Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0304064, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38787850

RESUMO

Asymmetric cell division is an important mechanism that generates cellular diversity during development. Not only do asymmetric cell divisions produce daughter cells of different fates, but many can also produce daughters of different sizes, which we refer to as Daughter Cell Size Asymmetry (DCSA). In Caenorhabditis elegans, apoptotic cells are frequently produced by asymmetric divisions that exhibit DCSA, where the smaller daughter dies. We focus here on the divisions of the Q.a and Q.p neuroblasts, which produce larger surviving cells and smaller apoptotic cells and divide with opposite polarity using both distinct and overlapping mechanisms. Several proteins regulate DCSA in these divisions. Previous studies showed that the PIG-1/MELK and TOE-2 proteins regulate DCSA in both the Q.a and Q.p divisions, and the non-muscle myosin NMY-2 regulates DCSA in the Q.a division but not the Q.p division. In this study, we examined endogenously tagged NMY-2, TOE-2, and PIG-1 reporters and characterized their distribution at the cortex during the Q.a and Q.p divisions. In both divisions, TOE-2 localized toward the side of the dividing cell that produced the smaller daughter, whereas PIG-1 localized toward the side that produced the larger daughter. As previously reported, NMY-2 localized to the side of Q.a that produced the smaller daughter and did not localize asymmetrically in Q.p. We used temperature-sensitive nmy-2 mutants to determine the role of nmy-2 in these divisions and were surprised to find that these mutants only displayed DCSA defects in the Q.p division. We generated double mutant combinations between the nmy-2 mutations and mutations in toe-2 and pig-1. Because previous studies indicate that DCSA defects result in the transformation of cells fated to die into their sister cells, the finding that the nmy-2 mutations did not significantly alter the Q.a and Q.p DCSA defects of toe-2 and pig-1 mutants but did alter the number of daughter cells produced by Q.a and Q.p suggests that nmy-2 plays a role in specifying the fates of the Q.a and Q.p that is independent of its role in DCSA.


Assuntos
Divisão Celular Assimétrica , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Cadeias Pesadas de Miosina , Animais , Divisão Celular Assimétrica/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Tamanho Celular , Miosinas/metabolismo , Miosinas/genética , Proteínas Serina-Treonina Quinases , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
2.
Annu Rev Genet ; 57: 181-199, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-37552892

RESUMO

Germ cells are the only cell type that is capable of transmitting genetic information to the next generation, which has enabled the continuation of multicellular life for the last 1.5 billion years. Surprisingly little is known about the mechanisms supporting the germline's remarkable ability to continue in this eternal cycle, termed germline immortality. Even unicellular organisms age at a cellular level, demonstrating that cellular aging is inevitable. Extensive studies in yeast have established the framework of how asymmetric cell division and gametogenesis may contribute to the resetting of cellular age. This review examines the mechanisms of germline immortality-how germline cells reset the aging of cells-drawing a parallel between yeast and multicellular organisms.


Assuntos
Divisão Celular Assimétrica , Saccharomyces cerevisiae , Divisão Celular Assimétrica/genética , Saccharomyces cerevisiae/genética , Células Germinativas , Células-Tronco
3.
Plant Cell ; 34(1): 455-476, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34718767

RESUMO

Stomatal pores and the leaf cuticle regulate evaporation from the plant body and balance the tradeoff between photosynthesis and water loss. MYB16, encoding a transcription factor involved in cutin biosynthesis, is expressed in stomatal lineage ground cells, suggesting a link between cutin biosynthesis and stomatal development. Here, we show that the downregulation of MYB16 in meristemoids is directly mediated by the stomatal master transcription factor SPEECHLESS (SPCH) in Arabidopsis thaliana. The suppression of MYB16 before an asymmetric division is crucial for stomatal patterning, as its overexpression or ectopic expression in meristemoids increased stomatal density and resulted in the formation of stomatal clusters, as well as affecting the outer cell wall structure. Expressing a cutinase gene in plants ectopically expressing MYB16 reduced stomatal clustering, suggesting that cutin affects stomatal signaling or the polarity setup in asymmetrically dividing cells. The clustered stomatal phenotype was rescued by overexpressing EPIDERMAL PATTERNING FACTOR2, suggesting that stomatal signaling was still functional in these plants. Growing seedlings ectopically expressing MYB16 on high-percentage agar plates to modulate tensile strength rescued the polarity and stomatal cluster defects of these seedlings. Therefore, the inhibition of MYB16 expression by SPCH in the early stomatal lineage is required to correctly place the polarity protein needed for stomatal patterning during leaf morphogenesis.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Divisão Celular Assimétrica/genética , Polaridade Celular/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Estômatos de Plantas/fisiologia , Fatores de Transcrição/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição/metabolismo
4.
Dev Biol ; 483: 34-38, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34942195

RESUMO

Proper function of the body is maintained by an intricate interaction and communication among cells. during the animal development how these cells are formed and maintained is an important yet elusive. Understanding of how cells such as muscle and nerve cells maintain their identities would enable us to control the diseases which include malfunctioning in cellular identities such as cancer. In this article, we describe how the concept of formation and maintenance of cell identities has changed over the last 100 years. We will also briefly describe our current experimental work which includes transcriptional dynamics, and protein-protein interaction and how they are bringing new molecular insights. We also describe liquid-liquid phase separation as a potential new mechanism for the stability of gene expression in the non dvididng specialised cells of Xenopus oocytes.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Oócitos/citologia , Oócitos/metabolismo , Xenopus laevis/embriologia , Xenopus laevis/genética , Animais , Divisão Celular Assimétrica/genética , Diferenciação Celular/genética , Feminino , Células Musculares/metabolismo , Neurônios/metabolismo , Ovoviviparidade/genética , Mapas de Interação de Proteínas/genética , Transcrição Gênica/genética , Xenopus laevis/metabolismo
5.
Int J Mol Sci ; 22(22)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34830224

RESUMO

Cell polarity is essential for many functions of cells and tissues including the initial establishment and subsequent maintenance of epithelial tissues, asymmetric cell division, and morphogenetic movements. Cell polarity along the apical-basal axis is controlled by three protein complexes that interact with and co-regulate each other: The Par-, Crumbs-, and Scrib-complexes. The localization and activity of the components of these complexes is predominantly controlled by protein-protein interactions and protein phosphorylation status. Increasing evidence accumulates that, besides the regulation at the protein level, the precise expression control of polarity determinants contributes substantially to cell polarity regulation. Here we review how gene expression regulation influences processes that depend on the induction, maintenance, or abolishment of cell polarity with a special focus on epithelial to mesenchymal transition and asymmetric stem cell division. We conclude that gene expression control is an important and often neglected mechanism in the control of cell polarity.


Assuntos
Divisão Celular Assimétrica/genética , Polaridade Celular/genética , Transição Epitelial-Mesenquimal/genética , Regulação da Expressão Gênica , Transcrição Gênica/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Proteínas do Olho/metabolismo , Expressão Gênica , Humanos , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Mapas de Interação de Proteínas/genética , Transdução de Sinais/genética , Proteínas Supressoras de Tumor/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo
6.
Int J Mol Sci ; 22(21)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34768763

RESUMO

A connection between compromised asymmetric cell division (ACD) and tumorigenesis was proven some years ago using Drosophila larval brain neural stem cells, called neuroblasts (NBs), as a model system. Since then, we have learned that compromised ACD does not always promote tumorigenesis, as ACD is an extremely well-regulated process in which redundancy substantially overcomes potential ACD failures. Considering this, we have performed a pilot RNAi screen in Drosophila larval brain NB lineages using RasV12 scribble (scrib) mutant clones as a sensitized genetic background, in which ACD is affected but does not cause tumoral growth. First, as a proof of concept, we have tested known ACD regulators in this sensitized background, such as lethal (2) giant larvae and warts. Although the downregulation of these ACD modulators in NB clones does not induce tumorigenesis, their downregulation along with RasV12 scrib does cause tumor-like overgrowth. Based on these results, we have randomly screened 79 RNAi lines detecting 15 potential novel ACD regulators/tumor suppressor genes. We conclude that RasV12 scrib is a good sensitized genetic background in which to identify tumor suppressor genes involved in NB ACD, whose function could otherwise be masked by the high redundancy of the ACD process.


Assuntos
Divisão Celular Assimétrica/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Genes Supressores de Tumor/fisiologia , Células-Tronco Neurais/metabolismo , Animais , Regulação para Baixo , Proteínas de Drosophila/genética , Larva/citologia , Larva/genética , Larva/metabolismo , Proteínas de Membrana/genética , Interferência de RNA , Proteínas ras/genética , Proteínas ras/metabolismo
7.
Front Immunol ; 12: 716240, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34484219

RESUMO

Memory B cells and antibody-secreting plasma cells are generated within germinal centers during affinity maturation in which B-cell proliferation, selection, differentiation, and self-renewal play important roles. The mechanisms behind memory B cell and plasma cell differentiation in germinal centers are not well understood. However, it has been suggested that cell fate is (partially) determined by asymmetric cell division, which involves the unequal distribution of cellular components to both daughter cells. To investigate what level and/or probability of asymmetric segregation of several fate determinant molecules, such as the antigen and transcription factors (BCL6, IRF4, and BLIMP1) recapitulates the temporal switch and DZ-to-LZ ratio in the germinal center, we implemented a multiscale model that combines a core gene regulatory network for plasma cell differentiation with a model describing the cellular interactions and dynamics in the germinal center. Our simulations show that BLIMP1 driven plasma cell differentiation together with coupled asymmetric division of antigen and BLIMP1 with a large segregation between the daughter cells results in a germinal center DZ-to-LZ ratio and a temporal switch from memory B cells to plasma cells that have been observed in experiments.


Assuntos
Antígenos/imunologia , Divisão Celular Assimétrica/genética , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Células B de Memória/imunologia , Plasmócitos/imunologia , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Biomarcadores , Diferenciação Celular , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Ativação Linfocitária , Células B de Memória/metabolismo , Modelos Biológicos , Plasmócitos/metabolismo
8.
Nat Commun ; 12(1): 2715, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976157

RESUMO

Efficient immune responses rely on heterogeneity, which in CD8+ T cells, amongst other mechanisms, is achieved by asymmetric cell division (ACD). Here we find that ageing, known to negatively impact immune responses, impairs ACD in murine CD8+ T cells, and that this phenotype can be rescued by transient mTOR inhibition. Increased ACD rates in mitotic cells from aged mice restore the expansion and memory potential of their cellular progenies. Further characterization of the composition of CD8+ T cells reveals that virtual memory cells (TVM cells), which accumulate during ageing, have a unique proliferation and metabolic profile, and retain their ability to divide asymmetrically, which correlates with increased memory potential. The opposite is observed for naive CD8+ T cells from aged mice. Our data provide evidence on how ACD modulation contributes to long-term survival and function of T cells during ageing, offering new insights into how the immune system adapts to ageing.


Assuntos
Envelhecimento/genética , Divisão Celular Assimétrica/genética , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/genética , Serina-Treonina Quinases TOR/genética , Envelhecimento/imunologia , Animais , Divisão Celular Assimétrica/imunologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica , Imunidade Inata , Interferon gama/genética , Interferon gama/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Subunidade beta de Receptor de Interleucina-2/genética , Subunidade beta de Receptor de Interleucina-2/imunologia , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Ativação Linfocitária , Camundongos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Receptores CXCR3/genética , Receptores CXCR3/imunologia , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , Receptores de Interleucina-7/genética , Receptores de Interleucina-7/imunologia , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/imunologia
9.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33753475

RESUMO

Stem cells divide asymmetrically to generate a stem cell and a differentiating daughter cell. Yet, it remains poorly understood how a stem cell and a differentiating daughter cell can receive distinct levels of niche signal and thus acquire different cell fates (self-renewal versus differentiation), despite being adjacent to each other and thus seemingly exposed to similar levels of niche signaling. In the Drosophila ovary, germline stem cells (GSCs) are maintained by short range bone morphogenetic protein (BMP) signaling; the BMP ligands activate a receptor that phosphorylates the downstream molecule mothers against decapentaplegic (Mad). Phosphorylated Mad (pMad) accumulates in the GSC nucleus and activates the stem cell transcription program. Here, we demonstrate that pMad is highly concentrated in the nucleus of the GSC, while it quickly decreases in the nucleus of the differentiating daughter cell, the precystoblast (preCB), before the completion of cytokinesis. We show that a known Mad phosphatase, Dullard (Dd), is required for the asymmetric partitioning of pMad. Our mathematical modeling recapitulates the high sensitivity of the ratio of pMad levels to the Mad phosphatase activity and explains how the asymmetry arises in a shared cytoplasm. Together, these studies reveal a mechanism for breaking the symmetry of daughter cells during asymmetric stem cell division.


Assuntos
Divisão Celular Assimétrica/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Poro Nuclear/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Células-Tronco/fisiologia , Fatores de Transcrição/metabolismo , Animais , Animais Geneticamente Modificados , Núcleo Celular , Drosophila melanogaster , Feminino , Oócitos , Fosforilação/genética , Ativação Transcricional
10.
Curr Biol ; 31(2): 420-426.e6, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33176130

RESUMO

In both animals and plants, development involves anatomical modifications. In the root of Arabidopsis thaliana, maturation of the ground tissue (GT)-a tissue comprising all cells between epidermal and vascular ones-is a paradigmatic example of these modifications, as it generates an additional tissue layer, the middle cortex (MC).1-4 In early post-embryonic phases, the Arabidopsis root GT is composed of one layer of endodermis and one of cortex. A second cortex layer, the MC, is generated by asymmetric cell divisions in about 80% of Arabidopsis primary roots, in a time window spanning from 7 to 14 days post-germination (dpg). The cell cycle regulator CYCLIN D6;1 (CYCD6;1) plays a central role in this process, as its accumulation in the endodermis triggers the formation of MC.5 The phytohormone gibberellin (GA) is a key regulator of the timing of MC formation, as alterations in its signaling and homeostasis result in precocious endodermal asymmetric cell divisions.3,6,7 However, little is known on how GAs are regulated during GT maturation. Here, we show that the HOMEODOMAIN LEUCINE ZIPPER III (HD-ZIPIII) transcription factor PHABULOSA (PHB) is a master regulator of MC formation, controlling the accumulation of CYCD6;1 in the endodermis in a cell non-autonomous manner. We show that PHB activates the GA catabolic gene GIBBERELLIN 2 OXIDASE 2 (GA2ox2) in the vascular tissue, thus regulating the stability of the DELLA protein GIBBERELLIN INSENSITIVE (GAI)-a GA signaling repressor-in the root and, hence, CYCD6;1 expression in the endodermis.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Ciclinas/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/metabolismo , Arabidopsis/genética , Divisão Celular Assimétrica/genética , Giberelinas/metabolismo , Proteínas de Homeodomínio/genética , MicroRNAs/metabolismo , Oxigenases de Função Mista/genética , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas
11.
Int J Mol Sci ; 21(21)2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33153113

RESUMO

Hematopoietic stem cells (HSCs) are responsible for life-long production of all mature blood cells. Under homeostasis, HSCs in their native bone marrow niches are believed to undergo asymmetric cell divisions (ACDs), with one daughter cell maintaining HSC identity and the other committing to differentiate into various mature blood cell types. Due to the lack of key niche signals, in vitro HSCs differentiate rapidly, making it challenging to capture and study ACD. To overcome this bottleneck, in this study, we used interferon alpha (IFNα) treatment to "pre-instruct" HSC fate directly in their native niche, and then systematically studied the fate of dividing HSCs in vitro at the single cell level via time-lapse analysis, as well as multigene and protein expression analysis. Triggering HSCs' exit from dormancy via IFNα was found to significantly increase the frequency of asynchronous divisions in paired daughter cells (PDCs). Using single-cell gene expression analyses, we identified 12 asymmetrically expressed genes in PDCs. Subsequent immunocytochemistry analysis showed that at least three of the candidates, i.e., Glut1, JAM3 and HK2, were asymmetrically distributed in PDCs. Functional validation of these observations by colony formation assays highlighted the implication of asymmetric distribution of these markers as hallmarks of HSCs, for example, to reliably discriminate committed and self-renewing daughter cells in dividing HSCs. Our data provided evidence for the importance of in vivo instructions in guiding HSC fate, especially ACD, and shed light on putative molecular players involved in this process. Understanding the mechanisms of cell fate decision making should enable the development of improved HSC expansion protocols for therapeutic applications.


Assuntos
Divisão Celular Assimétrica/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/fisiologia , Interferon-alfa/farmacologia , Animais , Divisão Celular Assimétrica/genética , Divisão Celular Assimétrica/fisiologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/genética , Células Cultivadas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Interferon-alfa/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Análise de Célula Única
12.
Curr Opin Cell Biol ; 67: 27-36, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32871437

RESUMO

Asymmetric cell division produces two cells that are genetically identical but each have distinctly different cell fates. During this process, epigenetic mechanisms play an important role in allowing the two daughter cells to have unique gene expression profiles that lead to their specific cell identities. Although the process of duplicating and segregating the genetic information during the cell cycle has been well studied, the question of how epigenetic information is duplicated and partitioned still remains. In this review, we discuss recent advances in understanding how epigenetic states are established and inherited, with emphasis on the asymmetric inheritance patterns of histones, DNA methylation, nonhistone proteins, RNAs, and organelles. We also discuss how misregulation of these processes may lead to diseases such as cancer and tissue degeneration.


Assuntos
Divisão Celular Assimétrica/genética , Epigênese Genética , Padrões de Herança/genética , Células-Tronco/citologia , Animais , Cromatina/metabolismo , Metilação de DNA , Humanos
13.
Nat Commun ; 11(1): 3317, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620775

RESUMO

Oriented cell division is a fundamental mechanism to control asymmetric stem cell division, neural tube elongation and body axis extension, among other processes. During zebrafish gastrulation, when the body axis extends, dorsal epiblast cells display divisions that are robustly oriented along the animal-vegetal embryonic axis. Here, we use a combination of lipidomics, metabolic tracer analysis and quantitative image analysis to show that sphingolipids mediate spindle positioning during oriented division of epiblast cells. We identify the Wnt signaling as a regulator of sphingolipid synthesis that mediates the activity of serine palmitoyltransferase (SPT), the first and rate-limiting enzyme in sphingolipid production. Sphingolipids determine the palmitoylation state of the Anthrax receptor, which then positions the mitotic spindle of dividing epiblast cells. Our data show how Wnt signaling mediates sphingolipid-dependent oriented division and how sphingolipids determine Anthrax receptor palmitoylation, which ultimately controls the activation of Diaphanous to mediate spindle rotation and oriented mitosis.


Assuntos
Embrião não Mamífero/metabolismo , Mitose , Receptores de Peptídeos/metabolismo , Esfingolipídeos/metabolismo , Via de Sinalização Wnt , Sequência de Aminoácidos , Animais , Divisão Celular Assimétrica/genética , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Gastrulação , Regulação da Expressão Gênica no Desenvolvimento , Camadas Germinativas/citologia , Camadas Germinativas/embriologia , Camadas Germinativas/metabolismo , Lipoilação , Tubo Neural/citologia , Tubo Neural/embriologia , Tubo Neural/metabolismo , Receptores de Peptídeos/genética , Homologia de Sequência de Aminoácidos , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/metabolismo , Fuso Acromático/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
14.
Development ; 147(13)2020 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-32601056

RESUMO

Asymmetric cell division (ACD) is an evolutionarily conserved mechanism used by prokaryotes and eukaryotes alike to control cell fate and generate cell diversity. A detailed mechanistic understanding of ACD is therefore necessary to understand cell fate decisions in health and disease. ACD can be manifested in the biased segregation of macromolecules, the differential partitioning of cell organelles, or differences in sibling cell size or shape. These events are usually preceded by and influenced by symmetry breaking events and cell polarization. In this Review, we focus predominantly on cell intrinsic mechanisms and their contribution to cell polarization, ACD and binary cell fate decisions. We discuss examples of polarized systems and detail how polarization is established and, whenever possible, how it contributes to ACD. Established and emerging model organisms will be considered alike, illuminating both well-documented and underexplored forms of polarization and ACD.


Assuntos
Divisão Celular Assimétrica/fisiologia , Polaridade Celular/fisiologia , Animais , Divisão Celular Assimétrica/genética , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Membrana Celular/metabolismo , Polaridade Celular/genética , Humanos
15.
Curr Biol ; 30(14): 2860-2868.e3, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32470363

RESUMO

Branching morphogenesis is a widely used mechanism for development [1, 2]. In plants, it is initiated by the emergence of a new growth axis, which is of particular importance for plants to explore space and access resources [1]. Branches can emerge either from a single cell or from a group of cells [3-5]. In both cases, the mother cells that initiate branching must undergo dynamic morphological changes and/or adopt oriented asymmetric cell divisions (ACDs) to establish the new growth direction. However, the underlying mechanisms are not fully understood. Here, using the bryophyte moss Physcomitrella patens as a model, we show that side-branch formation in P. patens protonemata requires coordinated polarized cell expansion, directional nuclear migration, and orientated ACD. By combining pharmacological experiments, long-term time-lapse imaging, and genetic analyses, we demonstrate that Rho of plants (ROP) GTPases and actin are essential for cell polarization and local cell expansion (bulging). The growing bulge acts as a prerequisite signal to guide long-distance microtubule (MT)-dependent nuclear migration, which determines the asymmetric positioning of the division plane. MTs play an essential role in nuclear migration but are less involved in bulge formation. Hence, cell polarity and cytoskeletal elements act cooperatively to modulate cell morphology and nuclear positioning during branch initiation. We propose that polarity-triggered nuclear positioning and ACD comprise a fundamental mechanism for increasing multicellularity and tissue complexity during plant morphogenesis.


Assuntos
Actinas/fisiologia , Divisão Celular Assimétrica/genética , Divisão Celular Assimétrica/fisiologia , Bryopsida/crescimento & desenvolvimento , Bryopsida/genética , GTP Fosfo-Hidrolases/fisiologia , Desenvolvimento Vegetal/genética , Desenvolvimento Vegetal/fisiologia , Transporte Ativo do Núcleo Celular , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Bryopsida/citologia , Núcleo Celular/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/fisiologia , Microtúbulos/metabolismo
16.
Int J Mol Sci ; 21(8)2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32325951

RESUMO

The Scribble polarity module is composed by Scribble (Scrib), Discs large 1 (Dlg1) and Lethal (2) giant larvae (L(2)gl), a group of highly conserved neoplastic tumor suppressor genes (TSGs) from flies to humans. Even though the Scribble module has been profusely studied in epithelial cell polarity, the number of tissues and processes in which it is involved is increasingly growing. Here we discuss the role of the Scribble module in the asymmetric division of Drosophila neuroblasts (NBs), as well as the underlying mechanisms by which those TSGs act in this process. Finally, we also describe what we know about the consequences of mutating these genes in impairing the process of asymmetric NB division and promoting tumor-like overgrowth.


Assuntos
Divisão Celular Assimétrica/genética , Polaridade Celular/genética , Transformação Celular Neoplásica/genética , Proteínas de Membrana/genética , Modelos Biológicos , Células-Tronco Neurais/metabolismo , Proteínas Supressoras de Tumor/genética , Animais , Diferenciação Celular/genética , Transformação Celular Neoplásica/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Humanos , Proteínas de Membrana/metabolismo , Células-Tronco Neurais/patologia , Neurogênese , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo
17.
Trends Cancer ; 6(9): 775-780, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32312682

RESUMO

Tissue regeneration relies on adult stem cells (SCs) that possess the ability to self-renew and produce differentiating progeny. In an analogous manner, the development of certain cancers depends on a subset of tumor cells, called cancer stem cells (CSCs), with SC-like properties. In addition to being responsible for tumorigenesis, CSCs exhibit elevated resistance to therapy and thus drive tumor relapse post-treatment. The epithelial-mesenchymal transition (EMT) programs promote SC and CSC stemness in many epithelial tissues. Here, we provide an overview of the mechanisms underlying the relationship between stemness and EMT programs, which may represent therapeutic vulnerabilities for the treatment of cancers.


Assuntos
Células-Tronco Adultas/patologia , Transição Epitelial-Mesenquimal/genética , Recidiva Local de Neoplasia/patologia , Neoplasias/patologia , Células-Tronco Neoplásicas/patologia , Células-Tronco Adultas/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Divisão Celular Assimétrica/efeitos dos fármacos , Divisão Celular Assimétrica/genética , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Carcinogênese/patologia , Reprogramação Celular/efeitos dos fármacos , Reprogramação Celular/genética , Resistencia a Medicamentos Antineoplásicos/genética , Epigênese Genética/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Recidiva Local de Neoplasia/prevenção & controle , Neoplasias/tratamento farmacológico , Neoplasias/genética , Células-Tronco Neoplásicas/efeitos dos fármacos
18.
Development ; 147(7)2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32156756

RESUMO

Wnt/ß-catenin signalling has been implicated in the terminal asymmetric divisions of neuronal progenitors in vertebrates and invertebrates. However, the role of Wnt ligands in this process remains poorly characterized. Here, we used the terminal divisions of the embryonic neuronal progenitors in C. elegans to characterize the role of Wnt ligands during this process, focusing on a lineage that produces the cholinergic interneuron AIY. We observed that, during interphase, the neuronal progenitor is elongated along the anteroposterior axis, then divides along its major axis, generating an anterior and a posterior daughter with different fates. Using time-controlled perturbations, we show that three Wnt ligands, which are transcribed at higher levels at the posterior of the embryo, regulate the orientation of the neuronal progenitor and its asymmetric division. We also identify a role for a Wnt receptor (MOM-5) and a cortical transducer APC (APR-1), which are, respectively, enriched at the posterior and anterior poles of the neuronal progenitor. Our study establishes a role for Wnt ligands in the regulation of the shape and terminal asymmetric divisions of neuronal progenitors, and identifies downstream components.


Assuntos
Divisão Celular Assimétrica/genética , Caenorhabditis elegans/embriologia , Células-Tronco Neurais/citologia , Proteínas Wnt/fisiologia , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Divisão Celular/genética , Polaridade Celular , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Ligantes , Células-Tronco Neurais/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/fisiologia , beta Catenina/metabolismo
19.
Trends Genet ; 36(1): 30-43, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31753528

RESUMO

Epigenetic mechanisms play essential roles in determining distinct cell fates during the development of multicellular organisms. Histone proteins represent crucial epigenetic components that help specify cell identities. Previous work has demonstrated that during the asymmetric cell division of Drosophila male germline stem cells (GSCs), histones H3 and H4 are asymmetrically inherited, such that pre-existing (old) histones are segregated towards the self-renewing GSC whereas newly synthesized (new) histones are enriched towards the differentiating daughter cell. In order to further understand the molecular mechanisms underlying this striking phenomenon, two key questions must be answered: when and how old and new histones are differentially incorporated by sister chromatids, and how epigenetically distinct sister chromatids are specifically recognized and segregated. Here, we discuss recent advances in our understanding of the molecular mechanisms and cellular bases underlying these fundamental and important biological processes responsible for generating two distinct cells through one cell division.


Assuntos
Divisão Celular Assimétrica/genética , Diferenciação Celular/genética , Histonas/genética , Células-Tronco/citologia , Animais , Segregação de Cromossomos/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Epigênese Genética/genética , Células Germinativas/crescimento & desenvolvimento , Células Germinativas/metabolismo
20.
Nat Commun ; 10(1): 5574, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31811116

RESUMO

Stem cells are responsible for generating all of the differentiated cells, tissues, and organs in a multicellular organism and, thus, play a crucial role in cell renewal, regeneration, and organization. A number of stem cell type-specific genes have a known role in stem cell maintenance, identity, and/or division. Yet, how genes expressed across different stem cell types, referred to here as stem-cell-ubiquitous genes, contribute to stem cell regulation is less understood. Here, we find that, in the Arabidopsis root, a stem-cell-ubiquitous gene, TESMIN-LIKE CXC2 (TCX2), controls stem cell division by regulating stem cell-type specific networks. Development of a mathematical model of TCX2 expression allows us to show that TCX2 orchestrates the coordinated division of different stem cell types. Our results highlight that genes expressed across different stem cell types ensure cross-communication among cells, allowing them to divide and develop harmonically together.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Divisão Celular Assimétrica/genética , Redes Reguladoras de Genes/genética , Raízes de Plantas/genética , Células-Tronco , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Divisão Celular Assimétrica/fisiologia , Diferenciação Celular , Divisão Celular , Regulação da Expressão Gênica de Plantas/genética , Raízes de Plantas/citologia , Raízes de Plantas/crescimento & desenvolvimento , Células-Tronco/citologia , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma , Ubiquitinação/genética , Ubiquitinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA