses. More detailed studies are required for identifying interspecies functional differences.


Assuntos
Dipodomys/anatomia & histologia , Dipodomys/fisiologia , Capacidade de Concentração Renal/fisiologia , Medula Renal/anatomia & histologia , Medula Renal/irrigação sanguínea , Animais , Aquaporina 1/metabolismo , Capilares/anatomia & histologia , Capilares/citologia , Capilares/fisiologia , Feminino , Medula Renal/fisiologia , Túbulos Renais Coletores/anatomia & histologia , Túbulos Renais Coletores/irrigação sanguínea , Túbulos Renais Coletores/metabolismo , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Modelos Animais , Ratos , Ratos Wistar , Fluxo Sanguíneo Regional/fisiologia , Vasopressinas/sangue , Transportadores de Ureia
18.
Ecology ; 93(6): 1330-9, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22834374

RESUMO

Many models of selection predict that populations will lose variation in traits that affect fitness. Nonetheless, phenotypic variation is commonly observed in natural populations. We tested the influences of competition and spatial heterogeneity on behavioral variation within and among populations of Merriam's kangaroo rats (Dipodomys merriami) and tested for the differential expression of trait correlations. We found that populations of D. merriami exhibited more aggression at sites with more competition. Contrary to theoretical predictions and empirical results in other systems, the sites with the greatest spatial heterogeneity and highest levels of competition did not exhibit the most behavioral variation among individuals. However, the greatest within-individual behavioral variability in boldness (response to cues of predator presence) was exhibited where spatial heterogeneity was highest. Aggression and boldness of D. merriami were highly repeatable, that is, individuals behaved in a consistent manner over time, and the two behaviors were also highly correlated. Interestingly, the strength of this correlation was greatest where the competitive community was least diverse. These findings add to increasing evidence that natural populations of animals exhibit patterns of behavioral covariance, or personality structure, and suggest that competitive variation may act to erode personality structure.


Assuntos
Comportamento Animal/fisiologia , Dipodomys/fisiologia , Ecossistema , Monitoramento Ambiental/métodos , Animais
19.
PLoS One ; 7(2): e30914, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22348030

RESUMO

Facilitation, when one species enhances the environment or performance of another species, can be highly localized in space. While facilitation in plant communities has been intensely studied, the role of facilitation in shaping animal communities is less well understood. In the Chihuahuan Desert, both kangaroo rats and harvester ants depend on the abundant seeds of annual plants. Kangaroo rats, however, are hypothesized to facilitate harvester ants through soil disturbance and selective seed predation rather than competing with them. I used a spatially explicit approach to examine whether a positive or negative interaction exists between banner-tailed kangaroo rat (Dipodomys spectabilis) mounds and rough harvester ant (Pogonomyrmex rugosus) colonies. The presence of a scale-dependent interaction between mounds and colonies was tested by comparing fitted spatial point process models with and without interspecific effects. Also, the effect of proximity to a mound on colony mortality and spatial patterns of surviving colonies was examined. The spatial pattern of kangaroo rat mounds and harvester ant colonies was consistent with a positive interspecific interaction at small scales (<10 m). Mortality risk of vulnerable, recently founded harvester ant colonies was lower when located close to a kangaroo rat mound and proximity to a mound partly predicted the spatial pattern of surviving colonies. My findings support localized facilitation of harvester ants by kangaroo rats, likely mediated through ecosystem engineering and foraging effects on plant cover and composition. The scale-dependent effect of kangaroo rats on abiotic and biotic factors appears to result in greater founding and survivorship of young colonies near mounds. These results suggest that soil disturbance and foraging by rodents can have subtle impacts on the distribution and demography of other species.


Assuntos
Formigas/fisiologia , Dipodomys/fisiologia , Ecossistema , Herbivoria , Animais , Meio Ambiente , Comportamento Alimentar , Modelos Biológicos , Plantas , Sementes , Solo
20.
Conserv Biol ; 26(1): 116-23, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21978094

RESUMO

Translocation is used to reestablish wild populations of animals, but translocation projects often do not meet their objectives because postrelease mortality of animals is high. One reason for translocation failure is that the behavioral or ecological requirements of released animals are unmet. Maintaining founder-group social relationships during release can affect reestablishment of social species. Solitary territorial species with stable neighbors (restricted dispersal and lifetime occupation of a home range) of the same species may also benefit from the maintenance of these social relationships during translocation. We translocated Stephens' kangaroo rats (Dipodomys stephensi), a solitary species listed as endangered under the U.S. Endangered Species Act, with and without neighboring kangaroo rats. We compared the settlement (establishment of a stable home range) decisions and fitness of kangaroo rats between the 2 treatments. Kangaroo rats translocated with neighbors traveled shorter distances before establishing territories, had higher survival rates, and had significantly higher reproductive success than kangaroo rats translocated without neighbors. Number of offspring was 24-fold higher for kangaroo rats translocated with neighbors than those translocated without neighbors. Differences in behavior following release may partially explain differences in survival between the 2 groups. Immediately following release, animals translocated with neighbors fought less and spent significantly more time foraging and digging burrows than animals translocated without neighbors. Our results indicate that even for solitary species, maintaining relationships among members of a translocated group of animals can influence translocation success. This study is the first empirical demonstration of the fitness consequences of disrupting social relationships among territorial neighbors.


Assuntos
Conservação dos Recursos Naturais/métodos , Dipodomys/fisiologia , Animais , Comportamento Animal , Espécies em Perigo de Extinção , Feminino , Comportamento de Retorno ao Território Vital , Masculino , Dinâmica Populacional , Comportamento Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA