Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Appl Environ Microbiol ; 90(10): e0146624, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39291985

RESUMO

Many insects are obligatorily associated with and dependent on specific microbial species as essential mutualistic partners. In the host insects, such microbial mutualists are usually maintained in specialized cells or organs, called bacteriocytes or symbiotic organs. Hence, potentially exponential microbial growth cannot be realized but must be strongly constrained by spatial and resource limitations within the host cells or tissues. How such endosymbiotic bacteria grow, divide, and proliferate is important for understanding the interactions and dynamics underpinning intimate host-microbe symbiotic associations. Here we report that Blattabacterium, the ancient and essential endosymbiont of cockroaches, exhibits unexpectedly high rates of cell division (20%-58%) and, in addition, the cell division is asymmetric (average asymmetry index >1.5) when isolated from the German cockroach Blattella germanica. The asymmetric division of endosymbiont cells at high frequencies was observed irrespective of host tissues (fat bodies vs ovaries) or developmental stages (adults vs nymphs vs embryos) of B. germanica, and also observed in several different cockroach species. By contrast, such asymmetric and frequent cell division was observed neither in Buchnera, the obligatory bacterial endosymbiont of aphids, nor in Pantoea, the obligatory bacterial gut symbiont of stinkbugs. Comparative genomics of cell division-related genes uncovered that the Blattabacterium genome lacks the Min system genes that determine the cell division plane, which may be relevant to asymmetric cell division. These observations combined with comparative symbiont genomics provide insight into what processes and regulations may underpin the growth, division, and proliferation of such bacterial mutualists continuously constrained under within-host conditions.IMPORTANCEDiverse insects are dependent on specific bacterial mutualists for their survival and reproduction. Due to the long-lasting coevolutionary history, such symbiotic bacteria tend to exhibit degenerative genomes and suffer uncultivability. Because of their microbiological fastidiousness, the cell division patterns of such uncultivable symbiotic bacteria have been poorly described. Here, using fine microscopic and quantitative morphometric approaches, we report that, although bacterial cell division usually proceeds through symmetric binary fission, Blattabacterium, the ancient and essential endosymbiont of cockroaches, exhibits frequent and asymmetric cell division. Such peculiar cell division patterns were not observed with other uncultivable essential symbiotic bacteria of aphids and stinkbugs. Gene repertoire analysis revealed that the molecular machinery for regulating the bacterial cell division plane are lost in the Blattabacterium genome, suggesting the possibility that the general trend toward the reductive genome evolution of symbiotic bacteria may underpin their bizarre cytological/morphological traits.


Assuntos
Baratas , Simbiose , Animais , Baratas/microbiologia , Divisão Celular Assimétrica/fisiologia , Blattellidae/microbiologia , Blattellidae/fisiologia , Divisão Celular , Buchnera/genética , Buchnera/fisiologia
2.
Dev Cell ; 57(2): 197-211.e3, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35030327

RESUMO

During female meiosis I (MI), spindle positioning must be tightly regulated to ensure the fidelity of the first asymmetric division and faithful chromosome segregation. Although the role of F-actin in regulating these critical processes has been studied extensively, little is known about whether microtubules (MTs) participate in regulating these processes. Using mouse oocytes as a model system, we characterize a subset of MT organizing centers that do not contribute directly to spindle assembly, termed mcMTOCs. Using laser ablation, STED super-resolution microscopy, and chemical manipulation, we show that mcMTOCs are required to regulate spindle positioning and faithful chromosome segregation during MI. We discuss how forces exerted by F-actin on the spindle are balanced by mcMTOC-nucleated MTs to anchor the spindle centrally and to regulate its timely migration. Our findings provide a model for asymmetric cell division, complementing the current F-actin-based models, and implicate mcMTOCs as a major player in regulating spindle positioning.


Assuntos
Centro Organizador dos Microtúbulos/fisiologia , Oócitos/metabolismo , Fuso Acromático/fisiologia , Citoesqueleto de Actina/fisiologia , Actinas/fisiologia , Animais , Divisão Celular Assimétrica/fisiologia , Segregação de Cromossomos/fisiologia , Feminino , Meiose/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Centro Organizador dos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Microtúbulos/fisiologia , Oócitos/fisiologia , Fuso Acromático/metabolismo
3.
Dev Biol ; 483: 13-21, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34971598

RESUMO

Asymmetric cell division is an essential feature of normal development and certain pathologies. The process and its regulation have been studied extensively in the Caenorhabditis elegans embryo, particularly how symmetry of the actomyosin cortical cytoskeleton is broken by a sperm-derived signal at fertilization, upstream of polarity establishment. Diploscapter pachys is the closest parthenogenetic relative to C. elegans, and D. pachys one-cell embryos also divide asymmetrically. However how polarity is triggered in the absence of sperm remains unknown. In post-meiotic embryos, we find that the nucleus inhabits principally one embryo hemisphere, the future posterior pole. When forced to one pole by centrifugation, the nucleus returns to its preferred pole, although poles appear identical as concerns cortical ruffling and actin cytoskeleton. The location of the meiotic spindle also correlates with the future posterior pole and slight actin enrichment is observed at that pole in some early embryos along with microtubule structures emanating from the meiotic spindle. Polarized location of the nucleus is not observed in pre-meiotic D. pachys oocytes. All together our results are consistent with the idea that polarity of the D. pachys embryo is attained during meiosis, seemingly based on the location of the meiotic spindle, by a mechanism that may be present but suppressed in C. elegans.


Assuntos
Divisão Celular Assimétrica/fisiologia , Meiose/fisiologia , Oócitos/citologia , Oócitos/fisiologia , Partenogênese/fisiologia , Rhabditoidea/citologia , Rhabditoidea/embriologia , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/embriologia , Núcleo Celular/fisiologia , Feminino , Microtúbulos/fisiologia , Oviparidade/fisiologia , Fuso Acromático/fisiologia
4.
Int J Mol Sci ; 22(19)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34638607

RESUMO

Asymmetric cell division (ACD) of neural stem cells and progenitors not only renews the stem cell population but also ensures the normal development of the nervous system, producing various types of neurons with different shapes and functions in the brain. One major mechanism to achieve ACD is the asymmetric localization and uneven segregation of intracellular proteins and organelles into sibling cells. Recent studies have demonstrated that liquid-liquid phase separation (LLPS) provides a potential mechanism for the formation of membrane-less biomolecular condensates that are asymmetrically distributed on limited membrane regions. Moreover, mechanical forces have emerged as pivotal regulators of asymmetric neural stem cell division by generating sibling cell size asymmetry. In this review, we will summarize recent discoveries of ACD mechanisms driven by LLPS and mechanical forces.


Assuntos
Divisão Celular Assimétrica/fisiologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/fisiologia , Animais , Fenômenos Biomecânicos , Divisão Celular/fisiologia , Polaridade Celular/fisiologia , Tamanho Celular , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/citologia , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/fisiologia , Modelos Neurológicos , Miosinas/fisiologia , Neurogênese/fisiologia , Organelas/fisiologia
5.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34507987

RESUMO

The formation of the branched actin networks is essential for cell polarity, but it remains unclear how the debranching activity of actin filaments contributes to this process. Here, we showed that an evolutionarily conserved coronin family protein, the Caenorhabditis elegans POD-1, debranched the Arp2/3-nucleated actin filaments in vitro. By fluorescence live imaging analysis of the endogenous POD-1 protein, we found that POD-1 colocalized with Arp2/3 at the leading edge of the migrating C. elegans neuroblasts. Conditional mutations of POD-1 in neuroblasts caused aberrant actin assembly, disrupted cell polarity, and impaired cell migration. In C. elegans one-cell-stage embryos, POD-1 and Arp2/3, moved together during cell polarity establishment, and inhibition of POD-1 blocked Arp2/3 motility and affected the polarized cortical flow, leading to symmetric segregation of cell fate determinants. Together, these results indicate that F-actin debranching organizes actin network and cell polarity in migrating neuroblasts and asymmetrically dividing embryos.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Polaridade Celular/fisiologia , Proteínas dos Microfilamentos/metabolismo , Citoesqueleto de Actina/fisiologia , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Animais , Divisão Celular Assimétrica/fisiologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiologia , Movimento Celular/fisiologia , Proteínas dos Microfilamentos/fisiologia , Células-Tronco Neurais/metabolismo
6.
Development ; 148(18)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34370012

RESUMO

Drosophila female germline stem cells (GSCs) are found inside the cellular niche at the tip of the ovary. They undergo asymmetric divisions to renew the stem cell lineage and to produce sibling cystoblasts that will in turn enter differentiation. GSCs and cystoblasts contain spectrosomes, membranous structures essential for orientation of the mitotic spindle and that, particularly in GSCs, change shape depending on the cell cycle phase. Using live imaging and a fusion protein of GFP and the spectrosome component Par-1, we follow the complete spectrosome cycle throughout GSC division and quantify the relative duration of the different spectrosome shapes. We also determine that the Par-1 kinase shuttles between the spectrosome and the cytoplasm during mitosis and observe the continuous addition of new material to the GSC and cystoblast spectrosomes. Next, we use the Fly-FUCCI tool to define, in live and fixed tissues, that GSCs have a shorter G1 compared with the G2 phase. The observation of centrosomes in dividing GSCs allowed us to determine that centrosomes separate very early in G1, before centriole duplication. Furthermore, we show that the anterior centrosome associates with the spectrosome only during mitosis and that, upon mitotic spindle assembly, it translocates to the cell cortex, where it remains anchored until centrosome separation. Finally, we demonstrate that the asymmetric division of GSCs is not an intrinsic property of these cells, as the spectrosome of GSC-like cells located outside of the niche can divide symmetrically. Thus, GSCs display unique properties during division, a behaviour influenced by the surrounding niche.


Assuntos
Divisão Celular Assimétrica/fisiologia , Centrossomo/fisiologia , Drosophila/fisiologia , Células Germinativas/fisiologia , Ovário/fisiologia , Células-Tronco/fisiologia , Animais , Diferenciação Celular/fisiologia , Centrossomo/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiologia , Feminino , Fase G1/fisiologia , Fase G2/fisiologia , Células Germinativas/metabolismo , Mitose/fisiologia , Ovário/metabolismo , Fuso Acromático/fisiologia , Células-Tronco/metabolismo
7.
Development ; 148(18)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34463761

RESUMO

In many land plants, asymmetric cell divisions (ACDs) create and pattern differentiated cell types on the leaf surface. In the Arabidopsis stomatal lineage, BREAKING OF ASYMMETRY IN THE STOMATAL LINEAGE (BASL) regulates division plane placement and cell fate enforcement. Polarized subcellular localization of BASL is initiated before ACD and persists for many hours after the division in one of the two daughters. Untangling the respective contributions of polarized BASL before and after division is essential to gain a better understanding of its roles in regulating stomatal lineage ACDs. Here, we combine quantitative imaging and lineage tracking with genetic tools that provide temporally restricted BASL expression. We find that pre-division BASL is required for division orientation, whereas BASL polarity post-division ensures proper cell fate commitment. These genetic manipulations allowed us to uncouple daughter-cell size asymmetry from polarity crescent inheritance, revealing independent effects of these two asymmetries on subsequent cell behavior. Finally, we show that there is coordination between the division frequencies of sister cells produced by ACDs, and this coupling requires BASL as an effector of peptide signaling.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Divisão Celular Assimétrica/fisiologia , Proteínas de Ciclo Celular/metabolismo , Polaridade Celular/fisiologia , Estômatos de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Tamanho Celular , Transdução de Sinais/fisiologia
8.
PLoS Comput Biol ; 17(6): e1009080, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34153030

RESUMO

Microbial populations show striking diversity in cell growth morphology and lifecycle; however, our understanding of how these factors influence the growth rate of cell populations remains limited. We use theory and simulations to predict the impact of asymmetric cell division, cell size regulation and single-cell stochasticity on the population growth rate. Our model predicts that coarse-grained noise in the single-cell growth rate λ decreases the population growth rate, as previously seen for symmetrically dividing cells. However, for a given noise in λ we find that dividing asymmetrically can enhance the population growth rate for cells with strong size control (between a "sizer" and an "adder"). To reconcile this finding with the abundance of symmetrically dividing organisms in nature, we propose that additional constraints on cell growth and division must be present which are not included in our model, and we explore the effects of selected extensions thereof. Further, we find that within our model, epigenetically inherited generation times may arise due to size control in asymmetrically dividing cells, providing a possible explanation for recent experimental observations in budding yeast. Taken together, our findings provide insight into the complex effects generated by non-canonical growth morphologies.


Assuntos
Divisão Celular Assimétrica/fisiologia , Modelos Biológicos , Biologia Computacional , Simulação por Computador , Fenômenos Microbiológicos , Saccharomycetales/citologia , Saccharomycetales/fisiologia , Processos Estocásticos
9.
Adv Sci (Weinh) ; 8(7): 2003516, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33854891

RESUMO

Cell reprogramming is considered a stochastic process, and it is not clear which cells are prone to be reprogrammed and whether a deterministic step exists. Here, asymmetric cell division (ACD) at the early stage of induced neuronal (iN) reprogramming is shown to play a deterministic role in generating elite cells for reprogramming. Within one day, fibroblasts underwent ACD, with one daughter cell being converted into an iN precursor and the other one remaining as a fibroblast. Inhibition of ACD significantly inhibited iN conversion. Moreover, the daughter cells showed asymmetric DNA segregation and histone marks during cytokinesis, and the cells inheriting newly replicated DNA strands during ACD became iN precursors. These results unravel a deterministic step at the early phase of cell reprogramming and demonstrate a novel role of ACD in cell phenotype change. This work also supports a novel hypothesis that daughter cells with newly replicated DNA strands are elite cells for reprogramming, which remains to be tested in various reprogramming processes.


Assuntos
Divisão Celular Assimétrica/fisiologia , Reprogramação Celular/fisiologia , Fibroblastos/fisiologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais
10.
Bull Math Biol ; 83(4): 29, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33594535

RESUMO

In the process of asymmetric cell division, the mother cell induces polarity in both the membrane and the cytosol by distributing substrates and components asymmetrically. Such polarity formation results from the harmonization of the upstream and downstream polarities between the cell membrane and the cytosol. MEX-5/6 is a well-investigated downstream cytoplasmic protein, which is deeply involved in the membrane polarity of the upstream transmembrane protein PAR in the Caenorhabditis elegans embryo. In contrast to the extensive exploration of membrane PAR polarity, cytoplasmic polarity is poorly understood, and the precise contribution of cytoplasmic polarity to the membrane PAR polarity remains largely unknown. In this study, we explored the interplay between the cytoplasmic MEX-5/6 polarity and the membrane PAR polarity by developing a mathematical model that integrates the dynamics of PAR and MEX-5/6 and reflects the cell geometry. Our investigations show that the downstream cytoplasmic protein MEX-5/6 plays an indispensable role in causing a robust upstream PAR polarity, and the integrated understanding of their interplay, including the effect of the cell geometry, is essential for the study of polarity formation in asymmetric cell division.


Assuntos
Divisão Celular Assimétrica , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Modelos Biológicos , Animais , Divisão Celular Assimétrica/fisiologia , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Membrana Celular/metabolismo , Forma Celular , Citosol/metabolismo
11.
PLoS One ; 15(11): e0242547, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33201918

RESUMO

Several previous studies have shown that when a cell that has taken up nanoparticles divides, the nanoparticles are inherited by the two daughter cells in an asymmetrical fashion, with one daughter cell receiving more nanoparticles than the other. This interesting observation is typically demonstrated either indirectly using mathematical modelling of high-throughput experimental data or more directly by imaging individual cells as they divide. Here we suggest that measurements of the coefficient of variation (standard deviation over mean) of the number of nanoparticles per cell over the cell population is another means of assessing the degree of asymmetry. Using simulations of an evolving cell population, we show that the coefficient of variation is sensitive to the degree of asymmetry and note its characteristic evolution in time. As the coefficient of variation is readily measurable using high-throughput techniques, this should allow a more rapid experimental assessment of the degree of asymmetry.


Assuntos
Divisão Celular Assimétrica/fisiologia , Divisão Celular/fisiologia , Hereditariedade/fisiologia , Nanopartículas/metabolismo , Correlação de Dados , Modelos Teóricos
12.
Int J Mol Sci ; 21(21)2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33153113

RESUMO

Hematopoietic stem cells (HSCs) are responsible for life-long production of all mature blood cells. Under homeostasis, HSCs in their native bone marrow niches are believed to undergo asymmetric cell divisions (ACDs), with one daughter cell maintaining HSC identity and the other committing to differentiate into various mature blood cell types. Due to the lack of key niche signals, in vitro HSCs differentiate rapidly, making it challenging to capture and study ACD. To overcome this bottleneck, in this study, we used interferon alpha (IFNα) treatment to "pre-instruct" HSC fate directly in their native niche, and then systematically studied the fate of dividing HSCs in vitro at the single cell level via time-lapse analysis, as well as multigene and protein expression analysis. Triggering HSCs' exit from dormancy via IFNα was found to significantly increase the frequency of asynchronous divisions in paired daughter cells (PDCs). Using single-cell gene expression analyses, we identified 12 asymmetrically expressed genes in PDCs. Subsequent immunocytochemistry analysis showed that at least three of the candidates, i.e., Glut1, JAM3 and HK2, were asymmetrically distributed in PDCs. Functional validation of these observations by colony formation assays highlighted the implication of asymmetric distribution of these markers as hallmarks of HSCs, for example, to reliably discriminate committed and self-renewing daughter cells in dividing HSCs. Our data provided evidence for the importance of in vivo instructions in guiding HSC fate, especially ACD, and shed light on putative molecular players involved in this process. Understanding the mechanisms of cell fate decision making should enable the development of improved HSC expansion protocols for therapeutic applications.


Assuntos
Divisão Celular Assimétrica/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/fisiologia , Interferon-alfa/farmacologia , Animais , Divisão Celular Assimétrica/genética , Divisão Celular Assimétrica/fisiologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/genética , Células Cultivadas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Interferon-alfa/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Análise de Célula Única
13.
Curr Biol ; 30(22): 4467-4475.e4, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-32946753

RESUMO

Multicellular development depends on generating and precisely positioning distinct cell types within tissues. During leaf development, pores in the epidermis called stomata are spaced at least one cell apart for optimal gas exchange. This pattern is primarily driven by iterative asymmetric cell divisions (ACDs) in stomatal progenitors, which generate most of the cells in the tissue. A plasma membrane-associated polarity crescent defined by BREAKING OF ASYMMETRY IN THE STOMATAL LINEAGE (BASL) and BREVIS RADIX family (BRXf) proteins is required for asymmetric divisions and proper stomatal pattern, but the cellular mechanisms that orient ACDs remain unclear. Here, utilizing long-term, quantitative time-lapse microscopy, we identified two oppositely oriented nuclear migrations that precede and succeed ACD during epidermal patterning. The pre- and post-division migrations are dependent on microtubules and actin, respectively, and the polarity crescent is the unifying landmark that is both necessary and sufficient to orient both nuclear migrations. We identified a specific and essential role for MYOXI-I in controlling post-ACD nuclear migration. Loss of MYOXI-I decreases stomatal density, owing to an inability to accurately orient a specific subset of ACDs. Taken together, our analyses revealed successive and polarity-driven nuclear migrations that regulate ACD orientation in the Arabidopsis stomatal lineage.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Divisão Celular Assimétrica/fisiologia , Núcleo Celular/metabolismo , Estômatos de Plantas/crescimento & desenvolvimento , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem da Célula/fisiologia , Polaridade Celular/fisiologia , Microscopia Intravital , Proteínas Motores Moleculares/genética , Proteínas Motores Moleculares/metabolismo , Plantas Geneticamente Modificadas , Imagem com Lapso de Tempo
14.
Dev Biol ; 465(2): 89-99, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32687894

RESUMO

Asymmetric cell division (ACD) is a cellular process that forms two different cell types through a cell division and is thus critical for the development of all multicellular organisms. Not all but many of the ACD processes are mediated by proper orientation of the mitotic spindle, which segregates the fate determinants asymmetrically into daughter cells. In many cell types, the evolutionarily conserved protein complex of Gαi/AGS-family protein/NuMA-like protein appears to play critical roles in orienting the spindle and/or generating the polarized cortical forces to regulate ACD. Studies in various organisms reveal that this conserved protein complex is slightly modified in each phylum or even within species. In particular, AGS-family proteins appear to be modified with a variable number of motifs in their functional domains across taxa. This apparently creates different molecular interactions and mechanisms of ACD in each developmental program, ultimately contributing to developmental diversity across species. In this review, we discuss how a conserved ACD machinery has been modified in each phylum over the course of evolution with a major focus on the molecular evolution of AGS-family proteins and its impact on ACD regulation.


Assuntos
Divisão Celular Assimétrica/fisiologia , Proteínas de Ciclo Celular/metabolismo , Família Multigênica , Transdução de Sinais/fisiologia , Fuso Acromático/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Humanos , Especificidade da Espécie , Fuso Acromático/genética
15.
Int J Mol Sci ; 21(12)2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32630428

RESUMO

Peptidoglycan is generally considered one of the main determinants of cell shape in bacteria. In rod-shaped bacteria, cell elongation requires peptidoglycan synthesis to lengthen the cell wall. In addition, peptidoglycan is synthesized at the division septum during cell division. Sporulation of Bacillus subtilis begins with an asymmetric cell division. Formation of the sporulation septum requires almost the same set of proteins as the vegetative septum; however, these two septa are significantly different. In addition to their differences in localization, the sporulation septum is thinner and it contains SpoIIE, a crucial sporulation specific protein. Here we show that peptidoglycan biosynthesis is linked to the cell division machinery during sporulation septum formation. We detected a direct interaction between SpoIIE and GpsB and found that both proteins co-localize during the early stages of asymmetric septum formation. We propose that SpoIIE is part of a multi-protein complex which includes GpsB, other division proteins and peptidoglycan synthesis proteins, and could provide a link between the peptidoglycan synthesis machinery and the complex morphological changes required for forespore formation during B. subtilis sporulation.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Esporos Bacterianos/metabolismo , Divisão Celular Assimétrica/fisiologia , Proteínas de Bactérias/metabolismo , Ciclo Celular , Divisão Celular/fisiologia , Forma Celular , Parede Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas de Ligação às Penicilinas/fisiologia , Peptidoglicano/metabolismo , Esporos Bacterianos/fisiologia
16.
Development ; 147(13)2020 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-32601056

RESUMO

Asymmetric cell division (ACD) is an evolutionarily conserved mechanism used by prokaryotes and eukaryotes alike to control cell fate and generate cell diversity. A detailed mechanistic understanding of ACD is therefore necessary to understand cell fate decisions in health and disease. ACD can be manifested in the biased segregation of macromolecules, the differential partitioning of cell organelles, or differences in sibling cell size or shape. These events are usually preceded by and influenced by symmetry breaking events and cell polarization. In this Review, we focus predominantly on cell intrinsic mechanisms and their contribution to cell polarization, ACD and binary cell fate decisions. We discuss examples of polarized systems and detail how polarization is established and, whenever possible, how it contributes to ACD. Established and emerging model organisms will be considered alike, illuminating both well-documented and underexplored forms of polarization and ACD.


Assuntos
Divisão Celular Assimétrica/fisiologia , Polaridade Celular/fisiologia , Animais , Divisão Celular Assimétrica/genética , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Membrana Celular/metabolismo , Polaridade Celular/genética , Humanos
17.
Biochimie ; 176: 71-84, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32599022

RESUMO

DNA replication, segregation and cell division are vital processes and require an interplay of multiple proteins. These processes are highly conserved across bacteria yet similar or dissimilar progeny are produced after cell division. This review describes the bacterial cell division in considerable detail. This includes studies on model microorganisms which produce similar progeny such as Escherichia coli and Vibrio cholerae, and dissimilar progeny such as sporulating Bacillus subtilis, Actinobacteria, Caulobacter crescentus etc. The mechanism of symmetric and asymmetric cell division and its regulation has also been discussed.


Assuntos
Divisão Celular Assimétrica/fisiologia , Bactérias/metabolismo , Replicação do DNA/fisiologia , DNA Bacteriano/biossíntese , Especificidade da Espécie
18.
Curr Biol ; 30(14): 2860-2868.e3, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32470363

RESUMO

Branching morphogenesis is a widely used mechanism for development [1, 2]. In plants, it is initiated by the emergence of a new growth axis, which is of particular importance for plants to explore space and access resources [1]. Branches can emerge either from a single cell or from a group of cells [3-5]. In both cases, the mother cells that initiate branching must undergo dynamic morphological changes and/or adopt oriented asymmetric cell divisions (ACDs) to establish the new growth direction. However, the underlying mechanisms are not fully understood. Here, using the bryophyte moss Physcomitrella patens as a model, we show that side-branch formation in P. patens protonemata requires coordinated polarized cell expansion, directional nuclear migration, and orientated ACD. By combining pharmacological experiments, long-term time-lapse imaging, and genetic analyses, we demonstrate that Rho of plants (ROP) GTPases and actin are essential for cell polarization and local cell expansion (bulging). The growing bulge acts as a prerequisite signal to guide long-distance microtubule (MT)-dependent nuclear migration, which determines the asymmetric positioning of the division plane. MTs play an essential role in nuclear migration but are less involved in bulge formation. Hence, cell polarity and cytoskeletal elements act cooperatively to modulate cell morphology and nuclear positioning during branch initiation. We propose that polarity-triggered nuclear positioning and ACD comprise a fundamental mechanism for increasing multicellularity and tissue complexity during plant morphogenesis.


Assuntos
Actinas/fisiologia , Divisão Celular Assimétrica/genética , Divisão Celular Assimétrica/fisiologia , Bryopsida/crescimento & desenvolvimento , Bryopsida/genética , GTP Fosfo-Hidrolases/fisiologia , Desenvolvimento Vegetal/genética , Desenvolvimento Vegetal/fisiologia , Transporte Ativo do Núcleo Celular , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Bryopsida/citologia , Núcleo Celular/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/fisiologia , Microtúbulos/metabolismo
19.
Dev Growth Differ ; 62(3): 188-195, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32120453

RESUMO

Asymmetric cell division is one of the most elegant biological systems by which cells create daughter cells with different functions and increase cell diversity. In particular, PAR polarity in the cell membrane plays a critical role in regulating the whole process of asymmetric cell division. Numerous studies have been conducted to determine the underlying mechanism of PAR polarity formation using both experimental and theoretical approaches in the last 10 years. However, they have mostly focused on answering the fundamental question of how this exclusive polarity is established but the precise dynamics of polarity domain have been little notified. In this review, I focused on studies on the shape, length, and location of PAR polarity from a theoretical perspective that may be important for an integrated understanding of the entire process of asymmetric cell division.


Assuntos
Divisão Celular Assimétrica/fisiologia , Caenorhabditis elegans/citologia , Polaridade Celular/fisiologia , Animais , Caenorhabditis elegans/embriologia , Membrana Celular , Modelos Biológicos
20.
J Math Biol ; 80(6): 1885-1917, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32198524

RESUMO

Cell polarity is an important cellular process that cells use for various cellular functions such as asymmetric division, cell migration, and directionality determination. In asymmetric cell division, a mother cell creates multiple polarities of various proteins simultaneously within her membrane and cytosol to generate two different daughter cells. The formation of multiple polarities in asymmetric cell division has been found to be controlled via the regulatory system by upstream polarity of the membrane to downstream polarity of the cytosol, which is involved in not only polarity establishment but also polarity positioning. However, the mechanism for polarity positioning remains unclear. In this study, we found a general mechanism and mathematical structure for the multiple streams of polarities to determine their relative position via conceptional models based on the biological example of the asymmetric cell division process of C. elegans embryo. Using conceptional modeling and model reductions, we show that the positional relation of polarities is determined by a contrasting role of regulation by upstream polarity proteins on the transition process of diffusion dynamics of downstream proteins. We analytically prove that our findings hold under the general mathematical conditions, suggesting that the mechanism of relative position between upstream and downstream dynamics could be understood without depending on a specific type of bio-chemical reaction, and it could be the universal mechanism in multiple streams of polarity dynamics of the cell.


Assuntos
Polaridade Celular/fisiologia , Modelos Biológicos , Animais , Divisão Celular Assimétrica/fisiologia , Transporte Biológico/fisiologia , Padronização Corporal/fisiologia , Caenorhabditis elegans/citologia , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/fisiologia , Membrana Celular/fisiologia , Movimento Celular/fisiologia , Citosol/fisiologia , Conceitos Matemáticos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA