Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Biochimie ; 183: 78-88, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33588022

RESUMO

Pyruvate dehydrogenase complex (PDC) catalyzes the oxidative decarboxylation of pyruvate to acetyl-coenzyme A, hinging glycolysis and the tricarboxylic acid cycle. PDC deficiency, an inborn error of metabolism, has a broad phenotypic spectrum. Symptoms range from fatal lactic acidosis or progressive neuromuscular impairment in the neonatal period, to chronic neurodegeneration. Most disease-causing mutations in PDC deficiency affect the PDHA1 gene, encoding the α subunit of the PDC-E1 component. Detailed biophysical analysis of pathogenic protein variants is a challenging approach to support the design of therapies based on improving and correcting protein structure and function. Herein, we report the characterization of clinically relevant PDC-E1α variants identified in Portuguese PDC deficient patients. These variants bear amino acid substitutions in different structural regions of PDC-E1α. The structural and functional analyses of recombinant heterotetrameric (αα'ßß') PDC-E1 variants, combined with molecular dynamics (MD) simulations, show a limited impact of the amino acid changes on the conformational stability, apart from the increased propensity for aggregation of the p.R253G variant as compared to wild-type PDC-E1. However, all variants presented a functional impairment in terms of lower residual PDC-E1 enzymatic activity and ≈3-100 × lower affinity for the thiamine pyrophosphate (TPP) cofactor, in comparison with wild-type PDC-E1. MD simulations neatly showed generally decreased stability (increased flexibility) of all variants with respect to the WT heterotetramer, particularly in the TPP binding region. These results are discussed in light of disease severity of the patients bearing such mutations and highlight the difficulty of developing chaperone-based therapies for PDC deficiency.


Assuntos
Simulação de Dinâmica Molecular , Mutação de Sentido Incorreto , Piruvato Desidrogenase (Lipoamida)/química , Doença da Deficiência do Complexo de Piruvato Desidrogenase , Tiamina Pirofosfato/química , Substituição de Aminoácidos , Estabilidade Enzimática , Humanos , Piruvato Desidrogenase (Lipoamida)/genética , Piruvato Desidrogenase (Lipoamida)/metabolismo , Doença da Deficiência do Complexo de Piruvato Desidrogenase/enzimologia , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Tiamina Pirofosfato/genética , Tiamina Pirofosfato/metabolismo
2.
Physiol Rep ; 9(1): e14684, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33400855

RESUMO

The Pyruvate Dehydrogenase Complex (PDC), a key enzyme in glucose metabolism, catalyzes an irreversible oxidative decarboxylation reaction of pyruvate to acetyl-CoA, linking the cytosolic glycolytic pathway to mitochondrial tricarboxylic acid cycle and oxidative phosphorylation. Earlier we reported a down-regulation of several key hepatic lipogenic enzymes and their upstream regulators in liver-specific PDC-deficient mouse (L-PDCKO model by deleting the Pdha1 gene). In this study we investigated gene expression profiles of key glycolytic enzymes and other proteins that respond to various metabolic stresses in liver from L-PDCKO mice. Transcripts of several, such as hexokinase 2, phosphoglycerate kinase 1, pyruvate kinase muscle-type 2, and lactate dehydrogenase B as well as those for the nonglycolysis-related proteins, CD-36, C/EBP homologous protein, and peroxisome proliferator-activated receptor γ, were up-regulated in L-PDCKO liver whereas hypoxia-induced factor-1α, pyruvate dehydrogenase kinase 1 and Sirtuin 1 transcripts were down-regulated. The protein levels of pyruvate kinase muscle-type 2 and lactate dehydrogenase B were increased whereas that of lactate dehydrogenase A was decreased in PDC-deficient mouse liver. Analysis of endoplasmic reticulum and oxidative stress indicators suggests that the L-PDCKO liver showed evidence of the former but not the latter. These findings indicate that (i) liver-specific PDC deficiency is sufficient to induce "aerobic glycolysis characteristic" in mouse liver, and (ii) the mechanism(s) responsible for these changes appears distinct from that which induces the Warburg effect in some cancer cells.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Fígado/enzimologia , Doença da Deficiência do Complexo de Piruvato Desidrogenase/patologia , Complexo Piruvato Desidrogenase/metabolismo , Animais , Ciclo do Ácido Cítrico , Modelos Animais de Doenças , Glicólise , Fígado/fisiopatologia , Camundongos , Camundongos Knockout , Fosforilação Oxidativa , Doença da Deficiência do Complexo de Piruvato Desidrogenase/enzimologia
4.
J Biol Chem ; 293(34): 13204-13213, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-29970614

RESUMO

The pyruvate dehydrogenase multienzyme complex (PDHc) connects glycolysis to the tricarboxylic acid cycle by producing acetyl-CoA via the decarboxylation of pyruvate. Because of its pivotal role in glucose metabolism, this complex is closely regulated in mammals by reversible phosphorylation, the modulation of which is of interest in treating cancer, diabetes, and obesity. Mutations such as that leading to the αV138M variant in pyruvate dehydrogenase, the pyruvate-decarboxylating PDHc E1 component, can result in PDHc deficiency, an inborn error of metabolism that results in an array of symptoms such as lactic acidosis, progressive cognitive and neuromuscular deficits, and even death in infancy or childhood. Here we present an analysis of two X-ray crystal structures at 2.7-Å resolution, the first of the disease-associated human αV138M E1 variant and the second of human wildtype (WT) E1 with a bound adduct of its coenzyme thiamin diphosphate and the substrate analogue acetylphosphinate. The structures provide support for the role of regulatory loop disorder in E1 inactivation, and the αV138M variant structure also reveals that altered coenzyme binding can result in such disorder even in the absence of phosphorylation. Specifically, both E1 phosphorylation at αSer-264 and the αV138M substitution result in disordered loops that are not optimally oriented or available to efficiently bind the lipoyl domain of PDHc E2. Combined with an analysis of αV138M activity, these results underscore the general connection between regulatory loop disorder and loss of E1 catalytic efficiency.


Assuntos
Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/química , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/metabolismo , Mutação , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Complexo Piruvato Desidrogenase/química , Complexo Piruvato Desidrogenase/metabolismo , Tiamina Pirofosfato/metabolismo , Catálise , Cristalografia por Raios X , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/genética , Humanos , Cinética , Modelos Moleculares , Conformação Proteica , Complexo Piruvato Desidrogenase/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/enzimologia
5.
Aging Cell ; 11(3): 371-7, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22321732

RESUMO

Considerable research has been conducted on mitochondrial biology as it pertains to aging. However, relatively little attention has been accorded the pyruvate dehydrogenase complex (PDC) relative to how we grow old and acquire age-related diseases. The purpose of this review is threefold: first, to describe the physiological chemistry of the PDC and define its place in normal cellular bioenergetics; second, to compare and contrast the pathogenesis and clinical features of congenital PDC deficiency with discrete examples of age-associated dysfunction of the complex; and third, to summarize recent findings in Caenorhabditis elegans that shed additional new light on the significance of the PDC to the aging process.


Assuntos
Doença da Deficiência do Complexo de Piruvato Desidrogenase/enzimologia , Complexo Piruvato Desidrogenase/metabolismo , Fatores Etários , Doença de Alzheimer/enzimologia , Animais , Caenorhabditis elegans , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Terapia de Alvo Molecular , Neoplasias/enzimologia
6.
Mol Genet Metab ; 105(1): 34-43, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22079328

RESUMO

CONTEXT: Pyruvate dehydrogenase complex (PDC) deficiency is a genetic mitochondrial disorder commonly associated with lactic acidosis, progressive neurological and neuromuscular degeneration and, usually, death during childhood. There has been no recent comprehensive analysis of the natural history and clinical course of this disease. OBJECTIVE: We reviewed 371 cases of PDC deficiency, published between 1970 and 2010, that involved defects in subunits E1α and E1ß and components E1, E2, E3 and the E3 binding protein of the complex. DATA SOURCES AND EXTRACTION: English language peer-reviewed publications were identified, primarily by using PubMed and Google Scholar search engines. RESULTS: Neurodevelopmental delay and hypotonia were the commonest clinical signs of PDC deficiency. Structural brain abnormalities frequently included ventriculomegaly, dysgenesis of the corpus callosum and neuroimaging findings typical of Leigh syndrome. Neither gender nor any clinical or neuroimaging feature differentiated the various biochemical etiologies of the disease. Patients who died were younger, presented clinically earlier and had higher blood lactate levels and lower residual enzyme activities than subjects who were still alive at the time of reporting. Survival bore no relationship to the underlying biochemical or genetic abnormality or to gender. CONCLUSIONS: Although the clinical spectrum of PDC deficiency is broad, the dominant clinical phenotype includes presentation during the first year of life; neurological and neuromuscular degeneration; structural lesions revealed by neuroimaging; lactic acidosis and a blood lactate:pyruvate ratio ≤20.


Assuntos
Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/patologia , Complexo Piruvato Desidrogenase/metabolismo , Feminino , Humanos , Masculino , Neuroimagem , Doença da Deficiência do Complexo de Piruvato Desidrogenase/sangue , Doença da Deficiência do Complexo de Piruvato Desidrogenase/enzimologia , Caracteres Sexuais , Resultado do Tratamento
7.
J Inherit Metab Dis ; 33 Suppl 3: S315-9, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20652410

RESUMO

We present a 32-year-old patient who, from age 7 months, developed photophobia, left-eye ptosis and progressive muscular weakness. At age 7 years, she showed normal psychomotor development, bilateral ptosis and exercise-induced weakness with severe acidosis. Basal blood and urine lactate were normal, increasing dramatically after effort. PDHc deficiency was demonstrated in muscle and fibroblasts without detectable PDHA1 mutations. Ketogenic diet was ineffective, however thiamine gave good response although bilateral ptosis and weakness with acidosis on exercise persisted. Recently, DLD gene analysis revealed a homozygous missense mutation, c.1440 A>G (p.I480M), in the interface domain. Both parents are heterozygous and DLD activity in the patient's fibroblasts is undetectable. The five patients that have been reported with DLD-interface mutations suffered fatal deteriorations. Our patient's disease is milder, only myopathic, more similar to that due to mutation p.G229C in the NAD(+)-binding domain. Two of the five patients presented mutations (p.D479V and p.R482G) very close to the present case (p.I480M). Despite differing degrees of clinical severity, all three had minimal clues to DLD deficiency, with occasional minor increases in α-ketoglutarate and branched-chain amino acids. In the two other patients, hypertrophic cardiomyopathy was a significant feature that has been attributed to moonlighting proteolytic activity of monomeric DLD, which can degrade other mitochondrial proteins, such as frataxin. Our patient does not have cardiomyopathy, suggesting that p.I480M may not affect the DLD ability to dimerize to the same extent as p.D479V and p.R482G. Our patient, with a novel mutation in the DLD interface and mild clinical symptoms, further broadens the spectrum of this enzyme defect.


Assuntos
Acidose Láctica/genética , Doença da Urina de Xarope de Bordo/genética , Debilidade Muscular/genética , Mutação de Sentido Incorreto , Ácido Tióctico/análogos & derivados , Acidose Láctica/diagnóstico , Acidose Láctica/tratamento farmacológico , Acidose Láctica/enzimologia , Acidose Láctica/fisiopatologia , Adulto , Sequência de Aminoácidos , Sequência de Bases , Biomarcadores/sangue , Biomarcadores/urina , Blefaroptose/diagnóstico , Blefaroptose/enzimologia , Blefaroptose/genética , Células Cultivadas , Análise Mutacional de DNA , Suplementos Nutricionais , Feminino , Predisposição Genética para Doença , Hereditariedade , Heterozigoto , Homozigoto , Humanos , Ácido Láctico/sangue , Ácido Láctico/urina , Doença da Urina de Xarope de Bordo/diagnóstico , Doença da Urina de Xarope de Bordo/tratamento farmacológico , Doença da Urina de Xarope de Bordo/enzimologia , Doença da Urina de Xarope de Bordo/fisiopatologia , Dados de Sequência Molecular , Força Muscular/genética , Debilidade Muscular/diagnóstico , Debilidade Muscular/tratamento farmacológico , Debilidade Muscular/enzimologia , Debilidade Muscular/fisiopatologia , Linhagem , Fenótipo , Fotofobia/diagnóstico , Fotofobia/enzimologia , Fotofobia/genética , Estrutura Terciária de Proteína , Doença da Deficiência do Complexo de Piruvato Desidrogenase/diagnóstico , Doença da Deficiência do Complexo de Piruvato Desidrogenase/enzimologia , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Espanha , Tiamina/uso terapêutico , Ácido Tióctico/química , Ácido Tióctico/deficiência , Ácido Tióctico/genética , Resultado do Tratamento
8.
Mol Genet Metab ; 100(3): 296-9, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20462777

RESUMO

Pyruvate dehydrogenase complex deficiency is a clinically heterogeneous disorder. Most cases are due to mutations in an X-linked PDHA1 gene encoding the E1alpha subunit of the multienzyme complex. Females with mutations in the PDHA1 gene may be asymptomatic or have a milder phenotype as a result of skewed X-inactivation, while males are typically more severely affected. We report a case of PDHA1 mosaicism in a male patient who had a milder phenotype.


Assuntos
Mosaicismo , Mutação de Sentido Incorreto , Piruvato Desidrogenase (Lipoamida)/deficiência , Piruvato Desidrogenase (Lipoamida)/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/enzimologia , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Substituição de Aminoácidos , Sequência de Bases , Pré-Escolar , Cromossomos Humanos X/genética , Análise Mutacional de DNA , Feminino , Humanos , Masculino , Fenótipo
9.
J Inherit Metab Dis ; 33 Suppl 3: S95-104, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20135231

RESUMO

Mitochondrial disorders are frequently encountered inherited diseases characterized by unexplained multisystem involvement with a chronic, intermittent, or progressive nature. The objective of this paper is to describe the profile of patients with mitochondrial disorders in South Africa. Patients with possible mitochondrial disorders were accessed over 10 years. Analyses for respiratory chain and pyruvate dehydrogenase complex enzymes were performed on muscle. A diagnosis of a mitochondrial disorder was accepted only if an enzyme activity was deficient. Sixty-three patients were diagnosed with a mitochondrial disorder, including 40 African, 20 Caucasian, one mixed ancestry, and two Indian patients. The most important findings were the difference between African patients and other ethnicities: respiratory chain enzyme complexes CI+III or CII+III deficiencies were found in 52.5% of African patients, being of statistical significance (p value = 0.0061). They also presented predominantly with myopathy (p value = 0.0018); the male:female ratio was 1:1.2. Twenty-five (62.5%) African patients presented with varying degrees of a myopathy accompanied by a myopathic face, high palate, and scoliosis. Fourteen of these 25 also had ptosis and/or progressive external ophthalmoplegia. No patients of other ethnicities presented with this specific myopathic phenotype. Caucasian patients (16/20) presented predominantly with central nervous system involvement. Of the South African pediatric neurology patients, Africans are more likely to present with myopathy and CII+III deficiency, and Caucasian patients are more likely to present with encephalopathy or encephalomyopathy.


Assuntos
População Negra , Doenças Mitocondriais/etnologia , População Branca , Adolescente , Adulto , Biomarcadores/metabolismo , População Negra/genética , Estudos de Casos e Controles , Criança , Pré-Escolar , Complexo de Proteínas da Cadeia de Transporte de Elétrons/deficiência , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Feminino , Predisposição Genética para Doença , Humanos , Lactente , Recém-Nascido , Masculino , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/enzimologia , Encefalomiopatias Mitocondriais/enzimologia , Encefalomiopatias Mitocondriais/etnologia , Encefalomiopatias Mitocondriais/genética , Miopatias Mitocondriais/enzimologia , Miopatias Mitocondriais/etnologia , Miopatias Mitocondriais/genética , Músculo Esquelético/enzimologia , Fenótipo , Prognóstico , Complexo Piruvato Desidrogenase/genética , Complexo Piruvato Desidrogenase/metabolismo , Doença da Deficiência do Complexo de Piruvato Desidrogenase/enzimologia , Doença da Deficiência do Complexo de Piruvato Desidrogenase/etnologia , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Fatores de Risco , África do Sul/epidemiologia , População Branca/genética , Adulto Jovem
10.
Clin Genet ; 77(5): 474-82, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20002461

RESUMO

We screened for PDHA1 mutations in 40 patients with biochemically demonstrated PDHc deficiency or strong clinical suspicion, and found changes with probable pathological significance in 20. Five patients presented new mutations: p.A169V, c.932_938del, c.1143_1144 ins24, c.1146_1159dup and c.510-30G> A, this latter is a new undescribed cause of exon 6 skipping. Another four mutations have been found, and previously reported, in our patients: p.H113D, p.P172L, p.Y243del and p.Y369Q. Eleven patients presented seven known mutations: p.R127Q, p.I166I, p.A198T, p.R263G, p.R302C, p.R378C and c.1142_1145dup. The latter three were found in more than one unrelated patient: p.R302C was detected in a heterozygous girl and a mosaic male, p.R378C in two males and finally, c.1142_1145dup in three females; only one in 20 mothers was found to be a carrier (p.R263G). Apart from those 20 patients, the only alteration detected in one girl with clear PDHc and PDH-E1 deficiency was the silent change c.396A> C (p.R132R), and other eight PDHc deficient patients carry combinations of known infrequent polymorphisms that are overrepresented among our 20 unsolved patients. The importance of these changes on PDH activity is unclear. Investigations in the other PDHc genes are in course in order to elucidate the genetic defect in the unresolved patients.


Assuntos
Piruvato Desidrogenase (Lipoamida)/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/enzimologia , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Western Blotting , Estudos de Casos e Controles , Análise Mutacional de DNA , Feminino , Haplótipos/genética , Humanos , Masculino , Mutação/genética , Seleção de Pacientes , Polimorfismo de Nucleotídeo Único/genética
11.
J Inherit Metab Dis ; 32 Suppl 12009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19639391

RESUMO

Pyruvate dehydrogenase (PDH) is a crucial multienzyme system linking glycolysis to the tricarboxylic acid cycle by catalysing the decarboxylation of pyruvate to acetyl-CoA. Deficiency in pyruvate dehydrogenase is most commonly secondary to mutations in the X-linked PDHA1 gene encoding the E1 alpha subunit. There is a wide range of clinical presentations from severe neonatal lactic acidosis to chronic encephalopathy (Leigh syndrome). In recent years, a small subset of patients was recognized with less severe involvement, presenting initially only with intermittent symptoms, mainly of ataxia. Most of these patients remain stable for a number of years before developing progressive neurological deterioration around puberty at the latest. There does not appear to be a reliable correlation between genotype, phenotype, or enzyme activity. This makes counselling in a clinical setting challenging. We report a case with a previously known common mutation in PDHA1 (R263G) with an excellent outcome at 18 years of age. Previous patients with this mutation have presented with mental retardation and/or Leigh syndrome, while our patient's clinical outcome is exceptional. He is cognitively normal and has normal brain MRI. His management includes a stringent carbohydrate-free diet, as well as supplementation with thiamine, carnitine and vitamin E. This case further broadens the clinical spectrum, including now an example of a cognitively normal adult with PDH deficiency.


Assuntos
Cognição , Mutação , Piruvato Desidrogenase (Lipoamida)/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Adolescente , Análise Mutacional de DNA , Dieta com Restrição de Carboidratos , Suplementos Nutricionais , Predisposição Genética para Doença , Humanos , Imageamento por Ressonância Magnética , Masculino , Fenótipo , Doença da Deficiência do Complexo de Piruvato Desidrogenase/diagnóstico , Doença da Deficiência do Complexo de Piruvato Desidrogenase/enzimologia , Doença da Deficiência do Complexo de Piruvato Desidrogenase/psicologia , Doença da Deficiência do Complexo de Piruvato Desidrogenase/terapia , Resultado do Tratamento
12.
J Inherit Metab Dis ; 32 Suppl 1: S235-9, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19517265

RESUMO

The pyruvate dehydrogenase (PDH) complex is a mitochondrial multienzyme that catalyses the irreversible oxidative decarboxylation of pyruvate to acetyl-CoA. We report four novel PDHA1 mutations in patients with pyruvate dehydrogenase deficiency. Analysis of PDH activity showed decreased activity in fibroblasts from all four patients, around 16-52% of mean control, similar to what has been found in previous studies. Two of the mutations were missense mutations: c.616G>A (p.Glu206Lys) and c.457A>G (p.Met153Val), one was a 3 bp in-frame deletion: c.429_431delAGG (p.Gly143del), and one was a 65 bp duplication: c.900-6_958dup65. cDNA analysis of the 65 bp duplication showed a small amount of normal transcript in addition to the transcript corresponding to the duplication. The small amount of normal transcript likely explains the survival of the patient, who was a boy. The duplication and one of the missense mutations were associated with decreased amounts of E(1)α And E(1)ß protein on western blot analysis, whereas the other two mutations were associated with normal amounts. This study adds four novel mutations to the around 90 reported mutations in PDHA1 (HGMD PDHA1 mutation database). The phenotypes of patients with PDH deficiency have been divided into three groups: a neonatal form with severe lactic acidosis, a form observed only in males and characterized by episodes of ataxia with relapses associated with hyperlactataemia, and an infantile form with hypotonia, lethargy, onset of seizures or dystonia, psychomotor retardation, in some cases Leigh-like lesions and mild to moderate hyperlactataemia. The four patients reported here all belong to the latter group, which is the largest.


Assuntos
Mutação , Piruvato Desidrogenase (Lipoamida)/deficiência , Piruvato Desidrogenase (Lipoamida)/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/enzimologia , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Adolescente , Sequência de Aminoácidos , Sequência de Bases , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Proteínas Mitocondriais/deficiência , Proteínas Mitocondriais/genética , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Fenótipo , Doença da Deficiência do Complexo de Piruvato Desidrogenase/classificação , Deleção de Sequência
13.
Hum Mutat ; 29(3): 451, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18273899

RESUMO

A nonsense mutation (c.729C>A, Y243X) in exon 7 of the PDHA1 gene in a patient with pyruvate dehydrogenase deficiency results in aberrant splicing of the primary transcript with production of stable mRNAs which lack either both exons 6 and 7 or exon 7 alone. Transfection and expression of genomic constructs covering exons 5 to 8 of the mutant PDHA1 gene reproduced this aberrant splicing in vitro. The same pattern of abnormal splicing was found when a silent mutation was introduced at the same position. Both the nonsense and silent mutations alter a strong consensus site for the binding of SRp40, suggesting that they may interfere with an exonic splicing enhancer in exon 7 of the gene. However, this appears to affect splicing of not only exon 7, but also the adjacent upstream exon. The splice acceptor site of intron 5 has weak homology to the consensus sequence and this may contribute to the combined splicing defect.


Assuntos
Códon sem Sentido , Elementos Facilitadores Genéticos , Piruvato Desidrogenase (Lipoamida)/genética , Splicing de RNA/genética , Animais , Sequência de Bases , Células COS , Células Cultivadas , Chlorocebus aethiops , DNA/genética , Éxons , Vetores Genéticos , Humanos , Mutagênese Sítio-Dirigida , Doença da Deficiência do Complexo de Piruvato Desidrogenase/enzimologia , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transfecção
14.
Mol Genet Metab ; 89(1-2): 97-105, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16765624

RESUMO

The pyruvate dehydrogenase complex (PDC) is integral to metabolism and energetics. Congenital PDC deficiency leads to lactic acidosis, neurological degeneration and early death. An investigational compound for such defects is dichloroacetate (DCA), which activates the PDC (inhibiting reversible phosphorylation of the E1alpha subunit) and decreases its turnover. Here, primary human fibroblast cultures from five healthy subjects and six patients with mutations in the PDC-E1 component were grown in media+/-DCA, exposed to media containing (13)C-labeled glucose, and studied (as cell extracts) by nuclear magnetic resonance (NMR) spectroscopy. Computer modeling of NMR-derived (13)C-glutamate isotopomeric patterns estimated relative carbon flow through TCA cycle-associated pathways and characterized effects of PDC deficiency on metabolism and energetics. Rates of glucose consumption (GCR) and lactate production (LPR) were measured. With the exception of one patient cell line expressing an unusual splicing mutation, PDC-deficient cells had significantly higher GCR, LPR and label-derived acetyl-CoA, indicative of increased glycolysis vs. controls. In all cells, DCA caused a major shift (40% decrease) from anaplerotic-related pathways (e.g., pyruvate carboxylase) toward flux through PDC. Ignoring the patient with the splicing mutation, DCA decreased average glycolysis (29%) in patient cells, but had no significant effect on control cells, and did not change LPR or the nucleoside triphosphate to diphosphate ratio (NTP/NDP) in either cell type. Maintenance of NTP despite reduced glycolysis indicates that DCA improves metabolic efficiency by increasing glucose oxidation. This study demonstrates that NMR spectroscopy provides insight into biochemical consequences of PDC deficiency and the mechanism of putative therapeutic agents.


Assuntos
Glucose/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Mitocôndrias/metabolismo , Doença da Deficiência do Complexo de Piruvato Desidrogenase/metabolismo , Complexo Piruvato Desidrogenase/análise , Células Cultivadas , Ácido Dicloroacético/farmacologia , Metabolismo Energético , Feminino , Fibroblastos/enzimologia , Fibroblastos/metabolismo , Humanos , Lactente , Masculino , Mitocôndrias/enzimologia , Complexo Piruvato Desidrogenase/efeitos dos fármacos , Doença da Deficiência do Complexo de Piruvato Desidrogenase/enzimologia
15.
Mol Genet Metab ; 86(4): 456-61, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16256390

RESUMO

Pyruvate dehydrogenase complex (PDC) deficiency is one of the major recognized causes of congenital lactic acidosis. The most common form is due to PDHA 1 gene (Xp22.12) defects. Here, we report the case of a Polynesian girl presenting with delayed neurological development, cortical atrophy, and posterior corpus callosum agenesis. Elevated lactate and pyruvate levels in blood and cerebrospinal fluid suggested PDC deficiency. However, PDC activity was within the normal range in lymphocytes and the direct sequencing of the 11 exons and intron-exon junctions of the PDHA 1 gene did not show any changes. Long-range PCR amplification of the whole gene (16 kb) from blood DNA revealed a heterozygous deletion of approximately 4.2kb. Fine mapping of the deletion breakpoint was achieved using purified long-range PCR products for restriction enzyme analysis and direct sequencing. The deletion removed a 4,227 bp region covering part of intron 5 to part of intron 9 [g.10,145_14,371 del 4,227]. The deletion breakpoint contained a short direct repeat (GTAG), which may be derived either from the upstream or the downstream homologous sequence. The presence of a GAG triplet and inverted repeats in the vicinity of the deletion suggest replication slippage at a polymerase alpha arrest site. This is the first time that a large intragenic deletion of the PDHA 1 gene has been characterized.


Assuntos
Piruvato Desidrogenase (Lipoamida)/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/enzimologia , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Sequência de Bases , Pré-Escolar , DNA/genética , Análise Mutacional de DNA , Feminino , Humanos , Íntrons , Reação em Cadeia da Polimerase , Polinésia , Sequências Repetitivas de Ácido Nucleico , Mapeamento por Restrição , Deleção de Sequência
16.
Ann Neurol ; 58(2): 234-41, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16049940

RESUMO

Pyruvate dehydrogenase deficiency is a major cause of primary lactic acidosis and neurological dysfunction in infancy and early childhood. Most cases are caused by mutations in the X-linked gene for the E1alpha subunit of the complex. Mutations in DLAT, the gene encoding dihydrolipoamide acetyltransferase, the E2 core component of the complex, have not been described previously. We report two unrelated patients with pyruvate dehydrogenase deficiency caused by defects in the E2 subunit. Both patients are less severely affected than typical patients with E1alpha mutations and both have survived well into childhood. Episodic dystonia was the major neurological manifestation, with other more common features of pyruvate dehydrogenase deficiency, such as hypotonia and ataxia, being less prominent. The patients had neuroradiological evidence of discrete lesions restricted to the globus pallidus, and both are homozygous for different mutations in the DLAT gene. The clinical presentation and neuroradiological findings are not typical of pyruvate dehydrogenase deficiency and extend the clinical and mutational spectrum of this condition.


Assuntos
Autoantígenos/genética , Proteínas Mitocondriais/deficiência , Proteínas Mitocondriais/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/enzimologia , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Western Blotting/métodos , Química Encefálica/genética , Criança , Análise Mutacional de DNA/métodos , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase , Fibroblastos/enzimologia , Globo Pálido/patologia , Ácido Glutâmico/genética , Humanos , Leucina/genética , Imageamento por Ressonância Magnética/métodos , Masculino , Mutação , Fenilalanina/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/patologia , Doença da Deficiência do Complexo de Piruvato Desidrogenase/terapia , Transfecção/métodos
17.
Clin Chem ; 51(1): 151-60, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15550478

RESUMO

BACKGROUND: Analysis of the pyruvate dehydrogenase complex (PDHc) activity in human skin fibroblasts is hampered by low enzyme activity in the cells. The most commonly used radiochemical method detects the formation of (14)CO(2), an endproduct of the E1 component of PDHc, from [1-(14)C]pyruvate. METHODS: We report a spectrophotometric method for the analysis of PDHc activity in fibroblasts based on detection of NADH formation via a p-iodonitrotetrazolium violet (INT)-coupled system. We investigated in detail the specific requirements of this assay, such as cofactor requirements and the effects of suggested stimulatory compounds and different cell disruption procedures. The reliability of the optimized assay was studied by investigation of patients previously diagnosed with PDHc deficiency and by comparison with results from the radiochemical method. RESULTS: Mean (SD) total PDHc activities were 136 (31) and 58 (21) mU/U of citrate synthase in fibroblast homogenates from 10 healthy volunteers and 7 PDHc-deficient patients, respectively, by the spectrophotometric assay. Similar results were obtained in a mitochondrial fraction. Dithiothreitol (DTT) increased the nonspecific inhibitor-insensitive rate with less pronounced effect on the specific rate of PDHc activity. Administration of DTT increased PDHc activity to 193 (3)% of control activity (without DTT), but decreased the inhibitor-sensitive rate from 99 (0.3)% (without DTT) to 69 (2)% (with 0.3 mmol/L DTT). CONCLUSION: The simple, optimized spectrophotometric assay for PDHc analysis allows reliable investigation of the enzyme complex in human skin fibroblasts.


Assuntos
Fibroblastos/enzimologia , Complexo Piruvato Desidrogenase/metabolismo , Células Cultivadas , Ditiotreitol/farmacologia , Fibroblastos/ultraestrutura , Humanos , Concentração de Íons de Hidrogênio , Cinética , Mitocôndrias/enzimologia , Complexo Piruvato Desidrogenase/antagonistas & inibidores , Doença da Deficiência do Complexo de Piruvato Desidrogenase/enzimologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Pele/citologia , Espectrofotometria/métodos
18.
Am J Med Genet A ; 131(1): 59-66, 2004 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-15384102

RESUMO

Pyruvate dehydrogenase (PDH)-complex deficiency (OMIM 312170) is a clinically heterogeneous disorder, with phenotypes ranging from fatal lactic acidosis (LA) in the newborn to chronic neurological dysfunction. To date, over 80 different mutations have been identified in the PDHA1 gene in patients with PDH complex deficiency, which are thus thought to contribute to the PDH deficient phenotype. We have identified 14 additional patients with total PDH complex deficiency, all of whom were found to contain mutations within the PDHA1 gene (E(1)alpha subunit). The mutations include both missense mutations and duplications. Eight of these patients had novel mutations, and the remaining had mutations that have been identified previously in PDH complex deficient patients, with residual fibroblast activity ranging from 2.4 to 69% of control values. The nature of these mutations illustrates the variability in phenotype for a given gene defect, with intermittent ataxia being the mildest presentation, Leigh syndrome being the most common and severe neonatal LA the most severe.


Assuntos
Mutação , Piruvato Desidrogenase (Lipoamida)/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Adulto , Sequência de Aminoácidos , Sequência de Bases , Criança , Análise Mutacional de DNA , Feminino , Variação Genética , Genótipo , Humanos , Lactente , Masculino , Dados de Sequência Molecular , Fenótipo , Doença da Deficiência do Complexo de Piruvato Desidrogenase/enzimologia , Doença da Deficiência do Complexo de Piruvato Desidrogenase/patologia , Homologia de Sequência de Aminoácidos
19.
Anal Biochem ; 314(1): 121-7, 2003 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-12633610

RESUMO

Altered pyruvate dehydrogenase (PDH) functioning occurs in primary PDH deficiencies and in diabetes, starvation, sepsis, and possibly Alzheimer's disease. Currently, the activity of the enzyme complex is difficult to measure in a rapid high-throughput format. Here we describe the use of a monoclonal antibody raised against the E2 subunit to immunocapture the intact PDH complex still active when bound to 96-well plates. Enzyme turnover was measured by following NADH production spectrophotometrically or by a fluorescence assay on mitochondrial protein preparations in the range of 0.4 to 5.0 micro g per well. Activity is sensitive to known PDH inhibitors and remains regulated by phosphorylation and dephosphorylation after immunopurification because of the presence of bound PDH kinase(s) and phosphatase(s). It is shown that the immunocapture assay can be used to detect PDH deficiency in cell extracts of cultured fibroblasts from patients, making it useful in patient screens, as well as in the high-throughput format for discovery of new modulators of PDH functioning.


Assuntos
Complexo Piruvato Desidrogenase/análise , Complexo Piruvato Desidrogenase/metabolismo , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Anticorpos Monoclonais/imunologia , Arsenitos/farmacologia , Western Blotting , Bovinos , Células Cultivadas , Fibroblastos/enzimologia , Humanos , Cinética , Mitocôndrias/enzimologia , Miocárdio/enzimologia , Testes de Precipitina , Complexo Piruvato Desidrogenase/antagonistas & inibidores , Doença da Deficiência do Complexo de Piruvato Desidrogenase/enzimologia , Compostos de Sódio/farmacologia
20.
Biochim Biophys Acta ; 1588(1): 79-84, 2002 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-12379317

RESUMO

The human pyruvate dehydrogenase complex (PDHC) catalyzes the thiamine-dependent decarboxylation of pyruvate. Thiamine treatment is very effective for some patients with PDHC deficiency. Among these patients, five mutations of the pyruvate dehydrogenase (E1)alpha subunit have been reported previously: H44R, R88S, G89S, R263G, and V389fs. All five mutations are in a region outside the thiamine pyrophosphate (TPP)-binding region of the E1alpha subunit. We report the biochemical and molecular analysis of two patients with clinically thiamine-responsive lactic acidemia. The PDHC activity was assayed using two different concentrations of TPP. These two patients displayed very low PDHC activity in the presence of a low (1 x 10(-4) mM) TPP concentration, but their PDHC activity significantly increased at a high (0.4 mM) TPP concentration. Therefore, the PDHC deficiency in these two patients was due to a decreased affinity of PDHC for TPP. Treatment of both patients with thiamine resulted in a reduction in the serum lactate concentration and clinical improvement, suggesting that these two patients have a thiamine-responsive PDHC deficiency. The DNA sequence of these two male patients' X-linked E1alpha subunit revealed a point mutation (F205L and L216F) within the TPP-binding region in exon 7.


Assuntos
Doença da Deficiência do Complexo de Piruvato Desidrogenase/tratamento farmacológico , Complexo Piruvato Desidrogenase/genética , Tiamina/uso terapêutico , Sítios de Ligação , Células Cultivadas , Criança , Éxons , Humanos , Lactente , Ácido Láctico/sangue , Linfócitos/efeitos dos fármacos , Linfócitos/enzimologia , Masculino , Mutação Puntual , Piruvato Descarboxilase/metabolismo , Complexo Piruvato Desidrogenase/análise , Complexo Piruvato Desidrogenase/metabolismo , Doença da Deficiência do Complexo de Piruvato Desidrogenase/enzimologia , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Tiamina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA