Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 873
Filtrar
1.
Int J Mol Sci ; 25(8)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38674104

RESUMO

ABCA4-related retinopathy is the most common inherited Mendelian eye disorder worldwide, caused by biallelic variants in the ATP-binding cassette transporter ABCA4. To date, over 2200 ABCA4 variants have been identified, including missense, nonsense, indels, splice site and deep intronic defects. Notably, more than 60% are missense variants that can lead to protein misfolding, mistrafficking and degradation. Currently no approved therapies target ABCA4. In this study, we demonstrate that ABCA4 misfolding variants are temperature-sensitive and reduced temperature growth (30 °C) improves their traffic to the plasma membrane, suggesting the folding of these variants could be rescuable. Consequently, an in vitro platform was developed for the rapid and robust detection of ABCA4 traffic to the plasma membrane in transiently transfected cells. The system was used to assess selected candidate small molecules that were reported to improve the folding or traffic of other ABC transporters. Two candidates, 4-PBA and AICAR, were identified and validated for their ability to enhance both wild-type ABCA4 and variant trafficking to the cell surface in cell culture. We envision that this platform could serve as a primary screen for more sophisticated in vitro testing, enabling the discovery of breakthrough agents to rescue ABCA4 protein defects and mitigate ABCA4-related retinopathy.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Dobramento de Proteína , Transporte Proteico , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Humanos , Dobramento de Proteína/efeitos dos fármacos , Células HEK293 , Membrana Celular/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia
2.
Part Fibre Toxicol ; 19(1): 33, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538581

RESUMO

BACKGROUND: Copper oxide (CuO) nanoparticles (NPs) are known to trigger cytotoxicity in a variety of cell models, but the mechanism of cell death remains unknown. Here we addressed the mechanism of cytotoxicity in macrophages exposed to CuO NPs versus copper chloride (CuCl2). METHODS: The mouse macrophage cell line RAW264.7 was used as an in vitro model. Particle uptake and the cellular dose of Cu were investigated by transmission electron microscopy (TEM) and inductively coupled plasma mass spectrometry (ICP-MS), respectively. The deposition of Cu in lysosomes isolated from macrophages was also determined by ICP-MS. Cell viability (metabolic activity) was assessed using the Alamar Blue assay, and oxidative stress was monitored by a variety of methods including a luminescence-based assay for cellular glutathione (GSH), and flow cytometry-based detection of mitochondrial superoxide and mitochondrial membrane potential. Protein aggregation was determined by confocal microscopy using an aggresome-specific dye and protein misfolding was determined by circular dichroism (CD) spectroscopy. Lastly, proteasome activity was investigated using a fluorometric assay. RESULTS: We observed rapid cellular uptake of CuO NPs in macrophages with deposition in lysosomes. CuO NP-elicited cell death was characterized by mitochondrial swelling with signs of oxidative stress including the production of mitochondrial superoxide and cellular depletion of GSH. We also observed a dose-dependent accumulation of polyubiquitinated proteins and loss of proteasomal function in CuO NP-exposed cells, and we could demonstrate misfolding and mitochondrial translocation of superoxide dismutase 1 (SOD1), a Cu/Zn-dependent enzyme that plays a pivotal role in the defense against oxidative stress. The chelation of copper ions using tetrathiomolybdate (TTM) prevented cell death whereas inhibition of the cellular SOD1 chaperone aggravated toxicity. Moreover, CuO NP-triggered cell death was insensitive to the pan-caspase inhibitor, zVAD-fmk, and to wortmannin, an inhibitor of autophagy, implying that this was a non-apoptotic cell death. ZnO NPs, on the other hand, triggered autophagic cell death. CONCLUSIONS: CuO NPs undergo dissolution in lysosomes leading to copper-dependent macrophage cell death characterized by protein misfolding and proteasomal insufficiency. Specifically, we present novel evidence for Cu-induced SOD1 misfolding which accords with the pronounced oxidative stress observed in CuO NP-exposed macrophages. These results are relevant for our understanding of the consequences of inadvertent human exposure to CuO NPs.


Assuntos
Macrófagos , Nanopartículas Metálicas , Nanopartículas , Superóxido Dismutase-1 , Animais , Morte Celular/efeitos dos fármacos , Cobre , Glutationa/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Nanopartículas Metálicas/toxicidade , Camundongos , Nanopartículas/química , Nanopartículas/metabolismo , Nanopartículas/toxicidade , Estresse Oxidativo , Dobramento de Proteína/efeitos dos fármacos , Células RAW 264.7 , Superóxido Dismutase-1/metabolismo , Superóxidos
3.
J Med Chem ; 65(7): 5212-5243, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35377645

RESUMO

In cystic fibrosis (CF), the deletion of phenylalanine 508 (F508del) in the CF transmembrane conductance regulator (CFTR) leads to misfolding and premature degradation of the mutant protein. These defects can be targeted with pharmacological agents named potentiators and correctors. During the past years, several efforts have been devoted to develop and approve new effective molecules. However, their clinical use remains limited, as they fail to fully restore F508del-CFTR biological function. Indeed, the search for CFTR correctors with different and additive mechanisms has recently increased. Among them, drugs that modulate the CFTR proteostasis environment are particularly attractive to enhance therapy effectiveness further. This Perspective focuses on reviewing the recent progress in discovering CFTR proteostasis regulators, mainly describing the design, chemical structure, and structure-activity relationships. The opportunities, challenges, and future directions in this emerging and promising field of research are discussed, as well.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Proteostase , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/efeitos dos fármacos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Proteínas Mutantes/efeitos dos fármacos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação , Dobramento de Proteína/efeitos dos fármacos , Proteostase/efeitos dos fármacos , Proteostase/fisiologia
4.
Cell Mol Life Sci ; 79(4): 192, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35292885

RESUMO

The advent of Trikafta (Kaftrio in Europe) (a triple-combination therapy based on two correctors-elexacaftor/tezacaftor-and the potentiator ivacaftor) has represented a revolution for the treatment of patients with cystic fibrosis (CF) carrying the most common misfolding mutation, F508del-CFTR. This therapy has proved to be of great efficacy in people homozygous for F508del-CFTR and is also useful in individuals with a single F508del allele. Nevertheless, the efficacy of this therapy needs to be improved, especially in light of the extent of its use in patients with rare class II CFTR mutations. Using CFBE41o- cells expressing F508del-CFTR, we provide mechanistic evidence that targeting the E1 ubiquitin-activating enzyme (UBA1) by TAK-243, a small molecule in clinical trials for other diseases, boosts the rescue of F508del-CFTR induced by CFTR correctors. Moreover, TAK-243 significantly increases the F508del-CFTR short-circuit current induced by elexacaftor/tezacaftor/ivacaftor in differentiated human primary airway epithelial cells, a gold standard for the pre-clinical evaluation of patients' responsiveness to pharmacological treatments. This new combinatory approach also leads to an improvement in CFTR conductance on cells expressing other rare CF-causing mutations, including N1303K, for which Trikafta is not approved. These findings show that Trikafta therapy can be improved by the addition of a drug targeting the misfolding detection machinery at the beginning of the ubiquitination cascade and may pave the way for an extension of Trikafta to low/non-responding rare misfolded CFTR mutants.


Assuntos
Aminofenóis/administração & dosagem , Benzodioxóis/administração & dosagem , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Indóis/administração & dosagem , Pirazóis/administração & dosagem , Piridinas/administração & dosagem , Pirimidinas/administração & dosagem , Pirrolidinas/administração & dosagem , Quinolonas/administração & dosagem , Sulfetos/administração & dosagem , Sulfonamidas/administração & dosagem , Enzimas Ativadoras de Ubiquitina/antagonistas & inibidores , Células Cultivadas , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Sinergismo Farmacológico , Quimioterapia Combinada , Inibidores Enzimáticos/administração & dosagem , Humanos , Mutação , Dobramento de Proteína/efeitos dos fármacos , Deleção de Sequência
5.
J Biol Chem ; 298(3): 101612, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35065969

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease in which motor neurons progressively and rapidly degenerate, eventually leading to death. The first protein found to contain ALS-associated mutations was copper/zinc superoxide dismutase 1 (SOD1), which is conformationally stable when it contains its metal ligands and has formed its native intramolecular disulfide. Mutations in SOD1 reduce protein folding stability via disruption of metal binding and/or disulfide formation, resulting in misfolding, aggregation, and ultimately cellular toxicity. A great deal of effort has focused on preventing the misfolding and aggregation of SOD1 as a potential therapy for ALS; however, the results have been mixed. Here, we utilize a small-molecule polytherapy of diacetylbis(N(4)-methylthiosemicarbazonato)copper(II) (CuATSM) and ebselen to mimic the metal delivery and disulfide bond promoting activity of the cellular chaperone of SOD1, the "copper chaperone for SOD1." Using microscopy with automated image analysis, we find that polytherapy using CuATSM and ebselen is highly effective and acts in synergy to reduce inclusion formation in a cell model of SOD1 aggregation for multiple ALS-associated mutants. Polytherapy reduces mutant SOD1-associated cell death, as measured by live-cell microscopy. Measuring dismutase activity via zymography and immunoblotting for disulfide formation showed that polytherapy promoted more effective maturation of transfected SOD1 variants beyond either compound alone. Our data suggest that a polytherapy of CuATSM and ebselen may merit more study as an effective method of treating SOD1-associated ALS.


Assuntos
Esclerose Lateral Amiotrófica , Compostos de Cobre Orgânico , Superóxido Dismutase-1 , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Materiais Biomiméticos/farmacologia , Cobre/metabolismo , Dissulfetos/química , Humanos , Isoindóis/farmacologia , Chaperonas Moleculares/metabolismo , Mutação , Compostos de Cobre Orgânico/farmacologia , Compostos Organosselênicos/farmacologia , Dobramento de Proteína/efeitos dos fármacos , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
6.
ChemMedChem ; 17(2): e202100611, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34704363

RESUMO

The development of imaging agents for in vivo detection of alpha-synuclein (α-syn) pathologies faces several challenges. A major gap in the field is the lack of diverse molecular scaffolds with high affinity and selectivity to α-syn fibrils for in vitro screening assays. Better in vitro scaffolds can instruct the discovery of better in vivo agents. We report the rational design, synthesis, and in vitro evaluation of a series of novel 1-indanone and 1,3-indandione derivatives from a Structure-Activity Relationship (SAR) study centered on some existing α-syn fibril binding ligands. Our results from fibril saturation binding experiments show that two of the lead candidates compounds 8 and 32 bind α-syn fibrils with binding constants (Kd ) of 9.0 and 18.8 nM, respectively, and selectivity of greater than 10× for α-syn fibrils compared with amyloid-ß (Aß) and tau fibrils. Our results demonstrate that the lead ligands avidly label all forms of α-syn on PD brain tissue sections, but only the dense core of senile plaques in AD brain tissue, respectively. These results are corroborated by ligand-antibody colocalization data from Syn211, which shows immunoreactivity toward all forms of α-syn aggregates, and Syn303, which displays preferential reactivity toward mature Lewy pathology. Our results reveal that 1-indanone derivatives have desirable properties for the biological evaluation of α-synucleinopathies.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Indanos/farmacologia , Fármacos Neuroprotetores/farmacologia , alfa-Sinucleína/antagonistas & inibidores , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Relação Dose-Resposta a Droga , Desenho de Fármacos , Humanos , Indanos/síntese química , Indanos/química , Ligantes , Estrutura Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Agregados Proteicos/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Relação Estrutura-Atividade , alfa-Sinucleína/metabolismo
7.
Plant Physiol ; 188(1): 241-254, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34609517

RESUMO

Disulfide bonds play essential roles in the folding of secretory and plasma membrane proteins in the endoplasmic reticulum (ER). In eukaryotes, protein disulfide isomerase (PDI) is an enzyme catalyzing the disulfide bond formation and isomerization in substrates. The Arabidopsis (Arabidopsis thaliana) genome encodes diverse PDIs including structurally distinct subgroups PDI-L and PDI-M/S. It remains unclear how these AtPDIs function to catalyze the correct disulfide formation. We found that one Arabidopsis ER oxidoreductin-1 (Ero1), AtERO1, can interact with multiple PDIs. PDI-L members AtPDI2/5/6 mainly serve as an isomerase, while PDI-M/S members AtPDI9/10/11 are more efficient in accepting oxidizing equivalents from AtERO1 and catalyzing disulfide bond formation. Accordingly, the pdi9/10/11 triple mutant exhibited much stronger inhibition than pdi1/2/5/6 quadruple mutant under dithiothreitol treatment, which caused disruption of disulfide bonds in plant proteins. Furthermore, AtPDI2/5 work synergistically with PDI-M/S members in relaying disulfide bonds from AtERO1 to substrates. Our findings reveal the distinct but overlapping roles played by two structurally different AtPDI subgroups in oxidative protein folding in the ER.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Catálise/efeitos dos fármacos , Dissulfetos/metabolismo , Oxirredução/efeitos dos fármacos , Isomerases de Dissulfetos de Proteínas/metabolismo , Dobramento de Proteína/efeitos dos fármacos , Variação Genética , Genótipo , Mutação , Isomerases de Dissulfetos de Proteínas/genética
8.
Nutrients ; 13(12)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34959950

RESUMO

The impact of dietary advanced glycation end products (dAGEs) on human health has been discussed in many studies but, to date, no consensual pathophysiological process has been demonstrated. The intestinal absorption pathways which have so far been described for dAGEs, the passive diffusion of free AGE adducts and transport of glycated di-tripeptides by the peptide transporter 1 (PEPT-1), are not compatible with certain pathophysiological processes described. To get new insight into the intestinal absorption pathways and the pathophysiological mechanisms of dAGEs, we initiated an in vivo study with a so-called simple animal model with a complete digestive tract, Caenorhabditis elegans. Dietary bacteria were chemically modified with glyoxylic acid to mainly produce Nε-carboxymethyllysine (CML) and used to feed the worms. We performed different immunotechniques using an anti-CML antibody for the relative quantification of ingested CML and localization of this AGE in the worms' intestine. The relative expression of genes encoding different biological processes such as response to stresses and intestinal digestion were determined. The physiological development of the worms was verified. All the results were compared with those obtained with the control bacteria. The results revealed a new route for the intestinal absorption of dietary CML (dCML), endocytosis, which could be mediated by scavenger receptors. The exposure of worms to dCML induced a reproductive defect and a transcriptional response reflecting oxidative, carbonyl and protein folding stresses. These data, in particular the demonstration of endocytosis of dCML by enterocytes, open up new perspectives to better characterize the pathophysiological mechanisms of dAGEs.


Assuntos
Caenorhabditis elegans/metabolismo , Endocitose/efeitos dos fármacos , Produtos Finais de Glicação Avançada/efeitos adversos , Produtos Finais de Glicação Avançada/metabolismo , Absorção Intestinal/efeitos dos fármacos , Lisina/análogos & derivados , Animais , Enterócitos/metabolismo , Trato Gastrointestinal/metabolismo , Lisina/administração & dosagem , Lisina/efeitos adversos , Modelos Animais , Estresse Oxidativo/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Reprodução/efeitos dos fármacos
9.
Int J Mol Sci ; 22(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34830348

RESUMO

Dysfunction of cellular homeostasis can lead to misfolding of proteins thus acquiring conformations prone to polymerization into pathological aggregates. This process is associated with several disorders, including neurodegenerative diseases, such as Parkinson's disease (PD), and endoplasmic reticulum storage disorders (ERSDs), like alpha-1-antitrypsin deficiency (AATD) and hereditary hypofibrinogenemia with hepatic storage (HHHS). Given the shared pathophysiological mechanisms involved in such conditions, it is necessary to deepen our understanding of the basic principles of misfolding and aggregation akin to these diseases which, although heterogeneous in symptomatology, present similarities that could lead to potential mutual treatments. Here, we review: (i) the pathological bases leading to misfolding and aggregation of proteins involved in PD, AATD, and HHHS: alpha-synuclein, alpha-1-antitrypsin, and fibrinogen, respectively, (ii) the evidence linking each protein aggregation to the stress mechanisms occurring in the endoplasmic reticulum (ER) of each pathology, (iii) a comparison of the mechanisms related to dysfunction of proteostasis and regulation of homeostasis between the diseases (such as the unfolded protein response and/or autophagy), (iv) and clinical perspectives regarding possible common treatments focused on improving the defensive responses to protein aggregation for diseases as different as PD, and ERSDs.


Assuntos
Afibrinogenemia/genética , Fibrinogênio/química , Doença de Parkinson/genética , Deficiência de alfa 1-Antitripsina/genética , alfa 1-Antitripsina/química , alfa-Sinucleína/química , Afibrinogenemia/tratamento farmacológico , Afibrinogenemia/metabolismo , Afibrinogenemia/patologia , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Coagulantes/uso terapêutico , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Fibrinogênio/genética , Fibrinogênio/metabolismo , Regulação da Expressão Gênica , Humanos , Fígado/metabolismo , Fígado/patologia , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Inibidores de Proteases/uso terapêutico , Agregados Proteicos/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo , Deficiência de alfa 1-Antitripsina/tratamento farmacológico , Deficiência de alfa 1-Antitripsina/metabolismo , Deficiência de alfa 1-Antitripsina/patologia , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
10.
Int J Mol Sci ; 22(22)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34830391

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disorder. An important hallmark of PD involves the pathological aggregation of proteins in structures known as Lewy bodies. The major component of these proteinaceous inclusions is alpha (α)-synuclein. In different conditions, α-synuclein can assume conformations rich in either α-helix or ß-sheets. The mechanisms of α-synuclein misfolding, aggregation, and fibrillation remain unknown, but it is thought that ß-sheet conformation of α-synuclein is responsible for its associated toxic mechanisms. To gain fundamental insights into the process of α-synuclein misfolding and aggregation, the secondary structure of this protein in the presence of charged and non-charged surfactant solutions was characterized. The selected surfactants were (anionic) sodium dodecyl sulphate (SDS), (cationic) cetyltrimethylammonium chloride (CTAC), and (uncharged) octyl ß-D-glucopyranoside (OG). The effect of surfactants in α-synuclein misfolding was assessed by ultra-structural analyses, in vitro aggregation assays, and secondary structure analyses. The α-synuclein aggregation in the presence of negatively charged SDS suggests that SDS-monomer complexes stimulate the aggregation process. A reduction in the electrostatic repulsion between N- and C-terminal and in the hydrophobic interactions between the NAC (non-amyloid beta component) region and the C-terminal seems to be important to undergo aggregation. Fourier transform infrared spectroscopy (FTIR) measurements show that ß-sheet structures comprise the assembly of the fibrils.


Assuntos
Doenças Neurodegenerativas/tratamento farmacológico , Doença de Parkinson/tratamento farmacológico , Agregação Patológica de Proteínas/tratamento farmacológico , alfa-Sinucleína/genética , Amiloide/antagonistas & inibidores , Amiloide/genética , Cetrimônio/farmacologia , Dicroísmo Circular , Galactosídeos/farmacologia , Humanos , Corpos de Lewy/efeitos dos fármacos , Corpos de Lewy/ultraestrutura , Doenças Neurodegenerativas/patologia , Doença de Parkinson/genética , Doença de Parkinson/patologia , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/patologia , Conformação Proteica , Conformação Proteica em Folha beta/genética , Dobramento de Proteína/efeitos dos fármacos , Estrutura Secundária de Proteína/efeitos dos fármacos , Dodecilsulfato de Sódio/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , alfa-Sinucleína/antagonistas & inibidores
11.
J Mol Biol ; 433(24): 167323, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34695381

RESUMO

Misfolding and aggregation of alpha-synuclein (αS) within dopaminergic neurons is a key factor in the development and progression of a group of age-related neurodegenerative diseases, termed synucleinopathies, that include Parkinson's disease (PD). We previously derived a peptide inhibitor from a 209,952-member intracellular library screen by employing the preNAC region (45-54) as a design template. At least six single-point mutations firmly linked to early-onset Parkinson's disease (E46K, H50Q, G51D, A53T/E/V) are located within this region, strongly implicating a pathogenic role within αS that leads to increased cytotoxicity. A library-derived ten residue peptide, 4554W, was consequently shown to block αS aggregation at the point of primary nucleation via lipid induction, inhibiting its conversion into downstream cytotoxic species. Here we couple truncation with a full alanine scan analysis, to establish the effect upon the αS aggregation pathway relative to 4554W. This revealed the precise residues responsible for eliciting inhibitory interaction and function, as well as those potentially amenable to modification or functionalisation. We find that modification N6A combined with N-terminal truncation results in a peptide of significantly increased efficacy. Importantly, our data demonstrate that the peptide does not directly disrupt αS lipid-binding, a desirable trait since antagonists of αS aggregation and toxicity should not impede association with small synaptic neurotransmitter vesicles, and thus not disrupt dopaminergic vesicle fusion and recycling. This work paves the way toward the major aim of deriving a highly potent peptide antagonist of αS pathogenicity without impacting on native αS function.


Assuntos
Antiparkinsonianos/química , Doença de Parkinson/metabolismo , Peptidomiméticos/química , Agregados Proteicos/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , alfa-Sinucleína/antagonistas & inibidores , alfa-Sinucleína/química , Alanina/química , Alanina/genética , Antiparkinsonianos/farmacologia , Microscopia Crioeletrônica , Vesículas Citoplasmáticas/metabolismo , Neurônios Dopaminérgicos/metabolismo , Humanos , Lipídeos/química , Doença de Parkinson/genética , Biblioteca de Peptídeos , Peptidomiméticos/farmacologia , Mutação Puntual , alfa-Sinucleína/genética
12.
Biomolecules ; 11(10)2021 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-34680161

RESUMO

Rhodopsin (RHO) misfolding mutations are a common cause of the blinding disease autosomal dominant retinitis pigmentosa (adRP). The most prevalent mutation, RHOP23H, results in its misfolding and retention in the endoplasmic reticulum (ER). Under homeostatic conditions, misfolded proteins are selectively identified, retained at the ER, and cleared via ER-associated degradation (ERAD). Overload of these degradation processes for a prolonged period leads to imbalanced proteostasis and may eventually result in cell death. ERAD of misfolded proteins, such as RHOP23H, includes the subsequent steps of protein recognition, targeting for ERAD, retrotranslocation, and proteasomal degradation. In the present study, we investigated and compared pharmacological modulation of ERAD at these four different major steps. We show that inhibition of the VCP/proteasome activity favors cell survival and suppresses P23H-mediated retinal degeneration in RHOP23H rat retinal explants. We suggest targeting this activity as a therapeutic approach for patients with currently untreatable adRP.


Assuntos
Retículo Endoplasmático/efeitos dos fármacos , Degeneração Retiniana/genética , Retinose Pigmentar/genética , Rodopsina/genética , Alcaloides/farmacologia , Animais , Animais Geneticamente Modificados , Benzoquinonas/farmacologia , Modelos Animais de Doenças , Retículo Endoplasmático/genética , Humanos , Lactamas Macrocíclicas/farmacologia , Mutação/genética , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/patologia , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/genética , Dobramento de Proteína/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Ratos , Retina/efeitos dos fármacos , Retina/crescimento & desenvolvimento , Retina/patologia , Degeneração Retiniana/patologia , Retinose Pigmentar/patologia , Rodopsina/ultraestrutura
13.
Molecules ; 26(19)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34641604

RESUMO

Heavy metals enter the human body through the gastrointestinal tract, skin, or via inhalation. Toxic metals have proven to be a major threat to human health, mostly because of their ability to cause membrane and DNA damage, and to perturb protein function and enzyme activity. These metals disturb native proteins' functions by binding to free thiols or other functional groups, catalyzing the oxidation of amino acid side chains, perturbing protein folding, and/or displacing essential metal ions in enzymes. The review shows the physiological and biochemical effects of selected toxic metals interactions with proteins and enzymes. As environmental contamination by heavy metals is one of the most significant global problems, some detoxification strategies are also mentioned.


Assuntos
Biodegradação Ambiental , Exposição Ambiental , Metais Pesados/toxicidade , Ligação Proteica/efeitos dos fármacos , Sítios de Ligação , Cosméticos/toxicidade , Dano ao DNA , Poluentes Ambientais/toxicidade , Enzimas/efeitos dos fármacos , Alimentos/toxicidade , Humanos , Dobramento de Proteína/efeitos dos fármacos
14.
Cell Mol Life Sci ; 78(23): 7813-7829, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34714360

RESUMO

Protein misfolding is involved in a large number of diseases, among which cystic fibrosis. Complex intra- and inter-domain folding defects associated with mutations in the cystic fibrosis transmembrane regulator (CFTR) gene, among which p.Phe508del (F508del), have recently become a therapeutical target. Clinically approved correctors such as VX-809, VX-661, and VX-445, rescue mutant protein. However, their binding sites and mechanisms of action are still incompletely understood. Blind docking onto the 3D structures of both the first membrane-spanning domain (MSD1) and the first nucleotide-binding domain (NBD1), followed by molecular dynamics simulations, revealed the presence of two potential VX-809 corrector binding sites which, when mutated, abrogated rescue. Network of amino acids in the lasso helix 2 and the intracellular loops ICL1 and ICL4 allosterically coupled MSD1 and NBD1. Corrector VX-445 also occupied two potential binding sites on MSD1 and NBD1, the latter being shared with VX-809. Binding of both correctors on MSD1 enhanced the allostery between MSD1 and NBD1, hence the increased efficacy of the corrector combination. These correctors improve both intra-domain folding by stabilizing fragile protein-lipid interfaces and inter-domain assembly via distant allosteric couplings. These results provide novel mechanistic insights into the rescue of misfolded proteins by small molecules.


Assuntos
Aminopiridinas/farmacologia , Benzodioxóis/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/química , Fibrose Cística/tratamento farmacológico , Mutação , Dobramento de Proteína/efeitos dos fármacos , Pirazóis/farmacologia , Piridinas/farmacologia , Pirrolidinas/farmacologia , Sítios de Ligação , Agonistas dos Canais de Cloreto/farmacologia , Fibrose Cística/genética , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Quimioterapia Combinada , Células HEK293 , Humanos , Domínios Proteicos , Estrutura Terciária de Proteína
15.
Biochem J ; 478(15): 2953-2975, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34375386

RESUMO

The Unfolded Protein response is an adaptive pathway triggered upon alteration of endoplasmic reticulum (ER) homeostasis. It is transduced by three major ER stress sensors, among which the Inositol Requiring Enzyme 1 (IRE1) is the most evolutionarily conserved. IRE1 is an ER-resident type I transmembrane protein exhibiting an ER luminal domain that senses the protein folding status and a catalytic kinase and RNase cytosolic domain. In recent years, IRE1 has emerged as a relevant therapeutic target in various diseases including degenerative, inflammatory and metabolic pathologies and cancer. As such several drugs altering IRE1 activity were developed that target either catalytic activity and showed some efficacy in preclinical pathological mouse models. In this review, we describe the different drugs identified to target IRE1 activity as well as their mode of action from a structural perspective, thereby identifying common and different modes of action. Based on this information we discuss on how new IRE1-targeting drugs could be developed that outperform the currently available molecules.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/metabolismo , Endorribonucleases/metabolismo , Homeostase/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Animais , Retículo Endoplasmático/efeitos dos fármacos , Endorribonucleases/antagonistas & inibidores , Endorribonucleases/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Homeostase/efeitos dos fármacos , Humanos , Dobramento de Proteína/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/química , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos
16.
J Phys Chem Lett ; 12(32): 7659-7664, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34351767

RESUMO

From stem cell freeze-drying to organ storage, considerable recent efforts have been directed toward the development of new preservation technologies. A prominent protein stabilizing strategy involves vitrification in glassy matrices, most notably those formed of sugars such as the biologically relevant preservative trehalose. Here, we compare the folding thermodynamics of a model miniprotein in solution and in the glassy state of the sugars trehalose and glucose. Using synchrotron radiation circular dichroism (SRCD), we find that the same native structure persists in solution and glass. However, upon transition to the glass, a completely different, conformationally restricted unfolded state replaces the disordered denatured state found in solution, potentially inhibiting misfolding. Concomitantly, a large exothermic contribution is observed in glass, exposing the stabilizing effect of interactions with the sugar matrix on the native state. Our results shed light on the mechanism of protein stabilization in sugar glass and should aid in future preservation technologies.


Assuntos
Conformação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Proteínas/metabolismo , Trealose/química , Sequência de Aminoácidos , Dobramento de Proteína/efeitos dos fármacos , Proteínas/química , Termodinâmica , Vitrificação
17.
Int J Mol Sci ; 22(16)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34445303

RESUMO

Macromolecular associates, such as membraneless organelles or lipid-protein assemblies, provide a hydrophobic environment, i.e., a liquid protein phase (LP), where folding preferences can be drastically altered. LP as well as the associated phase change from water (W) is an intriguing phenomenon related to numerous biological processes and also possesses potential in nanotechnological applications. However, the energetic effects of a hydrophobic yet water-containing environment on protein folding are poorly understood. Here, we focus on small ß-sheets, the key motifs of proteins, undergoing structural changes in liquid-liquid phase separation (LLPS) and also model the mechanism of energy-coupled unfolding, e.g., in proteases, during W → LP transition. Due to the importance of the accurate description for hydrogen bonding patterns, the employed models were studied by using quantum mechanical calculations. The results demonstrate that unfolding is energetically less favored in LP by ~0.3-0.5 kcal·mol-1 per residue in which the difference further increased by the presence of explicit structural water molecules, where the folded state was preferred by ~1.2-2.3 kcal·mol-1 per residue relative to that in W. Energetics at the LP/W interfaces was also addressed by theoretical isodesmic reactions. While the models predict folded state preference in LP, the unfolding from LP to W renders the process highly favorable since the unfolded end state has >1 kcal·mol-1 per residue excess stabilization.


Assuntos
Transição de Fase/efeitos dos fármacos , Conformação Proteica em Folha beta/efeitos dos fármacos , Água/farmacologia , Motivos de Aminoácidos/efeitos dos fármacos , Fracionamento Químico/métodos , Simulação por Computador , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Cinética , Substâncias Macromoleculares/química , Modelos Moleculares , Conformação Proteica/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Teoria Quântica , Viscosidade , Água/química
18.
Int J Mol Sci ; 22(12)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207146

RESUMO

Human phenylalanine hydroxylase (PAH) is a metabolic enzyme involved in the catabolism of L-Phe in liver. Loss of conformational stability and decreased enzymatic activity in PAH variants result in the autosomal recessive disorder phenylketonuria (PKU), characterized by developmental and psychological problems if not treated early. One current therapeutic approach to treat PKU is based on pharmacological chaperones (PCs), small molecules that can displace the folding equilibrium of unstable PAH variants toward the native state, thereby rescuing the physiological function of the enzyme. Understanding the PAH folding equilibrium is essential to develop new PCs for different forms of the disease. We investigate here the urea and the thermal-induced denaturation of full-length PAH and of a truncated form lacking the regulatory and the tetramerization domains. For either protein construction, two distinct transitions are seen in chemical denaturation followed by fluorescence emission, indicating the accumulation of equilibrium unfolding intermediates where the catalytic domains are partly unfolded and dissociated from each other. According to analytical centrifugation, the chemical denaturation intermediates of either construction are not well-defined species but highly polydisperse ensembles of protein aggregates. On the other hand, each protein construction similarly shows two transitions in thermal denaturation measured by fluorescence or differential scanning calorimetry, also indicating the accumulation of equilibrium unfolding intermediates. The similar temperatures of mid denaturation of the two constructions, together with their apparent lack of response to protein concentration, indicate the catalytic domains are unfolded in the full-length PAH thermal intermediate, where they remain associated. That the catalytic domain unfolds in the first thermal transition is relevant for the choice of PCs identified in high throughput screening of chemical libraries using differential scanning fluorimetry.


Assuntos
Fenilalanina Hidroxilase/química , Desnaturação Proteica , Dobramento de Proteína , Sítios de Ligação , Varredura Diferencial de Calorimetria , Domínio Catalítico , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Fenilalanina Hidroxilase/isolamento & purificação , Fenilcetonúrias , Conformação Proteica , Desnaturação Proteica/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Estabilidade Proteica , Temperatura , Termodinâmica , Ureia/química
19.
Bioorg Med Chem Lett ; 48: 128243, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34246753

RESUMO

A growing number of diseases are linked to the misfolding of integral membrane proteins, and many of these proteins are targeted for ubiquitin-proteasome-dependent degradation. One such substrate is a mutant form of the Cystic Fibrosis Transmembrane Conductance Regulator (F508del-CFTR). Protein folding "correctors" that repair the F508del-CFTR folding defect have entered the clinic, but they are unlikely to protect the entire protein from degradation. To increase the pool of F508del-CFTR protein that is available for correction by existing treatments, we determined a structure-activity relationship to improve the efficacy and reduce the toxicity of an inhibitor of the E1 ubiquitin activating enzyme that facilitates F508del-CFTR maturation. A resulting lead compound lacked measurable toxicity and improved the ability of an FDA-approved corrector to augment F508del-CFTR folding, transport the protein to the plasma membrane, and maintain its activity. These data support a proof-of-concept that modest inhibition of substrate ubiquitination improves the activity of small molecule correctors to treat CF and potentially other protein conformational disorders.


Assuntos
Benzoatos/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/antagonistas & inibidores , Furanos/farmacologia , Pirazóis/farmacologia , Ubiquitina/antagonistas & inibidores , Benzoatos/química , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Relação Dose-Resposta a Droga , Furanos/química , Humanos , Estrutura Molecular , Dobramento de Proteína/efeitos dos fármacos , Pirazóis/química , Relação Estrutura-Atividade , Ubiquitina/metabolismo , Ubiquitinação/efeitos dos fármacos
20.
Int J Med Sci ; 18(13): 2890-2896, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220315

RESUMO

Background: When an imbalance occurs between the demand and capacity for protein folding, unfolded proteins accumulate in the endoplasmic reticulum (ER) lumen and activate the unfolded protein response (UPR). In addition, unfolded proteins are cleared from the ER lumen for ubiquitination and subsequent cytosolic proteasomal degradation, which is termed as the ER-associated degradation (ERAD) pathway. This study focused on changes in the UPR and ERAD pathways induced by the repeated inhalation anesthetic exposure in Caenorhabditis elegans. Methods: Depending on repeated isoflurane exposure, C. elegans was classified into the control or isoflurane group. To evaluate the expression of a specific gene, RNA was extracted from adult worms in each group and real-time polymerase chain reaction was performed. Ubiquitinated protein levels were measured using western blotting, and behavioral changes were evaluated by chemotaxis assay using various mutant strains. Results: Isoflurane upregulated the expression of ire-1 and pek-1 whereas the expression of atf-6 was unaffected. The expression of both sel-1 and sel-11 was decreased by isoflurane exposure, possibly indicating the inhibition of retro-translocation. The expression of cdc-48.1 and cdc-48.2 was decreased and higher ubiquitinated protein levels were observed in the isoflurane group than in the control, suggesting that deubiquitination and degradation of misfolded proteins were interrupted. The chemotaxis indices of ire-1, pek-1, sel-1, and sel-11 mutants decreased significantly compared to N2, and they were not suppressed further even after the repeated isoflurane exposure. Conclusion: Repeated isoflurane exposure caused significant ER stress in C. elegans. Following the increase in UPR, the ERAD pathway was disrupted by repeated isoflurane exposure and ubiquitinated proteins was accumulated subsequently. UPR and ERAD pathways are potential modifiable neuroprotection targets against anesthesia-induced neurotoxicity.


Assuntos
Anestesia Geral/efeitos adversos , Anestésicos Inalatórios/efeitos adversos , Degradação Associada com o Retículo Endoplasmático/efeitos dos fármacos , Isoflurano/efeitos adversos , Complicações Pós-Operatórias/induzido quimicamente , Anestesia Geral/métodos , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Quimiotaxia/efeitos dos fármacos , Quimiotaxia/genética , Modelos Animais de Doenças , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/patologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Sistema Nervoso/efeitos dos fármacos , Complicações Pós-Operatórias/prevenção & controle , Dobramento de Proteína/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA