Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542493

RESUMO

Borna disease virus (BoDV-1) is a bornavirus that infects the central nervous systems of various animal species, including humans, and causes fatal encephalitis. BoDV-1 also establishes persistent infection in neuronal cells and causes neurobehavioral abnormalities. Once neuronal cells or normal neural networks are lost by BoDV-1 infection, it is difficult to regenerate damaged neural networks. Therefore, the development of efficient anti-BoDV-1 treatments is important to improve the outcomes of the infection. Recently, one of the clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) systems, CRISPR/Cas13, has been utilized as antiviral tools. However, it is still unrevealed whether the CRISPR/Cas13 system can suppress RNA viruses in persistently infected cells. In this study, we addressed this question using persistently BoDV-1-infected cells. The CRISPR/Cas13 system targeting viral mRNAs efficiently decreased the levels of target viral mRNAs and genomic RNA (gRNA) in persistently infected cells. Furthermore, the CRISPR/Cas13 system targeting viral mRNAs also suppressed BoDV-1 infection if the system was introduced prior to the infection. Collectively, we demonstrated that the CRISPR/Cas13 system can suppress BoDV-1 in both acute and persistent infections. Our findings will open the avenue to treat prolonged infection with RNA viruses using the CRISPR/Cas13 system.


Assuntos
Doença de Borna , Vírus da Doença de Borna , Vírus de RNA , Animais , Humanos , Vírus da Doença de Borna/genética , Infecção Persistente , RNA Guia de Sistemas CRISPR-Cas , Vírus de RNA/genética , Genoma , Sistemas CRISPR-Cas/genética , Doença de Borna/genética , Replicação Viral/genética
2.
Antiviral Res ; 222: 105812, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38262560

RESUMO

Borna disease virus (BoDV-1) is a bornavirus prototype that infects the central nervous system of various animal species and can cause fatal encephalitis in various animals including humans. Among the reported anti-BoDV-1 treatments, favipiravir (T-705) is one of the best candidates since it has been shown to be effective in reducing various bornavirus titers in cell culture. However, T-705 effectiveness on BoDV-1 is cell type-dependent, and the molecular mechanisms that explain this cell type-dependent difference remain unknown. In this study, we noticed a fact that T-705 efficiently suppressed BoDV-1 in infected 293T cells, but not in infected SH-SY5Y cells, and sought to identify protein(s) responsible for this cell-type-dependent difference in T-705 efficacy. By comparing the transcriptomes of BoDV-1-infected 293T and SH-SY5Y cells, we identified heart- and neural crest derivatives-expressed protein 2 (HAND2) as a candidate involved in T-705 interference. HAND2 overexpression partly attenuated the inhibitory effect of T-705, whereas HAND2 knockdown enhanced this effect. We also demonstrated an interaction between T-705 and HAND2. Furthermore, T-705 impaired HAND2-mediated host gene expression. Because HAND2 is an essential transcriptional regulator of embryogenesis, T-705 may exhibit its adverse effects such as teratogenicity and embryotoxicity through the impairment of HAND2 function. This study provides novel insights into the molecular mechanisms underlying T-705 interference in some cell types and inspires the development of improved T-705 derivatives for the treatment of RNA viruses.


Assuntos
Doença de Borna , Vírus da Doença de Borna , Neuroblastoma , Pirazinas , Animais , Humanos , Vírus da Doença de Borna/genética , Doença de Borna/tratamento farmacológico , Doença de Borna/genética , Doença de Borna/metabolismo , Amidas/farmacologia , Fatores de Transcrição
3.
Viruses ; 15(4)2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-37112922

RESUMO

Borna disease virus (BoDV-1) is a highly neurotropic RNA virus that causes neurobehavioral disturbances such as abnormal social activities and memory impairment. Although impairments in the neural circuits caused by BoDV-1 infection induce these disturbances, the molecular basis remains unclear. Furthermore, it is unknown whether anti-BoDV-1 treatments can attenuate BoDV-1-mediated transcriptomic changes in neuronal cells. In this study, we investigated the effects of BoDV-1 infection on neuronal differentiation and the transcriptome of differentiated neuronal cells using persistently BoDV-1-infected cells. Although BoDV-1 infection did not have a detectable effect on intracellular neuronal differentiation processes, differentiated neuronal cells exhibited transcriptomic changes in differentiation-related genes. Some of these transcriptomic changes, such as the decrease in the expression of apoptosis-related genes, were recovered by anti-BoDV-1 treatment, while alterations in the expression of other genes remained after treatment. We further demonstrated that a decrease in cell viability induced by differentiation processes in BoDV-1-infected cells can be relieved with anti-BoDV-1 treatment. This study provides fundamental information regarding transcriptomic changes after BoDV-1 infection and the treatment in neuronal cells.


Assuntos
Doença de Borna , Vírus da Doença de Borna , Animais , Vírus da Doença de Borna/genética , Antivirais , Transcriptoma , Doença de Borna/genética , Doença de Borna/metabolismo , Diferenciação Celular
4.
Biochem Biophys Res Commun ; 658: 122-127, 2023 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-37030066

RESUMO

Viral infection induces diverse cellular immune responses. Some viruses induce the production of antiviral cytokines, alterations of endogenous gene expression, and apoptosis; however, other viruses replicate without inducing such responses, enabling them to persistently infect cells. Infection by Borna disease virus type 1 (BoDV-1) can result in fatal immune-mediated encephalitis, including in humans, yet infection of cells in vitro is generally persistent. The regulatory mechanisms underlying this persistent infection remain unclear. Here, we show that an enhancer of RNA-silencing, TRBP, positively regulates BoDV RNA level in human cells. Knockdown of TRBP decreased BoDV RNA levels in persistently-infected cells, whereas overexpression of TRBP increased BoDV RNA levels. To investigate the mechanism underlying this phenomenon, we performed immunoprecipitation assays and found that TRBP interacts with BoDV RNA. Furthermore, we performed cell fractionation, which revealed that persistent infection with BoDV does not alter the localization of TRBP and other RNA silencing factors in cells. Our results showed the regulation of persistent BoDV infection by RNA-silencing factors in human cells.


Assuntos
Doença de Borna , Vírus da Doença de Borna , Animais , Humanos , Vírus da Doença de Borna/genética , Doença de Borna/genética , Doença de Borna/metabolismo , Interferência de RNA , Infecção Persistente , RNA
5.
Viruses ; 15(1)2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36680228

RESUMO

More than 40 human cases of severe encephalitis caused by Borna disease virus 1 (BoDV-1) have been reported to German health authorities. In an endemic region in southern Germany, we conducted the seroepidemiological BoSOT study ("BoDV-1 after solid-organ transplantation") to assess whether there are undetected oligo- or asymptomatic courses of infection. A total of 216 healthy blood donors and 280 outpatients after solid organ transplantation were screened by a recombinant BoDV-1 ELISA followed by an indirect immunofluorescence assay (iIFA) as confirmatory test. For comparison, 288 serum and 258 cerebrospinal fluid (CSF) samples with a request for tick-borne encephalitis (TBE) diagnostics were analyzed for BoDV-1 infections. ELISA screening reactivity rates ranged from 3.5% to 18.6% depending on the cohort and the used ELISA antigen, but only one sample of a patient from the cohort with requested TBE diagnostics was confirmed to be positive for anti-BoDV-1-IgG by iIFA. In addition, the corresponding CSF sample of this patient with a three-week history of severe neurological disease tested positive for BoDV-1 RNA. Due to the iIFA results, all other results were interpreted as false-reactive in the ELISA screening. By linear serological epitope mapping, cross-reactions with human and bacterial proteins were identified as possible underlying mechanism for the false-reactive ELISA screening results. In conclusion, no oligo- or asymptomatic infections were detected in the studied cohorts. Serological tests based on a single recombinant BoDV-1 antigen should be interpreted with caution, and an iIFA should always be performed in addition.


Assuntos
Doença de Borna , Vírus da Doença de Borna , Encefalite Transmitida por Carrapatos , Encefalite Viral , Encefalite , Infecções por Flavivirus , Animais , Humanos , Vírus da Doença de Borna/genética , Doença de Borna/epidemiologia , Doença de Borna/genética , Encefalite Viral/epidemiologia , Encefalite Transmitida por Carrapatos/diagnóstico , Encefalite Transmitida por Carrapatos/epidemiologia , Alemanha/epidemiologia
6.
J Gen Virol ; 103(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35060474

RESUMO

Borna disease virus 1 (BoDV-1) is a highly neurotropic RNA virus which was recently demonstrated to cause deadly human encephalitis. Viruses can modulate microRNA expression, in turn modulating cellular immune responses and regulating viral replication. A previous study indicated that BoDV-1 infection down-regulated the expression of miR-505 in rats. However, the underlying mechanism of miR-505 during BoDV-1 infection remains unknown. In this study, we found that miR-505 can inhibit autophagy activation by down-regulating the expression of its target gene HMGB1, and ultimately inhibit the replication of BoDV-1. Specifically, we found that the expression of miR-505 was significantly down-regulated in rat primary neurons stably infected with BoDV-1. Overexpression of miR-505 can inhibit the replication of BoDV-1 in cells. Bioinformatics analysis and dual luciferase reporter gene detection confirmed that during BoDV-1 infection, the high-mobility group protein B1 (HMGB1) that mediates autophagy is the direct target gene of miR-505. The expression of HMGB1 was up-regulated after BoDV-1 infection, and overexpression of miR-505 could inhibit the expression of HMGB1. Autophagy-related detection found that after infection with BoDV-1, the expression of autophagy-related proteins and autophagy-related marker LC3 in neuronal cells was significantly up-regulated. Autophagy flow experiments and transmission electron microscopy also further confirmed that BoDV-1 infection activated HMGB1-mediated autophagy. Further regulating the expression of miR-505 found that overexpression of miR-505 significantly inhibited HMGB1-mediated autophagy. The discovery of this mechanism may provide new ideas and directions for the prevention and treatment of BoDV-1 infection in the future.


Assuntos
Doença de Borna/genética , Doença de Borna/virologia , Vírus da Doença de Borna/fisiologia , Proteína HMGB1/genética , MicroRNAs/genética , Animais , Autofagia , Doença de Borna/metabolismo , Células HEK293 , Proteína HMGB1/metabolismo , Humanos , MicroRNAs/metabolismo , Ratos , Ratos Sprague-Dawley , Replicação Viral
7.
Scand J Immunol ; 93(1): e12974, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32910495

RESUMO

High expression of suppressors of cytokine signalling (SOCS) has been detected during various viral infections. As a negative feedback regulator, SOCS participates in the regulation of multiple signalling pathways. In this study, to study the related mechanism between SOCS and BDV and to explore the effect of SOCS on IFN pathways in nerve cells, downregulated of SOCS1/3 in oligodendroglial (OL) cells and OL cells persistently infected with BDV (OL/BDV) were constructed with RNA interference technology. An interferon inducer (poly I:C, PIC) and an IFN-α/ß R1 antibody were used as stimulation in the SOCS1/3 low-expression cell models, qRT-PCR was used to detect type I IFN and BDV nucleic acid expression, Western blot was used to detect the expression of BDV P40 protein. After BDV acute infection with OL cells which with downregulated SOCS expression, the virus accounting was not detected, and the viral protein expression was lower than that of OL/BDV cells; the OL/BDV cells with downregulated SOCS expression had lower virus nucleic acid and protein expression than OL/BDV cells. Stimulated by IFN-α/ß R1 antibody, the expression of type I interferon in OL/BDV cells decreased, and the content of BDV nucleic acid and protein increased, which was higher than that of OL/BDV cells. From the results, it was concluded that downregulating SOCS1/3 can inhibit the formation of acute BDV infection and virus replication in persistent BDV infection by promoting the expression of IFN-α/ß and that SOCS can be used as a new target for antiviral therapy.


Assuntos
Doença de Borna/genética , Doença de Borna/virologia , Vírus da Doença de Borna/fisiologia , Regulação da Expressão Gênica , Proteínas Supressoras da Sinalização de Citocina/genética , Biomarcadores , Doença de Borna/metabolismo , Linhagem Celular , Células Cultivadas , Interações Hospedeiro-Patógeno , Humanos , Interferon-alfa/genética , Interferon beta/genética , RNA Mensageiro/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Replicação Viral
8.
J Virol ; 94(21)2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32817215

RESUMO

Endogenous retroviruses have demonstrated exaptation during long-term evolution with hosts, e.g., resulting in acquisition of antiviral effect on related extant viral infections. While empirical studies have found that an endogenous bornavirus-like element derived from viral nucleoprotein (itEBLN) in the ground squirrel genome shows antiviral effect on virus replication and de novo infection, the antiviral mechanism, dynamics, and quantitative effect of itEBLN remain unknown. In this study, we experimentally and theoretically investigated the dynamics of how an extant bornavirus, Borna disease virus 1 (BoDV-1), spreads and replicates in uninfected, BoDV-1-infected, and itEBLN-expressing cultured cells. Quantifying antiviral effect based on time course data sets, we found that the antiviral effects of itEBLN are estimated to be 75% and 34% on intercellular virus spread and intracellular virus replication, respectively. This discrepancy between intercellular virus spread and intracellular viral replication suggests that viral processes other than the replication of viral ribonucleoprotein complex (RNP) contributed to the suppression of virus spread in itEBLN-expressing cells. Because itEBLN binds to the BoDV-1 RNP, the suppression of viral RNP trafficking can be an attractive candidate explaining this discrepancy.IMPORTANCE Accumulating evidence suggests that some endogenous viral elements (EVEs), including endogenous retroviruses and endogenous nonretroviral virus elements, have acquired functions in the host as a result of long-term coevolution. Recently, an endogenous bornavirus-like element (itEBLN) found in the ground squirrel genome has been shown to have antiviral activity against exogenous bornavirus infection. In this study, we first quantified bornavirus spread in cultured cells and then calculated the antiviral activity of itEBLN on bornavirus infection. The calculated antiviral activity of itEBLN suggests its suppression of multiple processes in the viral life cycle. To our knowledge, this is the first study quantifying the antiviral activity of EVEs and speculating on a model of how some EVEs have acquired antiviral activity during host-virus arms races.


Assuntos
Vírus da Doença de Borna/genética , Genoma , Interações Hospedeiro-Patógeno/genética , Modelos Genéticos , Proteínas do Nucleocapsídeo/genética , Oligodendroglia/virologia , Adaptação Biológica , Animais , Coevolução Biológica , Doença de Borna/genética , Doença de Borna/virologia , Vírus da Doença de Borna/metabolismo , Linhagem Celular , Humanos , Proteínas do Nucleocapsídeo/metabolismo , Oligodendroglia/metabolismo , Sciuridae/genética , Sciuridae/virologia , Replicação Viral
9.
J Virol ; 94(6)2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31852792

RESUMO

Cells sense pathogen-derived double-stranded RNA (dsRNA) as nonself. To avoid autoimmune activation by self dsRNA, cells utilize A-to-I editing by adenosine deaminase acting on RNA 1 (ADAR1) to disrupt dsRNA structures. Considering that viruses have evolved to exploit host machinery, A-to-I editing could benefit innate immune evasion by viruses. Borna disease virus (BoDV), a nuclear-replicating RNA virus, may require escape from nonself RNA-sensing and immune responses to establish persistent infection in the nucleus; however, the strategy by which BoDV evades nonself recognition is unclear. Here, we evaluated the involvement of ADARs in BoDV infection. The infection efficiency of BoDV was markedly decreased in both ADAR1 and ADAR2 knockdown cells at the early phase of infection. Microarray analysis using ADAR2 knockdown cells revealed that ADAR2 reduces immune responses even in the absence of infection. Knockdown of ADAR2 but not ADAR1 significantly reduced the spread and titer of BoDV in infected cells. Furthermore, ADAR2 knockout decreased the infection efficiency of BoDV, and overexpression of ADAR2 rescued the reduced infectivity in ADAR2 knockdown cells. However, the growth of influenza A virus, which causes acute infection in the nucleus, was not affected by ADAR2 knockdown. Moreover, ADAR2 bound to BoDV genomic RNA and induced A-to-G mutations in the genomes of persistently infected cells. We finally demonstrated that BoDV produced in ADAR2 knockdown cells induces stronger innate immune responses than those produced in wild-type cells. Taken together, our results suggest that BoDV utilizes ADAR2 to edit its genome to appear as "self" RNA in order to maintain persistent infection in the nucleus.IMPORTANCE Cells use the editing activity of adenosine deaminase acting on RNA proteins (ADARs) to prevent autoimmune responses induced by self dsRNA, but viruses can exploit this process to their advantage. Borna disease virus (BoDV), a nuclear-replicating RNA virus, must escape nonself RNA sensing by the host to establish persistent infection in the nucleus. We evaluated whether BoDV utilizes ADARs to prevent innate immune induction. ADAR2 plays a key role throughout the BoDV life cycle. ADAR2 knockdown reduced A-to-I editing of BoDV genomic RNA, leading to the induction of a strong innate immune response. These data suggest that BoDV exploits ADAR2 to edit nonself genomic RNA to appear as self RNA for innate immune evasion and establishment of persistent infection.


Assuntos
Adenosina Desaminase/metabolismo , Vírus da Doença de Borna/fisiologia , Núcleo Celular/metabolismo , Genoma Viral , Edição de RNA , RNA Viral/biossíntese , Proteínas de Ligação a RNA/metabolismo , Adenosina Desaminase/genética , Animais , Doença de Borna/genética , Doença de Borna/metabolismo , Núcleo Celular/genética , Núcleo Celular/virologia , Cães , Humanos , Células Madin Darby de Rim Canino , RNA Viral/genética , Proteínas de Ligação a RNA/genética
10.
Virus Res ; 271: 197671, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31330207

RESUMO

BACKGROUND/AIMS: Borna disease virus 1 (BoDV-1) is a negative single-stranded RNA virus that is highly neurotropic. BoDV-1 infection can damage the central nervous system and cause inflammation. To survive in host cells, BoDV-1 must evade the host innate immune response. A previous study showed that miR-146a expression increased in neonatal rats infected with BoDV-1. miR-146a is a microRNA suggested to negatively regulate innate immune and inflammatory responses and antiviral pathways. Many groups have reported that its overexpression facilitates viral replication. However, it is unclear whether miR-146a is involved in escape from the host immune response during BoDV-1 infection. METHODS: In this study, BoDV-1 was used to infect neonatal rats within 24 h of birth intracranially, as well as to infect human microglial cells (HMC3). miR-146a expression was analyzed by RT-qPCR. The TargetScanHuman database was used to find the target genes of miR-146a. A search of the binding sites of miR-146a and its target gene's 3'-untranslated region (3'UTR) was also performed using RNAhybrid software. The binding sites of miR-146a and the target gene's 3'UTR were detected by dual luciferase reporter assays. Overexpression and suppression studies of miR-146a were performed to determine its effect on BoDV-1 replication. The relative protein expression of members of the IRAK1/TRAF6/NF-κB signaling pathway was also evaluated by western blotting in HMC3. RESULTS: After BoDV-1 infection of neurons in vivo and of HMC3 cells, miR-146a expression was significantly upregulated. miR-146a overexpression in HMC3 cells promoted viral replication, while its inhibition inhibited it. Through the TargetScanHuman database, we identified the target genes of anti-inflammatory miR-146a: IRAK1 and TRAF6. We also found that BoDV-1 could inhibit IRAK1 and TRAF6 expression in HMC3 cells. Moreover, we showed that the inhibition of IRAK1 and TRAF6 also led to decreases in the expression of P65 and phosphorylated P65 in the downstream NF-κB pathway. Subsequently, we confirmed the interaction of miR-146a with IRAK1 and TRAF6 by luciferase assay. CONCLUSION: Our results suggest that miR-146a inhibits the IRAK1/TRAF6/NF-κB signaling pathway to facilitate BoDV-1 survival in host cells.


Assuntos
Doença de Borna/genética , Doença de Borna/virologia , Vírus da Doença de Borna/fisiologia , Quinases Associadas a Receptores de Interleucina-1/genética , NF-kappa B/genética , Fator 6 Associado a Receptor de TNF/genética , Regiões 3' não Traduzidas , Animais , Doença de Borna/metabolismo , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Quinases Associadas a Receptores de Interleucina-1/metabolismo , NF-kappa B/metabolismo , Ratos , Transdução de Sinais , Fator 6 Associado a Receptor de TNF/metabolismo , Replicação Viral
11.
Mol Med Rep ; 14(6): 5587-5594, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27878262

RESUMO

Borna disease virus (BDV) is a neurotropic RNA virus that infects the limbic system of mammals and results in behavioral disorders. The hippocampus is a core region in the limbic system, which contributes to memory and learning and is important in the regulation of emotion. However, no validated microRNA housekeeping genes have yet been identified in BDV­infected rat primary hippocampal neurons. Proper normalization is key in accurate miRNA expression analysis. The present study used reverse transcription­quantitative polymerase chain reaction (RT­qPCR) to evaluate the expression stability of 10 commonly used reference genes [miR­92a, 5S, U6, miR­103, miR­101a, miR-let-7a, miR­16, E2 small nucleolar RNA (snoRNA), U87 and miR­191] in BDV­infected rat hippocampal neurons and non­infected controls across 12 days post­infection. The data was analyzed by four statistical algorithms: geNorm, NormFinder, BestKeeper, and the comparative Δ­Ct method. Subsequently, the most suitable reference genes (miR­101a and U87) and the least suitable (snoRNA) were determined by the RankAggreg package. miR­155 was selected as a standard by which to evaluate the most and least suitable reference genes. When normalized to the most stable reference gene there were significant differences between the two groups. However, when the data were normalized to the less stably expressed gene, the results were not significant. miR­101a was recommended as a suitable reference gene for BDV-infected rat primary hippocampal neurons.


Assuntos
Vírus da Doença de Borna/fisiologia , Regulação da Expressão Gênica , Células Piramidais/metabolismo , Células Piramidais/virologia , Animais , Doença de Borna/genética , Doença de Borna/virologia , Perfilação da Expressão Gênica , Imuno-Histoquímica , Masculino , MicroRNAs/genética , Estabilidade de RNA , Ratos
12.
BMC Vet Res ; 12(1): 253, 2016 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-27842550

RESUMO

BACKGROUND: Borna disease virus is a neurotropic pathogen and infects the central nervous system. This virus infected a variety of animal species including cows. The most of cows infected with Borna disease virus 1 (BoDV-1) exhibit subclinical infection without any neurological symptoms throughout their lifetime. We previously reported on the low conception rates in-seropositive cows. Interferon-τ (IFN-τ) plays an important role in stable fertilization, and is produced from the fetal side following embryo growth at 15-40 days of pregnancy. IFN-τ induces the expression of interferon-stimulated gene (ISG) 15 and Mx2 in peripheral blood mononuclear cells (PBMCs). To understand the embryo growth and maternal reaction during early pregnancy in cows with BoDV-1 infection, we aimed to assess the gene expression of ISG15 and Mx2 from PBMCs in BoDV-1-seropositive cows. RESULTS: None of the cows showed any clinical and neurological symptoms. Among the cows that conceived, the expressions of the ISG15 and Mx2 genes were greater in the BoDV-1-seropositive cows than in the BoDV-1-seronegative cows; the difference was significant between the cows that conceived and those that did not (P < 0.05). CONCLUSIONS: The expression of ISG15 and Mx2 genes during early pregnancy significantly increased in the BoDV-1-seropositive cows and may be important for the maintenance of stable pregnancy in BoDV-1-infected cows. In contrast, the gene expression levels of ISG15 and Mx2 did not significantly increase during early pregnancy in BoDV-1-seronegative cows. Thus, BoDV-1 infection may lead to instability in the maintenance of early pregnancy by interfering with INF-τ production.


Assuntos
Doença de Borna/genética , Doença de Borna/imunologia , Doenças dos Bovinos/genética , Doenças dos Bovinos/imunologia , Citocinas/genética , Regulação da Expressão Gênica/imunologia , Proteínas de Resistência a Myxovirus/genética , Animais , Anticorpos Antivirais/sangue , Vírus da Doença de Borna/fisiologia , Bovinos , Feminino , Interferons/metabolismo , Leucócitos Mononucleares/metabolismo , Gravidez
13.
Int J Mol Sci ; 15(12): 21825-39, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25431926

RESUMO

Quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR) is the most commonly-used technique to identify gene expression profiles. The selection of stably expressed reference genes is a prerequisite to properly evaluating gene expression. Here, the suitability of commonly-used reference genes in normalizing RT-qPCR assays of mRNA expression in cultured rat cortical neurons infected with Borna disease virus (BDV) was assessed. The expressions of eight commonly-used reference genes were comparatively analyzed in BDV-infected rat cortical neurons and non-infected control neurons mainly across 9 and 12 days post-infection. These reference genes were validated by RT-qPCR and separately ranked by four statistical algorithms: geNorm, NormFinder, BestKeeper and the comparative delta-Ct method. Then, the RankAggreg package was used to construct consensus rankings. ARBP was found to be the most stable internal control gene at Day 9, and ACTB at Day 12. As the assessment of the validity of the selected reference genes confirms the suitability of applying a combination of the two most stable references genes, combining the two most stable genes for normalization of RT-qPCR studies in BDV-infected rat cortical neurons is recommended at each time point. This study can contribute to improving BDV research by providing the means by which to obtain more reliable and accurate gene expression measurements.


Assuntos
Doença de Borna/genética , Doença de Borna/virologia , Vírus da Doença de Borna/fisiologia , Córtex Cerebral/patologia , Neurônios/virologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase em Tempo Real/normas , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Imunofluorescência , Regulação da Expressão Gênica , Neurônios/metabolismo , Neurônios/patologia , Ratos Sprague-Dawley , Padrões de Referência , Reprodutibilidade dos Testes , Software
14.
Virology ; 464-465: 196-205, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25086498

RESUMO

BACKGROUND: Borna disease virus (BDV) replicates in the nucleus and establishes persistent infections in mammalian hosts. A human BDV strain was used to address the first time, how BDV infection impacts the proteome and histone lysine acetylation (Kac) of human oligodendroglial (OL) cells, thus allowing a better understanding of infection-driven pathophysiology in vitro. METHODS: Proteome and histone lysine acetylation were profiled through stable isotope labeling for cell culture (SILAC)-based quantitative proteomics. The quantifiable proteome was annotated using bioinformatics. Histone acetylation changes were validated by biochemistry assays. RESULTS: Post BDV infection, 4383 quantifiable differential proteins were identified and functionally annotated to metabolism pathways, immune response, DNA replication, DNA repair, and transcriptional regulation. Sixteen of the thirty identified Kac sites in core histones presented altered acetylation levels post infection. CONCLUSIONS: BDV infection using a human strain impacted the whole proteome and histone lysine acetylation in OL cells.


Assuntos
Doença de Borna/metabolismo , Vírus da Doença de Borna/fisiologia , Histonas/metabolismo , Oligodendroglia/metabolismo , Proteoma/metabolismo , Acetilação , Motivos de Aminoácidos , Sequência de Aminoácidos , Doença de Borna/genética , Doença de Borna/virologia , Feminino , Histonas/química , Histonas/genética , Humanos , Lisina/metabolismo , Dados de Sequência Molecular , Oligodendroglia/virologia , Proteoma/genética , Proteômica
15.
Biochem Biophys Res Commun ; 438(4): 619-23, 2013 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-23939047

RESUMO

The expression of type I interferon (IFN) is one of the most potent innate defences against viral infection in higher vertebrates. Borna disease virus (BDV) establishes persistent, noncytolytic infections in animals and in cultured cells. Early studies have shown that the BDV phosphoprotein can inhibit the activation of type I IFN through the TBK1-IRF3 pathway. The function of the BDV nucleoprotein in the inhibition of IFN activity is not yet clear. In this study, we demonstrated IRF7 activation and increased IFN-α/ß expression in a BDV-persistently infected human oligodendroglia cell line following RNA interference-mediated BDV nucleoprotein silencing. Furthermore, we showed that BDV nucleoprotein prevented the nuclear localisation of IRF7 and inhibited endogenous IFN induction by poly(I:C), coxsackie virus B3 and IFN-ß. Our findings provide evidence for a previously undescribed mechanism by which the BDV nucleoprotein inhibits type I IFN expression by interfering with the IRF7 pathway.


Assuntos
Doença de Borna/genética , Vírus da Doença de Borna/fisiologia , Interações Hospedeiro-Patógeno , Fator Regulador 7 de Interferon/metabolismo , Interferon Tipo I/genética , Nucleoproteínas/metabolismo , Proteínas Virais/metabolismo , Doença de Borna/metabolismo , Doença de Borna/virologia , Linhagem Celular , Regulação para Baixo , Humanos , Fator Regulador 7 de Interferon/análise , Transdução de Sinais
16.
Antiviral Res ; 98(1): 66-75, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23428672

RESUMO

It has been reported that the Borna disease virus (BDV) encoded phosphoprotein (P protein) can inhibit the activity of Traf family member-associated NF-kappaB activator (TANK)-binding kinase 1 (TBK-1), thus preventing the induction of type I interferon (IFN). However, the effects of microRNA on the regulation of BDV infection and the host's immune response have not been characterized. miR-155 was predicted to be complementary to the BDV P mRNA by RNAhybrid software. Here, we showed that miR-155 was down-regulated in BDV persistently infected human oligodendroglial (OL/BDV) cells and that the BDV P protein, but not the X protein, directly inhibited miR-155 expression in cells. When miR-155 was over-expressed, the inhibition of type I IFNs by BDV in cells was reversed, and the expression of type I IFNs was increased. When miR-155 expression was specifically blocked, cellular IFN expression and the induction of IFN by poly I:C treatment were suppressed. Furthermore, miR-155 promoted type I IFN production by targeting suppressor of cytokine signaling 1 (SOCS1) and SOCS3. Mutations in the nt1138-nt1158 region of SOCS3 abandoned the impact of miR-155 on the expression of SOCS3-enhanced green fluorescent protein (EGFP). The levels of BDV P mRNA and protein were significantly decreased in OL/BDV cells when miR-155 was over-expressed; however, miR-155-mutation did not affect the expression of BDV P-EGFP. Thus, BDV persistent infection inhibited the expression of type I IFNs through the suppression of miR-155, and miR-155 played an important immune regulatory role in BDV persistent infection.


Assuntos
Doença de Borna/imunologia , Vírus da Doença de Borna/imunologia , Imunidade Inata , MicroRNAs/genética , Fosfoproteínas/imunologia , Proteínas Estruturais Virais/imunologia , Doença de Borna/genética , Doença de Borna/virologia , Vírus da Doença de Borna/genética , Linhagem Celular , Interações Hospedeiro-Patógeno , Humanos , Interferon Tipo I/genética , Interferon Tipo I/imunologia , MicroRNAs/imunologia , Fosfoproteínas/genética , Proteínas Estruturais Virais/genética
17.
PLoS One ; 7(7): e41476, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22848506

RESUMO

Proinflammatory state of the brain increases the risk for seizure development. Neonatal Borna disease virus (BDV)-infection of mice with neuronal overexpression of tumor necrosis factor-α (TNF) was used to investigate the complex relationship between enhanced cytokine levels, neurotropic virus infection and reaction pattern of brain cells focusing on its role for seizure induction. Viral antigen and glial markers were visualized by immunohistochemistry. Different levels of TNF in the CNS were provided by the use of heterozygous and homozygous TNF overexpressing mice. Transgenic TNF, total TNF (native and transgenic), TNF-receptor (TNFR1, TNFR2), IL-1 and N-methyl-D-aspartate (NMDA)-receptor subunit 2B (NR2B) mRNA values were measured by real time RT-PCR. BDV-infection of TNF-transgenic mice resulted in non-purulent meningoencephalitis accompanied by epileptic seizures with a higher frequency in homozygous animals. This correlated with lower weight gain, stronger degree and progression of encephalitis and early, strong microglia activation in the TNF-transgenic mice, most obviously in homozygous animals. Activation of astroglia could be more intense and associated with an unusual hypertrophy in the transgenic mice. BDV-antigen distribution and infectivity in the CNS was comparable in TNF-transgenic and wild-type animals. Transgenic TNF mRNA-expression was restricted to forebrain regions as the transgene construct comprised the promoter of NMDA-receptor subunit2B and induced up-regulation of native TNF mRNA. Total TNF mRNA levels did not increase significantly after BDV-infection in the brain of transgenic mice but TNFR1, TNFR2 and IL-1 mRNA values, mainly in the TNF overexpressing brain areas. NR2B mRNA levels were not influenced by transgene expression or BDV-infection. Neuronal TNF-overexpression combined with BDV-infection leads to cytokine up-regulation, CNS inflammation and glial cell activation and confirmed the presensitizing effect of elevated cytokine levels for the development of spontaneous epileptic seizures when exposed to additional infectious noxi.


Assuntos
Doença de Borna/metabolismo , Vírus da Doença de Borna/metabolismo , Epilepsia/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Prosencéfalo/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , Animais , Doença de Borna/genética , Doença de Borna/patologia , Vírus da Doença de Borna/genética , Epilepsia/genética , Epilepsia/patologia , Epilepsia/virologia , Subunidade alfa de Receptor de Interleucina-18/biossíntese , Subunidade alfa de Receptor de Interleucina-18/genética , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Neuroglia/metabolismo , Neuroglia/patologia , Neuroglia/virologia , Prosencéfalo/patologia , Prosencéfalo/virologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores de N-Metil-D-Aspartato/biossíntese , Receptores de N-Metil-D-Aspartato/genética , Receptores Tipo I de Fatores de Necrose Tumoral/biossíntese , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo II do Fator de Necrose Tumoral/biossíntese , Receptores Tipo II do Fator de Necrose Tumoral/genética , Fator de Necrose Tumoral alfa/genética , Regulação para Cima/genética
18.
Microbes Infect ; 11(8-9): 737-43, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19376261

RESUMO

CRNP5, a variant of Borna disease virus (BDV), has stronger pathogenesis in rats than the related variant CRP3, although only 4 amino acids in the whole genome are different. As a first step to clarify the differential pathogenesis between the variants, the present study focused on examining the expression of the transforming growth factor (TGF)-beta family in the brain of rats infected with BDV. The main results were as follows. (1) BDV infection, irrespective of the variant, up-regulates TGF-beta1 expression in the brain, (2) the expressions of signal receptors for TGF-beta1 are also increased, (3) the expression of brain inhibin/activin betaE is up-regulated by BDV infection, and (4) the expression of brain inhibin/activin betaC tends to be higher in rats exhibiting severe Borna disease. These results indicate that members of the TGF-beta family are involved in neuronal disorders induced by BDV infection in a ligand-dependent manner. In particular, up-regulation of inhibin/activin betaC may be a key event responsible for induction of the stronger pathogenesis of the CRNP5 variant of BDV.


Assuntos
Doença de Borna/metabolismo , Vírus da Doença de Borna/patogenicidade , Encéfalo/metabolismo , Encefalomielite/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Doença de Borna/genética , Doença de Borna/virologia , Vírus da Doença de Borna/genética , Vírus da Doença de Borna/isolamento & purificação , Encéfalo/virologia , Citocinas/metabolismo , Encefalomielite/genética , Encefalomielite/virologia , Expressão Gênica , Óxido Nítrico Sintase Tipo II/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos F344 , Fator de Crescimento Transformador beta/genética
19.
J Clin Lab Anal ; 22(4): 314-20, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18623121

RESUMO

Numerous interactions of the immune system with the central nervous system have been described recently. Mood and psychotic disorders, such as severe depression and schizophrenia, are both heterogeneous disorders regarding clinical symptomatology, the acuity of symptoms, the clinical course, the treatment response, and probably also the etiology. Detection of p24 RNA from Borna disease virus (BDV) by the reverse transcriptase polymerase chain reaction in patients with schizophrenia, schizoaffective disorder, and in their biological relatives was evaluated. The subjects were 27 schizophrenic and schizoaffective patients, 27 healthy controls, 20 relatives without psychiatric disease, and 24 relatives with mood disorder, who attended the Psychiatric Ambulatory of Londrina State University, Paraná, Brazil. The subjects were interviewed by structured diagnostic criteria categorized according to the Diagnostic and Statistical Manual of Mental Disorders-IV, axis I, (SCID-IV). The mean duration of illness in schizophrenic and schizoaffective patients was 15.341+/-1.494 years and the median age at onset was 22.4+/-7.371 years. There were no significant differences in gender (P=0.297), age (P=0.99), albumin (P=0.26), and body mass index (kg/m(2)) (p=0.28), among patients, controls, and relatives. Patients and biological relatives had significantly higher positive p24 RNA BDV detection than controls (P=0.04); however, the clinical significance of BDV remains to be clarified.


Assuntos
Doença de Borna/virologia , Vírus da Doença de Borna/genética , Transtornos Psicóticos/virologia , RNA Viral/análise , Esquizofrenia/virologia , Proteínas Virais/genética , Adulto , Doença de Borna/genética , Vírus da Doença de Borna/isolamento & purificação , Manual Diagnóstico e Estatístico de Transtornos Mentais , Saúde da Família , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos Psicóticos/sangue , Esquizofrenia/sangue , Proteínas Virais/sangue
20.
Neurosci Lett ; 431(1): 81-5, 2008 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-18155836

RESUMO

Our previous studies have shown that the persistent expression of Borna disease virus phosphoprotein (BDV P) in mice leads to behavioral abnormalities resembling those in BDV-infected animals. In this study, we investigated whether the neurobehavioral abnormalities genetically induced by BDV P influence experimental prion disease. The effect of the phosphoprotein on prion diseases was evaluated based on the incubation time and survival curve, as well as the abnormal isoform of prion protein (PrP(Sc)) levels in brains of BDV P Tg mice treated with proteinase K (PK) treatment and subjected to western blotting. Increased expression of the BDV P transgene had no effect on the PrP(Sc) level, incubation time, or survival curve. The abnormalities induced by BDV P are different from those induced by prion diseases, indicating that the signaling cascades induced by the phosphoprotein differ from those induced by prion diseases.


Assuntos
Doença de Borna/genética , Encéfalo/metabolismo , Encéfalo/virologia , Proteínas PrPSc/metabolismo , Doenças Priônicas/genética , Proteínas Virais/genética , Animais , Comportamento Animal/fisiologia , Doença de Borna/metabolismo , Doença de Borna/fisiopatologia , Vírus da Doença de Borna/metabolismo , Encéfalo/fisiopatologia , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiopatologia , Córtex Cerebral/virologia , Modelos Animais de Doenças , Progressão da Doença , Endopeptidase K/metabolismo , Regulação da Expressão Gênica/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Doenças Priônicas/metabolismo , Doenças Priônicas/fisiopatologia , Transdução de Sinais/genética , Taxa de Sobrevida , Fatores de Tempo , Transgenes/genética , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA