Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Infect Genet Evol ; 91: 104836, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33798756

RESUMO

African horse sickness (AHS) is caused by African horse sickness virus (AHSV), a double stranded RNA (dsRNA) virus of the genus Orbivirus, family Reoviridae. For the development of new generation AHS vaccines or antiviral treatments, it is crucial to understand the host immune response against the virus and the immune evasion strategies the virus employs. To achieve this, the current study used transcriptome analysis of RNA sequences to characterize and compare the innate immune responses activated during the attenuated AHSV serotype 4 (attAHSV4) (in vivo) and the virulent AHSV4 (virAHSV4) (in vitro) primary and secondary immune responses in horse peripheral blood mononuclear cells (PBMC) after 24 h. The pro-inflammatory cytokine and chemokine responses were negatively regulated by anti-inflammatory cytokines, whereas the parallel type I and type III IFN responses were maintained downstream of nucleic acid sensing pattern recognition receptor (PRR) signalling pathways during the attAHSV4 primary and secondary immune responses. It appeared that after translation, virAHSV4 proteins were able to interfere with the C-terminal IRF association domain (IAD)-type 1 (IAD1) containing IRFs, which inhibited the expression of type I and type III IFNs downstream of PRR signalling during the virAHSV4 primary and secondary immune responses. Viral interference resulted in an impaired innate immune response that was not able to eliminate virAHSV4-infected PBMC and gave rise to prolonged expression of pro-inflammatory cytokines and chemokines during the virAHSV4 induced primary immune response. Indicating that virAHSV4 interference with the innate immune response may give rise to an excessive inflammatory response that causes immunopathology, which could be a major contributing factor to the pathogenesis of AHS in a naïve horse. Viral interference was overcome by the fast kinetics and increased effector responses of innate immune cells due to trained innate immunity and memory T cells and B cells during the virAHSV4 secondary immune response.


Assuntos
Vírus da Doença Equina Africana/fisiologia , Doença Equina Africana/imunologia , Imunidade Inata , Leucócitos Mononucleares/virologia , Doença Equina Africana/virologia , Animais , Cavalos , Sorogrupo
2.
Vaccine ; 38(4): 882-889, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31708178

RESUMO

African horse sickness virus (AHSV) is an insect-borne pathogen that causes acute disease in horses and other equids. In an effort to improve the safety of currently available vaccines and to acquire new knowledge about the determinants of AHSV immunogenicity, new generation vaccines are being developed. In this work we have generated and tested a novel immunization approach comprised of nonstructural protein 1 (NS1) of AHSV serotype 4 (AHSV-4) incorporated into avian reovirus muNS protein microspheres (MS-NS1) and/or expressed using recombinant modified vaccinia virus Ankara vector (MVA-NS1). The protection conferred against AHSV by a homologous MS-NS1 or heterologous MS-NS1 and MVA-NS1 prime/boost was evaluated in IFNAR (-/-) mice. Our results indicate that immunization based on MS-NS1 and MVA-NS1 afforded complete protection against the infection with homologous AHSV-4. Moreover, priming with MS-NS1 and boost vaccination with MVA-NS1 (MS-MVA-NS1) triggered NS1 specific cytotoxic CD8 + T cells and prevented AHSV disease in IFNAR (-/-) mice after challenge with heterologous serotype AHSV-9. Cross-protective immune responses are highly important since AHS can be caused by nine different serotypes, which means that a universal polyvalent vaccination would need to induce protective immunity against all serotypes.


Assuntos
Vírus da Doença Equina Africana/imunologia , Doença Equina Africana/prevenção & controle , Imunização , Vacinas Virais/administração & dosagem , Doença Equina Africana/imunologia , Animais , Feminino , Cavalos , Imunidade/imunologia , Camundongos , Camundongos Knockout , Microesferas , Orthoreovirus Aviário/imunologia , Receptor de Interferon alfa e beta/genética , Sorogrupo , Vacinas Sintéticas/imunologia , Vaccinia virus/imunologia , Proteínas não Estruturais Virais/imunologia , Vacinas Virais/imunologia
3.
J Virol Methods ; 270: 131-136, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31095974

RESUMO

Monoclonal antibodies (MAbs) against AHSV were produced by immunising BALB/c mice with AHSV serotype 9 and six clones able to recognize specifically the VP7-AHSV with a strong reactivity were selected. The specificity of the MAbs was assessed in i-ELISA against a commercial VP7-AHSV and in immunoblot against a home-made VP7-AHSV, expressed by a Baculovirus expression system; potential cross-reactions with related orbiviruses (Bluetongue virus and Epizootic Haemorrhagic Disease virus) were investigated as well. One of the six MAbs selected, MAb 7F11E14, was tested in direct immunofluorescence and reacted with all nine AHSV serotypes, but didn't cross-react with BTV and EHDV. MAb 7F11E14 was also used to develop a competitive ELISA and was able to detect AHSV antibodies in the sera of AHS infected animals.


Assuntos
Vírus da Doença Equina Africana/imunologia , Doença Equina Africana/diagnóstico , Doença Equina Africana/imunologia , Anticorpos Monoclonais/sangue , Proteínas do Core Viral/imunologia , Animais , Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , Vírus Bluetongue/imunologia , Reações Cruzadas , Ensaio de Imunoadsorção Enzimática , Feminino , Vírus da Doença Hemorrágica Epizoótica/imunologia , Cavalos , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes , Sensibilidade e Especificidade , Proteínas do Core Viral/isolamento & purificação
4.
Vaccine ; 36(25): 3584-3592, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29759377

RESUMO

African Horse Sickness Virus (AHSV) (Orbivirus genus, Reoviridae family) causes high mortality in naïve domestic horses with enormous economic and socio-emotional impact. There are nine AHSV serotypes showing limited cross neutralization. AHSV is transmitted by competent species of Culicoides biting midges. AHS is a serious threat beyond the African continent as endemic Culicoides species in moderate climates transmit the closely related prototype bluetongue virus. There is a desperate need for safe and efficacious vaccines, while DIVA (Differentiating Infected from Vaccinated) vaccines would accelerate control of AHS. Previously, we have shown that highly virulent AHSV with an in-frame deletion of 77 amino acids (aa) in NS3/NS3a is completely safe, does not cause viremia and shows protective capacity. This deletion mutant is a promising DISA (Disabled Infectious Single Animal) vaccine platform, since exchange of serotype specific virus proteins has been shown for all nine serotypes. Here, we show that a prototype NS3 competitive ELISA is DIVA compliant to AHS DISA vaccine platforms. Epitope mapping of NS3/NS3a shows that more research is needed to evaluate this prototype serological DIVA assay regarding sensitivity and specificity, in particular for AHSVs expressing antigenically different NS3/NS3a proteins. Further, an experimental panAHSV PCR test targeting genome segment 10 is developed that detects reference AHSV strains, whereas AHS DISA vaccine platforms were not detected. This DIVA PCR test completely guarantees genetic DIVA based on in silico and in vitro validation, although test validation regarding diagnostic sensitivity and specificity has not been performed yet. In conclusion, the prototype NS3 cELISA and the PCR test described here enable serological and genetic DIVA accompanying AHS DISA vaccine platforms.


Assuntos
Vírus da Doença Equina Africana , Doença Equina Africana/diagnóstico , Sequência de Aminoácidos , Ensaio de Imunoadsorção Enzimática/métodos , Reação em Cadeia da Polimerase/métodos , Deleção de Sequência , Vacinas Virais/administração & dosagem , Doença Equina Africana/imunologia , Doença Equina Africana/prevenção & controle , Doença Equina Africana/virologia , Vírus da Doença Equina Africana/genética , Vírus da Doença Equina Africana/imunologia , Animais , Anticorpos Antivirais/sangue , Mapeamento de Epitopos , Epitopos/química , Epitopos/imunologia , Expressão Gênica , Cavalos , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Vacinas Atenuadas , Proteínas não Estruturais Virais
5.
Vaccine ; 36(15): 1925-1933, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29525278

RESUMO

African horse sickness virus (AHSV) is a virus species in the genus Orbivirus of the family Reoviridae. Currently, nine serotypes have been defined showing limited cross neutralization. AHSV is transmitted by species of Culicoides biting midges and causes African Horse Sickness (AHS) in equids with a mortality up to 95% in naïve domestic horses. AHS has become a serious threat for countries outside Africa, since endemic Culicoides species in moderate climates are competent vectors of closely related bluetongue virus. AHS outbreaks cause huge economic losses in developing countries. In the developed world, outbreaks will result in losses in the equestrian industry and will have an enormous emotional impact on owners of pet horses. Live-attenuated vaccine viruses (LAVs) have been developed, however, safety of these LAVs are questionable due to residual virulence, reversion to virulence, and risk on virulent variants by reassortment between LAVs or with field AHSV. Research aims vaccines with improved profiles. Reverse genetics has recently being developed for AHSV and has opened endless possibilities including development of AHS vaccine candidates, such as Disabled Infectious Single Animal (DISA) vaccine. Here, virulent AHSV5 was recovered and its high virulence was confirmed by experimental infection of ponies. 'Synthetically derived' virulent AHSV5 with an in-frame deletion of 77 amino acids codons in genome segment 10 encoding NS3/NS3a protein resulted in similar in vitro characteristics as published NS3/NS3a knockout mutants of LAV strain AHSV4LP. In contrast to its highly virulent ancestor virus, this deletion AHSV5 mutant (DISA5) was completely safe for ponies. Two vaccinations with DISA5 as well as two vaccinations with DISA vaccine based on LAV strain AHSV4LP showed protection against lethal homologous AHSV. More research is needed to further improve efficacy, to explore the AHS DISA vaccine platform for all nine serotypes, and to study the vaccine profile in more detail.


Assuntos
Vírus da Doença Equina Africana/genética , Vírus da Doença Equina Africana/imunologia , Doença Equina Africana/imunologia , Doença Equina Africana/prevenção & controle , Deleção de Sequência , Vacinas Atenuadas/imunologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia , Vacinas Virais/imunologia , Doença Equina Africana/patologia , Doença Equina Africana/virologia , Vírus da Doença Equina Africana/patogenicidade , Aminoácidos/genética , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linhagem Celular , Chlorocebus aethiops , Códon , Cricetinae , Imunização , Soroconversão , Fatores de Tempo , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Células Vero , Vacinas Virais/administração & dosagem , Vacinas Virais/genética , Virulência
6.
Vaccine ; 35(33): 4262-4269, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28625521

RESUMO

African horse sickness virus (AHSV) is an orbivirus, a member of the Reoviridae family. Nine different serotypes have been described so far. AHSV is vectored by Culicoides spp. to equids, causing high mortality, particularly in horses, with considerable economic impacts. For development of a safe attenuated vaccine, we previously established an efficient reverse genetics (RG) system to generate Entry Competent Replication-Abortive (ECRA) virus strains, for all nine serotypes and demonstrated the vaccine potential of these strains in type I interferon receptor (IFNAR)-knockout mice. Here, we evaluated the protective efficacies of these ECRA viruses in AHSV natural hosts. One monoserotype (ECRA.A4) vaccine and one multivalent cocktail (ECRA.A1/4/6/8) vaccine were tested in ponies and subsequently challenged with a virulent AHSV4. In contrast to control animals, all vaccinated ponies were protected and did not develop severe clinical symptoms of AHS. Furthermore, the multivalent cocktail vaccinated ponies produced neutralizing antibodies against all serotypes present in the cocktail, and a foal born during the trial was healthy and had no viremia. These results validate the suitability of these ECRA strains as a new generation of vaccines for AHSV.


Assuntos
Vírus da Doença Equina Africana/imunologia , Doença Equina Africana/prevenção & controle , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia , Doença Equina Africana/imunologia , Doença Equina Africana/patologia , Vírus da Doença Equina Africana/fisiologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Cavalos , Genética Reversa , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas Virais/genética , Replicação Viral
7.
Vaccine ; 35(44): 6024-6029, 2017 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-28438410

RESUMO

African horse sickness is a lethal viral disease of equids transmitted by biting midges of the Genus Culicoides. The disease is endemic to sub-Saharan Africa but outbreaks of high mortality and economic impact have occurred in the past in non-endemic regions of Africa, Asia and Southern Europe. Vaccination is critical for the control of this disease but only live attenuated vaccines are currently available. However, there are bio-safety concerns over the use of this type of vaccines, especially in non-endemic countries, and live attenuated vaccines do not have DIVA (Differentiation of Infected from Vaccinated Animals) capacity. In addition, large scale manufacturing of live attenuated vaccines of AHSV represents a significant environmental and health risk and level 3 bio-safety containment facilities are required for their production. A variety of different technologies have been investigated over the years to develop alternative AHSV vaccines, including the use of viral vaccine vectors such Modified Vaccinia Ankara virus (MVA). In previous studies we demonstrated that recombinant MVA expressing outer capsid protein AHSV-VP2 induced virus neutralising antibodies and protection against virulent challenge both in a mouse model and in the horse. However, AHSV-VP2 is antigenically variable and determines the existence of 9 different AHSV serotypes. Immunity against AHSV is serotype-specific and there is limited cross-reactivity between certain AHSV serotypes: 1 and 2, 3 and 7, 5 and 8, 6 and 9. In Africa, multiple serotypes circulate simultaneously and a polyvalent attenuated vaccine comprising different AHSV serotypes is used. We investigated the potential of a polyvalent AHSV vaccination strategy based on combinations of MVA-VP2 viruses each expressing a single VP2 antigen from a specific serotype. We showed that administration of 2 different recombinant MVA viruses, each expressing a single VP2 protein from AHSV serotype 4 or 9, denoted respectively as MVA-VP2(4) and MVA-VP2(9), induced virus neutralising antibodies against the homologous AHSV serotypes. Vaccination was more efficient when vaccines were administered simultaneously than when they were administered sequentially. A third and fourth dose of a different MVA expressing VP2 of AHSV serotype 5, given 4months later to ponies previously vaccinated with MVA-VP2(4) and MVA-VP2(9), resulted in the induction of VNAb against serotypes 4, 5, 6, 8 and 9. The anamnestic antibody response against AHSV 9 and AHSV 4 following the MVA-VP2(5) boost suggests that it is possible some shared epitopes exist between different serotypes. In conclusion this study showed that it is feasible to develop a polyvalent AHSV vaccination regime based on the use of combinations of MVA-VP2 viruses.


Assuntos
Vírus da Doença Equina Africana/imunologia , Doença Equina Africana/imunologia , Anticorpos Neutralizantes/imunologia , Proteínas do Capsídeo/imunologia , Reações Cruzadas/imunologia , Cavalos/imunologia , Vaccinia virus/imunologia , África , Doença Equina Africana/prevenção & controle , Animais , Anticorpos Bloqueadores/imunologia , Anticorpos Antivirais/imunologia , Ásia , Europa (Continente) , Cavalos/virologia , Camundongos , Vacinação/métodos , Vacinas Atenuadas/imunologia , Vacínia/imunologia , Vacinas Virais/imunologia
8.
Onderstepoort J Vet Res ; 84(1): e1-e12, 2017 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-28281773

RESUMO

Identifying antigenic proteins and mapping their epitopes is important for the development of diagnostic reagents and recombinant vaccines. B-cell epitopes of African horse sickness virus (AHSV) have previously been mapped on VP2, VP5, VP7 and NS1, using mouse, rabbit and chicken monoclonal antibodies. A comprehensive study of the humoral immune response of five vaccinated horses to AHSV-4 antigenic peptides was undertaken. A fragmented-genome phage display library expressing a repertoire of AHSV-4 peptides spanning the entire genome was constructed. The library was affinity selected for binders on immobilised polyclonal immunoglobulin G (IgG) isolated from horse sera collected pre- and post-immunisation with an attenuated AHSV-4 monovalent vaccine. The DNA inserts of binding phages were sequenced with Illumina high-throughput sequencing. The data were normalised using preimmune IgG-selected sequences. More sequences mapped to the genes coding for NS3, VP6 and VP5 than to the other genes. However, VP2 and VP5 each had more antigenic regions than each of the other proteins. This study identified a number of epitopes to which the horse's humoral immune system responds during immunisation with AHSV-4.


Assuntos
Vírus da Doença Equina Africana/imunologia , Doença Equina Africana/prevenção & controle , Epitopos de Linfócito B/imunologia , Soros Imunes/imunologia , Vacinas Virais/administração & dosagem , Doença Equina Africana/sangue , Doença Equina Africana/imunologia , Doença Equina Africana/virologia , Animais , Anticorpos Monoclonais/imunologia , Ensaio de Imunoadsorção Enzimática , Cavalos , Imunoglobulina G/imunologia , Vacinação/veterinária
9.
J Virol Methods ; 237: 127-131, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27616197

RESUMO

African horse sickness (AHS) and equine infectious anemia (EIA) are both notifiable equid specific diseases that may present similar clinical signs. Considering the increased global movement of horses and equine products over the past decades, together with the socio-economic impact of previous AHS and EIA outbreaks, there is a clear demand for an early discrimination and a strict control of their transmission between enzootic and AHS/EIA-free regions. Currently, the individual control and prevention of AHS or EIA relies on a series of measures, including the restriction of animal movements, vector control, and the use of several laboratory techniques for viral identification, amongst others. Despite being widely employed in surveillance programmes and in the control of animal movements, the available serological assays can only detect AHS- or EIA-specific antibodies individually. In this work, a duplex lateral flow assay (LFA) for simultaneous detection and differentiation of specific antibodies against AHS virus (AHSV) and EIA virus (EIAV) was developed and evaluated with experimental and field serum samples. The duplex LFA was based on the AHSV-VP7 outer core protein and the EIAV-P26 major core protein. The results indicated that the duplex LFA presented a good analytical performance, detecting simultaneously and specifically antibodies against AHSV and EIAV. The initial diagnostic evaluation revealed a good agreement with results from the AHS and EIA tests prescribed by the OIE, and it highlighted the usefulness of the new AHSV/EIAV duplex LFA for an on-field and point-of-care first diagnosis.


Assuntos
Vírus da Doença Equina Africana/imunologia , Doença Equina Africana/diagnóstico , Anticorpos Antivirais/sangue , Ensaio de Imunoadsorção Enzimática/métodos , Anemia Infecciosa Equina/diagnóstico , Vírus da Anemia Infecciosa Equina/imunologia , Doença Equina Africana/imunologia , Animais , Anemia Infecciosa Equina/imunologia , Cavalos , Sistemas Automatizados de Assistência Junto ao Leito , Proteínas do Core Viral/imunologia
10.
Virus Res ; 220: 12-20, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27063332

RESUMO

It was shown in a previous study that proliferating CD8+ T cells could be detected in immune horse peripheral blood mononuclear cells (PBMC) when stimulated with African horse sickness virus serotype 4 (AHSV4). In this study the cytotoxicity of CD8+ T cells were tested by using the fluorescent antigen-transfected target cells-cytotoxic T lymphocytes (FATT-CTL) assay, for both the virus and its individual proteins expressed in Escherichia coli. This CTL assay measures the killing of viral protein expressing cells. AHSV proteins were successfully expressed in E. coli using the pET102/D-TOPO expression vector and the effector cells were stimulated with these recombinant proteins or with live viable virulent AHSV4. The AHSV genes were amplified and cloned into the pIRES-hrGFP II (pGFPempty) vector and these plasmid vectors encoding antigen-green fluorescent protein (GFP) fusion proteins were used to nucleofect PBMC, the target cells. The elimination of antigen-GFP expressing cells by CTL was quantified by flowcytometry. VP1-1, VP2-2, VP4, VP7 and NS3, antigen-specific CD8+ T cells resulted in cell lysis suggesting that CTL may play a role in the immune response induced against the AHSV4 vaccine strain.


Assuntos
Vírus da Doença Equina Africana/imunologia , Doença Equina Africana/prevenção & controle , Antígenos Virais/imunologia , Citotoxicidade Imunológica/efeitos dos fármacos , Linfócitos T Citotóxicos/efeitos dos fármacos , Doença Equina Africana/imunologia , Doença Equina Africana/virologia , Vírus da Doença Equina Africana/genética , Animais , Antígenos Virais/genética , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/imunologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Cavalos , Imunização , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Sorogrupo , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/virologia
11.
Immunobiology ; 221(2): 236-44, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26382058

RESUMO

Development of African horsesickness (AHS) subunit vaccines will have to include a rational approach that uses knowledge of how the virus interacts with the host immune system. The global in vivo immune response induced by attenuated AHSV serotype 4 in horses was characterised using transcriptome sequencing. PBMC were collected with 24h intervals for four days after inoculation and four days after a second boost, 21 days later. Transcriptome data were normalised to the day 0 naïve transcriptome and up- or down-regulated immune genes identified using the CLC workbench. Peak expression was observed 24h after each inoculation. Innate immunity was up-regulated after both inoculations and was characterised by type-1 interferon activation via the RIG-1/MDA5 pathway and the up-regulation of complement cascade components. After the second boost an adaptive immune response could be identified that included the production of cytokines indicative of T helper (Th)1, Th2 and Th17 responses.


Assuntos
Doença Equina Africana/prevenção & controle , Anticorpos Antivirais/biossíntese , Interferon Tipo I/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Vacinação , Vacinas Virais/administração & dosagem , Doença Equina Africana/genética , Doença Equina Africana/imunologia , Doença Equina Africana/virologia , Vírus da Doença Equina Africana/efeitos dos fármacos , Vírus da Doença Equina Africana/imunologia , Animais , Anticorpos Antivirais/sangue , Proteínas do Sistema Complemento/genética , Proteínas do Sistema Complemento/imunologia , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/imunologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Cavalos , Imunidade Ativa , Imunidade Inata/efeitos dos fármacos , Interferon Tipo I/genética , Análise em Microsséries , Sorogrupo , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Linfócitos T Auxiliares-Indutores/virologia , Transcriptoma/imunologia , Vacinas Atenuadas
12.
J Virol ; 89(17): 8764-72, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26063433

RESUMO

UNLABELLED: African horse sickness virus (AHSV) is a virus species in the genus Orbivirus of the family Reoviridae. There are nine serotypes of AHSV showing different levels of cross neutralization. AHSV is transmitted by species of Culicoides biting midges and causes African horse sickness (AHS) in equids, with a mortality rate of up to 95% in naive horses. AHS has become a serious threat for countries outside Africa, since endemic Culicoides species in moderate climates appear to be competent vectors for the related bluetongue virus (BTV). To control AHS, live-attenuated vaccines (LAVs) are used in Africa. We used reverse genetics to generate "synthetic" reassortants of AHSV for all nine serotypes by exchange of genome segment 2 (Seg-2). This segment encodes VP2, which is the serotype-determining protein and the dominant target for neutralizing antibodies. Single Seg-2 AHSV reassortants showed similar cytopathogenic effects in mammalian cells but displayed different growth kinetics. Reverse genetics for AHSV was also used to study Seg-10 expressing NS3/NS3a proteins. We demonstrated that NS3/NS3a proteins are not essential for AHSV replication in vitro. NS3/NS3a of AHSV is, however, involved in the cytopathogenic effect in mammalian cells and is very important for virus release from cultured insect cells in particular. Similar to the concept of the bluetongue disabled infectious single animal (BT DISA) vaccine platform, an AHS DISA vaccine platform lacking NS3/NS3a expression was developed. Using exchange of genome segment 2 encoding VP2 protein (Seg-2[VP2]), we will be able to develop AHS DISA vaccine candidates for all current AHSV serotypes. IMPORTANCE: African horse sickness virus is transmitted by species of Culicoides biting midges and causes African horse sickness in equids, with a mortality rate of up to 95% in naive horses. African horse sickness has become a serious threat for countries outside Africa, since endemic Culicoides species in moderate climates are supposed to be competent vectors. By using reverse genetics, viruses of all nine serotypes were constructed by the exchange of Seg-2 expressing the serotype-determining VP2 protein. Furthermore, we demonstrated that the nonstructural protein NS3/NS3a is not essential for virus replication in vitro. However, the potential spread of the virus by biting midges is supposed to be blocked, since the in vitro release of the virus was strongly reduced due to this deletion. VP2 exchange and NS3/NS3a deletion in African horse sickness virus were combined in the concept of a disabled infectious single animal vaccine for all nine serotypes.


Assuntos
Vírus da Doença Equina Africana/imunologia , Doença Equina Africana/imunologia , Proteínas do Capsídeo/imunologia , Cavalos/virologia , Proteínas não Estruturais Virais/genética , Doença Equina Africana/prevenção & controle , Doença Equina Africana/virologia , Vírus da Doença Equina Africana/genética , Vírus da Doença Equina Africana/metabolismo , Animais , Anticorpos Neutralizantes/imunologia , Proteínas do Capsídeo/genética , Linhagem Celular , Ceratopogonidae/virologia , Cricetinae , Genoma Viral/genética , Cavalos/imunologia , Mutação/genética , Vacinas Atenuadas/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Virais/imunologia , Replicação Viral/genética
13.
Antiviral Res ; 116: 27-33, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25643968

RESUMO

Previous studies show that a recombinant modified vaccinia Ankara (MVA) virus expressing VP2 of AHSV serotype 4 (MVA-VP2) induced virus neutralising antibodies in horses and protected interferon alpha receptor gene knock-out mice (IFNAR -/-) against challenge. Follow up experiments indicated that passive transfer of antiserum, from MVA-VP2 immune donors to recipient mice 1h before challenge, conferred complete clinical protection and significantly reduced viraemia. These studies have been extended to determine the protective effect of MVA-VP2 vaccine-induced antiserum, when administered 48h before, or 48h after challenge. In addition, passive transfer of splenocytes was undertaken to assess if they confer any degree of immunity to immunologically naïve recipient mice. Thus, antisera and splenocytes were collected from groups of mice that had been vaccinated with MVA-VP2, or wild type MVA (MVA-wt), for passive immunisation of recipient mice. The latter were subsequently challenged with AHSV-4 (together with appropriate vaccinated or unvaccinated control animals) and protection was assessed by comparing clinical signs, lethality and viraemia between treated and control groups. All antiserum recipients showed high protection against disease (100% survival rates even in mice that were immunised 48h after challenge) and statistically significant reduction or viraemia in comparison with the control groups. The mouse group receiving splenocytes from MVA-VP2 vaccinates, showed only a 40% survival rate, with a small reduction in viraemia, compared to those mice that had received splenocytes from MVA-wt vaccinates. These results confirm the primarily humoral nature of protective immunity conferred by MVA-VP2 vaccination and show the potential of administering MVA-VP2 specific antiserum as an emergency treatment for AHSV.


Assuntos
Vírus da Doença Equina Africana/imunologia , Doença Equina Africana/imunologia , Doença Equina Africana/prevenção & controle , Anticorpos Antivirais/imunologia , Proteínas do Capsídeo/imunologia , Imunização Passiva , Vacinas Virais/imunologia , Doença Equina Africana/terapia , Doença Equina Africana/virologia , Vírus da Doença Equina Africana/genética , Animais , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/administração & dosagem , ELISPOT , Cavalos , Interferon gama/biossíntese , Camundongos , Camundongos Knockout , Receptor de Interferon alfa e beta/genética , Baço/citologia , Vacinas Virais/uso terapêutico , Viremia/prevenção & controle
14.
J Immunoassay Immunochem ; 36(3): 253-64, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24905982

RESUMO

Monoclonal antibodies (MAbs) against horse IgG were produced by immunizing Balb/c mice with purified horse IgG and were characterized in indirect ELISA versus purified immunoglobulins from donkey, cow, buffalo, sheep, pig, and chicken. Three MAbs (1B10B6C9, 1B10B6C10, 1B10B6E9) reacted only with horse and donkey IgG and IgM and, in western blotting, were specific for the Fc fragment of equine IgG. MAb 1B10B6E9 was used in chemiluminescent immunoblotting assay for the diagnosis of dourine and in indirect immunofluorescence assay (IFA) for the diagnosis of African horse sickness and dourine.


Assuntos
Doença Equina Africana/sangue , Doença Equina Africana/diagnóstico , Anticorpos Monoclonais Murinos/química , Mal do Coito (Veterinária)/sangue , Mal do Coito (Veterinária)/diagnóstico , Imunoglobulina G/sangue , Doença Equina Africana/imunologia , Animais , Anticorpos Monoclonais Murinos/imunologia , Mal do Coito (Veterinária)/imunologia , Técnica Indireta de Fluorescência para Anticorpo/métodos , Cavalos , Imunoglobulina G/imunologia , Camundongos
15.
Virus Res ; 180: 23-30, 2014 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-24333835

RESUMO

In previous studies we showed that a recombinant Modified Vaccinia Ankara (MVA) virus expressing the protein VP2 of AHSV serotype 4 (MVA-VP2) induced virus neutralising antibodies in horses and protected interferon alpha receptor gene knock-out mice (IFNAR-/-) against challenge. We continued these studies and determined, in the IFNAR-/- mouse model, whether the antibody responses induced by MVA-VP2 vaccination play a key role in protection against AHSV. Thus, groups of mice were vaccinated with wild type MVA (MVA-wt) or MVA-VP2 and the antisera from these mice were used in a passive immunisation experiment. Donor antisera from (a) MVA-wt; (b) MVA-VP2 vaccinated; or (c) MVA-VP2 vaccinated and AHSV infected mice, were transferred to AHSV non-immune recipient mice. The recipients were challenged with virulent AHSV together with MVA-VP2 vaccinated and MVA-wt vaccinated control animals and the levels of protection against AHSV-4 were compared between all these groups. The results showed that following AHSV challenge, mice that were passively immunised with MVA-VP2 vaccinated antisera were highly protected against AHSV disease and had lower levels of viraemia than recipients of MVA-wt antisera. Our study indicates that MVA-VP2 vaccination induces a highly protective humoral immune response against AHSV.


Assuntos
Vírus da Doença Equina Africana/imunologia , Doença Equina Africana/prevenção & controle , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Proteínas do Capsídeo/imunologia , Vaccinia virus/genética , Vacinas Virais/imunologia , Doença Equina Africana/imunologia , Vírus da Doença Equina Africana/genética , Animais , Proteínas do Capsídeo/genética , Modelos Animais de Doenças , Portadores de Fármacos , Imunização Passiva , Camundongos , Camundongos Knockout , Vacinas Virais/administração & dosagem , Vacinas Virais/genética , Viremia/prevenção & controle
16.
PLoS One ; 8(7): e70197, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23894615

RESUMO

African horse sickness virus (AHSV) belongs to the genus Orbivirus. We have now engineered naked DNAs and recombinant modified vaccinia virus Ankara (rMVA) expressing VP2 and NS1 proteins from AHSV-4. IFNAR((-/-)) mice inoculated with DNA/rMVA-VP2,-NS1 from AHSV-4 in an heterologous prime-boost vaccination strategy generated significant levels of neutralizing antibodies specific of AHSV-4. In addition, vaccination stimulated specific T cell responses against the virus. The vaccine elicited partial protection against an homologous AHSV-4 infection and induced cross-protection against the heterologous AHSV-9. Similarly, IFNAR((-/-)) mice vaccinated with an homologous prime-boost strategy with rMVA-VP2-NS1 from AHSV-4 developed neutralizing antibodies and protective immunity against AHSV-4. Furthermore, the levels of immunity were very high since none of vaccinated animals presented viraemia when they were challenged against the homologous AHSV-4 and very low levels when they were challenged against the heterologous virus AHSV-9. These data suggest that the immunization with rMVA/rMVA was more efficient in protection against a virulent challenge with AHSV-4 and both strategies, DNA/rMVA and rMVA/rMVA, protected against the infection with AHSV-9. The inclusion of the protein NS1 in the vaccine formulations targeting AHSV generates promising multiserotype vaccines.


Assuntos
Vírus da Doença Equina Africana/imunologia , Doença Equina Africana/imunologia , Modelos Animais de Doenças , Proteínas não Estruturais Virais/imunologia , Vacinas Virais/imunologia , Doença Equina Africana/prevenção & controle , Vírus da Doença Equina Africana/classificação , Animais , Linhagem Celular , Chlorocebus aethiops , Cavalos , Masculino , Camundongos , Camundongos da Linhagem 129 , Receptor de Interferon alfa e beta/genética , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Células Vero , Proteínas não Estruturais Virais/genética
17.
Onderstepoort J Vet Res ; 80(1): 578, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23718258

RESUMO

A study of the prevalence of African horse sickness in horses was conducted, using records from two private equine practices in Harare for the period 1998-2004. Results indicated a higher prevalence of the disease in horses in Zimbabwe in the late rainy season (March - May). Age of the horse was found to be a significant risk factor, with foals or yearlings appearing to be 1.80 times more likely to contract the disease compared with horses older than two years. The case fatality rate in foals or yearlings was also higher than in older age groups, but this difference was not significant. The vaccination status was an important risk factor, with vaccinated horses 0.12 times less likely to die from the disease compared with unvaccinated horses. Young, unvaccinated horses therefore seem to be the most susceptible to the disease and have greater chances of fatality. This study highlights the importance of adequately protecting horses against African horse sickness by providing immunisation through vaccination and discusses the need to review current vaccination strategies being practiced in Zimbabwe.


Assuntos
Doença Equina Africana/epidemiologia , Doença Equina Africana/imunologia , Doença Equina Africana/prevenção & controle , Vírus da Doença Equina Africana/patogenicidade , Fatores Etários , Animais , Feminino , Cavalos , Masculino , Fatores Sexuais , Vacinação/veterinária , Zimbábue/epidemiologia
18.
Equine Vet J ; 45(5): 604-7, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23294121

RESUMO

REASONS FOR PERFORMING STUDY: African horse sickness is an insect-transmitted, noncontagious disease of equids caused by African horse sickness virus (AHSV). Mortality can exceed 90% in fully susceptible horse populations. A live-attenuated (modified live) cell-culture-adapted (MLV) polyvalent AHSV vaccine is widely used to control African horse sickness in endemic areas in southern Africa. Field studies detailing antibody responses of vaccinated horses are lacking. OBJECTIVES: To determine antibody titres to the 9 known serotypes of AHSV in a cohort of broodmares that were regularly vaccinated with the MLV AHSV vaccine and to measure the passive transfer and rate of decay of maternal antibody to the individual virus serotypes in foals. METHODS: Serum was collected from 15 mares before foaling and from their foals after foaling and monthly thereafter for 6 months. Antibody titres to each of the 9 AHSV serotypes were determined by serum virus neutralisation assay. RESULTS: There was marked variation in the antibody response of the mares to individual AHSV serotypes even after repeated vaccination, with consistently higher titre responses to some virus serotypes. Likewise, the duration of maternally derived antibodies in foals differed among serotypes. CONCLUSIONS: Data from this study confirm variation of the neutralising antibody response of individual mares to repeated vaccination with polyvalent AHSV vaccine. Virus strains of individual AHSV serotypes included in the vaccine may vary in their inherent immunogenicity. Passively acquired maternal antibodies to AHSV vary markedly among foals born to vaccinated mares, with further variation in the duration of passive immunity to individual AHSV serotypes. POTENTIAL RELEVANCE: These data are relevant to the effective utilisation of live-attenuated AHSV vaccines in endemic regions, and potentially to the use of vaccines in response to future incursions of AHSV into previously free regions. Further studies involving a larger population will be required to determine the optimal time for vaccinating foals.


Assuntos
Vírus da Doença Equina Africana/imunologia , Doença Equina Africana/imunologia , Anticorpos Antivirais/sangue , Doença Equina Africana/epidemiologia , Animais , Feminino , Imunidade Materno-Adquirida , Gravidez , Sorotipagem , África do Sul/epidemiologia , Fatores de Tempo
19.
Equine Vet J ; 45(1): 117-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22612775

RESUMO

To determine whether subclinical cases, together with clinical cases, of African horse sickness (AHS) occur in immunised horses in field conditions, whole blood samples were collected and rectal temperatures recorded weekly from 50 Nooitgedacht ponies resident in open camps at the Faculty of Veterinary Science, University of Pretoria, Onderstepoort, during 2008-2010. The samples were tested for the presence of African horse sickness virus (AHSV) RNA by a recently developed real-time RT-PCR. It was shown that 16% of immunised horses in an AHS endemic area were infected with AHSV over a 2 year period, with half of these (8%) being subclinically infected. The potential impact of such cases on the epidemiology of AHS warrants further investigation.


Assuntos
Vírus da Doença Equina Africana/isolamento & purificação , Doença Equina Africana/virologia , Vacinas Virais/imunologia , Doença Equina Africana/sangue , Doença Equina Africana/imunologia , Animais , Cavalos , Incidência , RNA Viral/sangue , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária
20.
Vet Immunol Immunopathol ; 149(1-2): 76-85, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22763149

RESUMO

A recombinant canarypox virus vectored vaccine co-expressing synthetic genes encoding outer capsid proteins, VP2 and VP5, of African horse sickness virus (AHSV) serotype 4 (ALVAC(®)-AHSV4) has been demonstrated to fully protect horses against homologous challenge with virulent field virus. Guthrie et al. (2009) detected weak and variable titres of neutralizing antibody (ranging from <10 to 40) 8 weeks after vaccination leading us to hypothesize that there could be a participation of cell mediated immunity (CMI) in protection against AHSV4. The present study aimed at characterizing the CMI induced by the experimental ALVAC(®)-AHSV4 vaccine. Six horses received two vaccinations twenty-eight days apart and three horses remained unvaccinated. The detection of VP2/VP5 specific IFN-γ responses was assessed by enzyme linked immune spot (ELISpot) assay and clearly demonstrated that all ALVAC(®)-AHSV4 vaccinated horses developed significant IFN-γ production compared to unvaccinated horses. More detailed immune responses obtained by flow cytometry demonstrated that ALVAC(®)-AHSV4 vaccinations induced immune cells, mainly CD8(+) T cells, able to recognize multiple T-epitopes through all VP2 and only the N-terminus sequence of VP5. Neither VP2 nor VP5 specific IFN-γ responses were detected in unvaccinated horses. Overall, our data demonstrated that an experimental recombinant canarypox based vaccine induced significant CMI specific for both VP2 and VP5 proteins of AHSV4.


Assuntos
Vírus da Doença Equina Africana/imunologia , Doença Equina Africana/imunologia , Doença Equina Africana/prevenção & controle , Vírus da Varíola dos Canários/genética , Proteínas do Capsídeo/imunologia , Vacinas Virais/administração & dosagem , Vírus da Doença Equina Africana/genética , Animais , Proteínas do Capsídeo/genética , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo/veterinária , Cavalos , Imunidade Celular/imunologia , Imunização/veterinária , Interferon gama/sangue , Masculino , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas Virais/genética , Vacinas Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA