Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Vet Res ; 54(1): 48, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328789

RESUMO

Prion diseases are fatal and malignant infectious encephalopathies induced by the pathogenic form of prion protein (PrPSc) originating from benign prion protein (PrPC). A previous study reported that the M132L single nucleotide polymorphism (SNP) of the prion protein gene (PRNP) is associated with susceptibility to chronic wasting disease (CWD) in elk. However, a recent meta-analysis integrated previous studies that did not find an association between the M132L SNP and susceptibility to CWD. Thus, there is controversy about the effect of M132L SNP on susceptibility to CWD. In the present study, we investigated novel risk factors for CWD in elk. We investigated genetic polymorphisms of the PRNP gene by amplicon sequencing and compared genotype, allele, and haplotype frequencies between CWD-positive and CWD-negative elk. In addition, we performed a linkage disequilibrium (LD) analysis by the Haploview version 4.2 program. Furthermore, we evaluated the 3D structure and electrostatic potential of elk prion protein (PrP) according to the S100G SNP using AlphaFold and the Swiss-PdbViewer 4.1 program. Finally, we analyzed the free energy change of elk PrP according to the S100G SNP using I-mutant 3.0 and CUPSAT. We identified 23 novel SNP of the elk PRNP gene in 248 elk. We found a strong association between PRNP SNP and susceptibility to CWD in elk. Among those SNP, S100G is the only non-synonymous SNP. We identified that S100G is predicted to change the electrostatic potential and free energy of elk PrP. To the best of our knowledge, this was the first report of a novel risk factor, the S100G SNP, for CWD.


Assuntos
Cervos , Príons , Doença de Emaciação Crônica , Animais , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Príons/genética , Doença de Emaciação Crônica/genética , Doença de Emaciação Crônica/patologia , Polimorfismo de Nucleotídeo Único , Cervos/genética , Fatores de Risco
2.
Vet Pathol ; 60(4): 420-433, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37199487

RESUMO

Chronic wasting disease (CWD) is an infectious transmissible spongiform encephalopathy of cervids associated with the presence of a misfolded prion protein (PrPCWD). Progression of PrPCWD distribution has been described using immunohistochemistry and histologic changes in a single section of brain stem at the level of the obex resulting in scores from 0 (early) to 10 (terminal) in elk with naturally occurring CWD. Here we describe the spread and distribution of PrPCWD in peripheral tissues and spinal cord in 16 wild and 17 farmed Rocky Mountain elk (Cervus elaphus nelsoni) with naturally occurring CWD and correlate these findings with obex scores. Spinal cord and approximately 110 peripheral tissues were collected, processed, stained with hematoxylin and eosin, and immunolabeled with the anti-prion protein monoclonal antibody F99/97.6.1. The medial retropharyngeal and tracheobronchial lymph nodes were the first tissues to accumulate PrPCWD, followed by other lymphoid tissues, myenteric plexus, spinal cord, and finally tissues outside of the lymphatic and neural systems. However, the only significant histological lesion observed was mild spongiform encephalopathy in the dorsal column of the lower spinal cord in elk with an obex score of ≥9. Initial exposure to CWD prions may be through the respiratory system and spread appears to occur primarily via the autonomic nervous system. Therefore, we suggest using obex scores as a proxy for stage of disease progression and verifying with key peripheral tissues.


Assuntos
Cervos , Doenças Priônicas , Príons , Doença de Emaciação Crônica , Animais , Doença de Emaciação Crônica/patologia , Proteínas Priônicas , Doenças Priônicas/veterinária , Medula Espinal/patologia , Isoformas de Proteínas/metabolismo
3.
J Gen Virol ; 104(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36748533

RESUMO

Chronic wasting disease (CWD) is an emergent prion disease spreading in cervid populations in North America, South Korea and Scandinavia. Rapid detection of CWD prions shed by live animals using minimally invasive methods remains an important need. Previous studies in deer, elk and hamsters have demonstrated prion replication in the nasal olfactory mucosa, yet the temporal profile of CWD prion shedding in nasal secretions has not been well characterized. Here we report nasal prion shedding in 18 deer orally exposed to low doses of CWD prions and monitored longitudinally by several parameters. Serially collected nasal swabs were assayed for CWD prion seeding activity using iron oxide magnetic extraction and real-time quaking-induced conversion (IOME RT-QuIC). These findings were correlated with the results from longitudinal tonsil biopsies, terminal tissues and PRNP genotype. We detected nasal prion shedding 3-16 months after the first positive tonsil biopsy in ten of the 18 deer; detectable shedding persisted thereafter in nine of the ten animals. Surprisingly, nasal swabs were negative in eight deer, even though all were CWD-infected as determined by tonsil biopsies and terminal tissue assays. Nasal shedding was detected more often in deer that were homozygous for glycine at codon 96, and those that were near or demonstrating symptoms of clinical disease shed earlier and more frequently, irrespective of prion exposure dose. The results of this study demonstrate nasal shedding of CWD prions that can be detected using minimally invasive nasal swab sampling and RT-QuIC analysis.


Assuntos
Cervos , Príons , Doença de Emaciação Crônica , Animais , Príons/genética , Doença de Emaciação Crônica/diagnóstico , Doença de Emaciação Crônica/patologia , Tonsila Palatina
4.
PLoS One ; 17(11): e0274531, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36383520

RESUMO

Chronic wasting disease (CWD) is a fatal prion disease affecting cervids (deer, elk, moose). Current methods to monitor individual disease state include highly invasive antemortem rectal biopsy or postmortem brain biopsy. Efficient, sensitive, and selective antemortem and postmortem testing of populations would increase knowledge of the dynamics of CWD epizootics as well as provide a means to track CWD progression into previously unaffected areas. Here, we analyzed the presence of CWD prions in skin samples from two easily accessed locations (ear and belly) from 30 deceased white-tailed deer (Odocoileus viginianus). The skin samples were enzymatically digested and analyzed by real-time quaking-induced conversion (RT-QuIC). The diagnostic sensitivity of the ear and belly skin samples were both 95%, and the diagnostic specificity of the ear and belly skin were both 100%. Additionally, the location of the skin biopsy on the ear does not affect specificity or sensitivity. These results demonstrate the efficacy of CWD diagnosis with skin biopsies using RT-QuIC. This method could be useful for large scale antemortem population testing.


Assuntos
Cervos , Príons , Doença de Emaciação Crônica , Animais , Doença de Emaciação Crônica/diagnóstico , Doença de Emaciação Crônica/patologia , Biópsia
5.
Acta Neuropathol ; 144(4): 767-784, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35996016

RESUMO

Prions cause infectious and fatal neurodegenerative diseases in mammals. Chronic wasting disease (CWD), a prion disease of cervids, spreads efficiently among wild and farmed animals. Potential transmission to humans of CWD is a growing concern due to its increasing prevalence. Here, we provide evidence for a zoonotic potential of CWD prions, and its probable signature using mice expressing human prion protein (PrP) as an infection model. Inoculation of these mice with deer CWD isolates resulted in atypical clinical manifestation with prion seeding activity and efficient transmissible infectivity in the brain and, remarkably, in feces, but without classical neuropathological or Western blot appearances of prion diseases. Intriguingly, the protease-resistant PrP in the brain resembled that found in a familial human prion disease and was transmissible upon second passage. Our results suggest that CWD might infect humans, although the transmission barrier is likely higher compared to zoonotic transmission of cattle prions. Notably, our data suggest a different clinical presentation, prion signature, and tissue tropism, which causes challenges for detection by current diagnostic assays. Furthermore, the presence of infectious prions in feces is concerning because if this occurs in humans, it is a source for human-to-human transmission. These findings have strong implications for public health and CWD management.


Assuntos
Cervos , Príons , Doença de Emaciação Crônica , Animais , Western Blotting , Bovinos , Cervos/metabolismo , Humanos , Camundongos , Proteínas Priônicas/metabolismo , Príons/metabolismo , Doença de Emaciação Crônica/metabolismo , Doença de Emaciação Crônica/patologia
6.
G3 (Bethesda) ; 12(7)2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35536181

RESUMO

Despite implementation of enhanced management practices, chronic wasting disease in US white-tailed deer (Odocoileus virginianus) continues to expand geographically. Herein, we perform the largest genome-wide association analysis to date for chronic wasting disease (n = 412 chronic wasting disease-positive; n = 758 chronic wasting disease-nondetect) using a custom Affymetrix Axiom single-nucleotide polymorphism array (n = 121,010 single-nucleotide polymorphisms), and confirm that differential susceptibility to chronic wasting disease is a highly heritable (h2= 0.611 ± 0.056) polygenic trait in farmed US white-tailed deer, but with greater trait complexity than previously appreciated. We also confirm PRNP codon 96 (G96S) as having the largest-effects on risk (P ≤ 3.19E-08; phenotypic variance explained ≥ 0.025) across 3 US regions (Northeast, Midwest, South). However, 20 chronic wasting disease-positive white-tailed deer possessing codon 96SS genotypes were also observed, including one that was lymph node and obex positive. Beyond PRNP, we also detected 23 significant single-nucleotide polymorphisms (P-value ≤ 5E-05) implicating ≥24 positional candidate genes; many of which have been directly implicated in Parkinson's, Alzheimer's and prion diseases. Genotype-by-environment interaction genome-wide association analysis revealed a single-nucleotide polymorphism in the lysosomal enzyme gene ARSB as having the most significant regional heterogeneity of effects on chronic wasting disease (P ≤ 3.20E-06); with increasing copy number of the minor allele increasing susceptibility to chronic wasting disease in the Northeast and Midwest; but with opposite effects in the South. In addition to ARSB, 38 significant genotype-by-environment single-nucleotide polymorphisms (P-value ≤ 5E-05) were also detected, thereby implicating ≥ 36 positional candidate genes; the majority of which have also been associated with aspects of Parkinson's, Alzheimer's, and prion diseases.


Assuntos
Doença de Alzheimer , Cervos , Doença de Parkinson , Doenças Priônicas , Doença de Emaciação Crônica , Animais , Doença de Alzheimer/genética , Códon , Cervos/genética , Interação Gene-Ambiente , Estudo de Associação Genômica Ampla , Genótipo , Doença de Parkinson/genética , Doenças Priônicas/genética , Doença de Emaciação Crônica/diagnóstico , Doença de Emaciação Crônica/genética , Doença de Emaciação Crônica/patologia , Polimorfismo de Nucleotídeo Único
7.
J Wildl Dis ; 58(1): 40-49, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34753180

RESUMO

For nearly 18 yr, we evaluated susceptibility of captive mountain lions (Puma concolor) to chronic wasting disease (CWD) in the face of repeated exposure associated with consuming infected cervid carcasses. Three mountain lions with a monomorphic prion protein gene (PRNP) sequence identical to that described previously for the species had access to parts of ≥432 infected carcasses during ≥2,013 feeding occasions, conservatively representing >14,000 kg of infected feed material, during May 2002 to March 2020. The proportion of diet in infected carcass material averaged 43% overall but differed from year to year (minimally 11-74%). Most infected carcasses were mule deer (Odocoileus hemionus; ∼75%). We observed no clinical signs suggestive of progressive encephalopathy or other neurologic disease over the ∼14.5-17.9 yr between first known exposure and eventual death. Histopathology revealed no spongiform changes or immunostaining suggestive of prion infection in multiple sections of nervous and lymphoid tissue. Similarly, none of 133 free-ranging mountain lion carcasses sampled opportunistically during 2004-20 showed immunostaining consistent with prion infection in sections of brainstem or lymph node. These findings align with prior work suggesting that CWD-associated prions face strong barriers to natural transmission among species outside the family Cervidae.


Assuntos
Cervos , Príons , Puma , Doença de Emaciação Crônica , Animais , Exposição Dietética , Doença de Emaciação Crônica/patologia
8.
J Wildl Dis ; 57(2): 461-463, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33822167

RESUMO

We report the first detection of chronic wasting disease (CWD) in Sweden, in three old female moose (Alces alces). Prions (PrPCWD) were detected in brain but not in lymph nodes. The findings are similar to previously described CWD cases in old moose in Norway, where a spontaneous origin is hypothesized.


Assuntos
Encéfalo/patologia , Cervos , Doença de Emaciação Crônica/diagnóstico , Animais , Feminino , Suécia/epidemiologia , Doença de Emaciação Crônica/epidemiologia , Doença de Emaciação Crônica/patologia
9.
Sci Rep ; 11(1): 7702, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33833330

RESUMO

Efforts to contain the spread of chronic wasting disease (CWD), a fatal, contagious prion disease of cervids, would be aided by the availability of additional diagnostic tools. RT-QuIC assays allow ultrasensitive detection of prion seeds in a wide variety of cervid tissues, fluids and excreta. The best documented antemortem diagnostic test involving RT-QuIC analysis targets lymphoid tissue in rectal biopsies. Here we have tested a more easily accessed specimen, ear pinna punches, using an improved RT-QuIC assay involving iron oxide magnetic extraction to detect CWD infections in asymptomatic mule and white-tailed deer. Comparison of multiple parts of the ear pinna indicated that a central punch spanning the auricular nerve provided the most consistent detection of CWD infection. When compared to results obtained from gold-standard retropharyngeal lymph node specimens, our RT-QuIC analyses of ear samples provided apparent diagnostic sensitivity (81%) and specificity (91%) that rivaled, or improved upon, those observed in previous analyses of rectal biopsies using RT-QuIC. These results provide evidence that RT-QuIC analysis of ear pinna punches may be a useful approach to detecting CWD infections in cervids.


Assuntos
Orelha Externa/patologia , Doença de Emaciação Crônica/diagnóstico , Animais , Cervos , Ensaio de Imunoadsorção Enzimática , Príons/isolamento & purificação , Especificidade da Espécie , Doença de Emaciação Crônica/patologia
10.
Int J Mol Sci ; 22(5)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33668798

RESUMO

Chronic wasting disease (CWD) is a prion disease found in both free-ranging and farmed cervids. Susceptibility of these animals to CWD is governed by various exogenous and endogenous factors. Past studies have demonstrated that polymorphisms within the prion protein (PrP) sequence itself affect an animal's susceptibility to CWD. PrP polymorphisms can modulate CWD pathogenesis in two ways: the ability of the endogenous prion protein (PrPC) to convert into infectious prions (PrPSc) or it can give rise to novel prion strains. In vivo studies in susceptible cervids, complemented by studies in transgenic mice expressing the corresponding cervid PrP sequence, show that each polymorphism has distinct effects on both PrPC and PrPSc. It is not entirely clear how these polymorphisms are responsible for these effects, but in vitro studies suggest they play a role in modifying PrP epitopes crucial for PrPC to PrPSc conversion and determining PrPC stability. PrP polymorphisms are unique to one or two cervid species and most confer a certain degree of reduced susceptibility to CWD. However, to date, there are no reports of polymorphic cervid PrP alleles providing absolute resistance to CWD. Studies on polymorphisms have focused on those found in CWD-endemic areas, with the hope that understanding the role of an animal's genetics in CWD can help to predict, contain, or prevent transmission of CWD.


Assuntos
Cervos/genética , Polimorfismo Genético , Proteínas Priônicas/genética , Doença de Emaciação Crônica/patologia , Sequência de Aminoácidos , Animais , Proteínas Priônicas/química , Zoonoses/patologia , Zoonoses/transmissão
11.
Vopr Virusol ; 65(6): 326-334, 2021 Jan 07.
Artigo em Russo | MEDLINE | ID: mdl-33533229

RESUMO

The review presents the state-of-the-art on the problem of diagnosis of prion diseases (PD) in humans and animals with a brief description of their etiology and pathogenesis. We pointed out that understanding the nature of the etio logical agent of PD determined their zoonotic potential and led to the development of highly specific immunological diagnostic methods aimed at identifying the infectious isoform of prion protein (PrPd) as the only marker of the disease. In this regard, we briefly summarize the results of studies, including our own, concerning the conversion of normal prion protein molecules (PrPc) to PrPd, the production of monoclonal antibodies and their application as immunodiagnostic reagents for the post-mortem detection of PrPd in various formats of immunoassay. We also emphasize the issues related to the development of methods for ante mortem diagnostics of PD. In this regard, a method for amplifying amino acid sequences using quacking-induced conversion of PrPc to PrPd in real time (RTQuIC) described in details. The results of recent studies on the assessment of the sensitivity, specificity and reproducibility of this method, carried out in various laboratories around the world, are presented. The data obtained indicate that RT-QuIC is currently the most promising laboratory assay for detecting PrPd in biological material at the preclinical stage of the disease. The significant contribution of US scientists to the introduction of this method into clinical practice on the model of diagnosis of chronic wasting disease of wild Cervidae (CWD) is noted. The possible further spread of CWD in the population of moose and deer in the territories bordering with Russia, as well as the established fact of alimentary transmission of CWD to macaques, indicate the threat of the appearance of PD in our country. In conclusion, the importance of developing new hypersensitive and/or selective components of known methods for PrPd identification from the point of view of assessing the risks of creating artificial infectious prion proteins in vivo or in vitro, primarily new pathogenic isoforms ("strains") and synthetic prions, was outlined.


Assuntos
Autopsia , Doenças Priônicas/diagnóstico , Proteínas Priônicas/genética , Doença de Emaciação Crônica/genética , Sequência de Aminoácidos/genética , Animais , Cervos/genética , Humanos , Doenças Priônicas/genética , Doenças Priônicas/patologia , Proteínas Priônicas/isolamento & purificação , Federação Russa , Doença de Emaciação Crônica/patologia
12.
Prion ; 14(1): 283-295, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33345717

RESUMO

The real-time quaking-induced conversion (RT-QuIC) reaction is a sensitive and specific method for detecting prions. However, inhibitory factors present in tissue homogenates can easily interfere with this reaction. To identify the RT-QuIC condition under which low levels of chronic wasting disease (CWD) and bovine spongiform encephalopathy (BSE) prions can be detected in the presence of high concentrations of brain tissue homogenates, reactivities of various recombinant prion proteins (rPrPs) were tested. Among the tested rPrPs, recombinant cervid PrP (rCerPrP) showed a unique reactivity: the reactivity of rCerPrP to CWD and atypical BSE prions was not highly affected by high concentrations of normal brain homogenates. The unique reactivity of rCerPrP disappeared when the N-terminal region (aa 25-93) was truncated. Replacement of aa 23-149 of mouse (Mo) PrP with the corresponding region of CerPrP partially restored the unique reactivity of rCerPrP in RT-QuIC. Replacement of the extreme C-terminal region of MoPrP aa 219-231 to the corresponding region of CerPrP partially conferred the unique reactivity of rCerPrP to rMoPrP, suggesting the involvement of both N- and C-terminal regions. Additionally, rCerN-Mo-CerCPrP, a chimeric PrP comprising CerPrP aa 25-153, MoPrP aa 150-218, and CerPrP aa 223-233, showed an additive effect of the N- and C-terminal regions. These results provide a mechanistic implication for detecting CWD and atypical BSE prions using rCerPrP and are useful for further improvements of RT-QuIC.


Assuntos
Encefalopatia Espongiforme Bovina/patologia , Proteínas Priônicas/química , Proteínas Recombinantes/química , Doença de Emaciação Crônica/patologia , Aminoácidos/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Bovinos , Cervos , Modelos Biológicos
13.
Prion ; 14(1): 271-277, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33300452

RESUMO

Chronic wasting disease (CWD) affects a broad array of cervid species and continues to be detected in an expanding geographic range. Initially introduced into the Republic of Korea through the importation of CWD-infected elk (Cervus canadensis), additional cases of CWD were subsequently detected in farmed Korean elk and sika deer (Cervus nippon). Wild and farmed sika deer are found in many regions of Asia, North America, and Europe, although natural transmission to this species has not been detected outside of the Republic of Korea. In this study, the oral transmission of CWD to sika deer was investigated using material from CWD-affected elk. Pathological prion (PrPCWD) immunoreactivity was detected in oropharyngeal lymphoid tissues of one sika deer at 3.9 months post-inoculation (mpi) and was more widely distributed in a second sika deer examined at 10.9 mpi. The remaining four sika deer progressed to clinical disease between 21 and 24 mpi. Analysis of PrPCWD tissue distribution in clinical sika deer revealed widespread deposition in central and peripheral nervous systems, lymphoreticular tissues, and the gastrointestinal tract. Prion protein gene (PRNP) sequences of these sika deer were identical and consistent with those reported in natural sika deer populations. These findings demonstrate the efficient oral transmission of CWD from elk to sika deer.


Assuntos
Cervos/fisiologia , Boca/patologia , Doença de Emaciação Crônica/transmissão , Sequência de Aminoácidos , Animais , Proteínas Priônicas/química , Proteínas Priônicas/metabolismo , Doença de Emaciação Crônica/patologia
14.
Sci Rep ; 10(1): 7640, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32376941

RESUMO

Chronic wasting disease (CWD) is a rapidly spreading prion disease of cervids, yet antemortem diagnosis, treatment, and control remain elusive. We recently developed an organotypic slice culture assay for sensitive detection of scrapie prions using ultrasensitive prion seeding. However, this model was not established for CWD prions due to their strong transmission barrier from deer (Odocoileus spp) to standard laboratory mice (Mus musculus). Therefore, we developed and characterized the ex vivo brain slice culture model for CWD, using a transgenic mouse model (Tg12) that expresses the elk (Cervus canadensis) prion protein gene (PRNP). We tested for CWD infectivity in cultured slices using sensitive seeding assays such as real-time quaking-induced conversion (RT-QuIC) and protein misfolding cyclic amplification (PMCA). Slice cultures from Tg12, but not from prnp-/- mice, tested positive for CWD. Slice-generated CWD prions transmitted efficiently to Tg12 mice. Furthermore, we determined the activity of anti-prion compounds and optimized a screening protocol for the infectivity of biological samples in this CWD slice culture model. Our results demonstrate that this integrated brain slice model of CWD enables the study of pathogenic mechanisms with translational implications for controlling CWD.


Assuntos
Encéfalo/metabolismo , Encéfalo/patologia , Doença de Emaciação Crônica/etiologia , Doença de Emaciação Crônica/patologia , Animais , Biópsia , Gerenciamento Clínico , Modelos Animais de Doenças , Suscetibilidade a Doenças , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Técnicas de Cultura de Tecidos , Doença de Emaciação Crônica/terapia
15.
J Biol Chem ; 295(15): 4985-5001, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32111742

RESUMO

Chronic wasting disease (CWD) is caused by an unknown spectrum of prions and has become enzootic in populations of cervid species that express cellular prion protein (PrPC) molecules varying in amino acid composition. These PrPC polymorphisms can affect prion transmission, disease progression, neuropathology, and emergence of new prion strains, but the mechanistic steps in prion evolution are not understood. Here, using conformation-dependent immunoassay, conformation stability assay, and protein-misfolding cyclic amplification, we monitored the conformational and phenotypic characteristics of CWD prions passaged through deer and transgenic mice expressing different cervid PrPC polymorphisms. We observed that transmission through hosts with distinct PrPC sequences diversifies the PrPCWD conformations and causes a shift toward oligomers with defined structural organization, replication rate, and host range. When passaged in host environments that restrict prion replication, distinct co-existing PrPCWD conformers underwent competitive selection, stabilizing a new prion strain. Nonadaptive conformers exhibited unstable replication and accumulated only to low levels. These results suggest a continuously evolving diversity of CWD conformers and imply a critical interplay between CWD prion plasticity and PrPC polymorphisms during prion strain evolution.


Assuntos
Encéfalo/patologia , Adaptação ao Hospedeiro , Polimorfismo Genético , Proteínas PrPC/genética , Doença de Emaciação Crônica/genética , Animais , Encéfalo/metabolismo , Cervos , Camundongos , Camundongos Transgênicos , Doença de Emaciação Crônica/patologia
16.
PLoS One ; 15(2): e0228327, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32059005

RESUMO

Chronic wasting disease (CWD) continues to spread or be recognized in the United States, Canada, and Europe. CWD is diagnosed by demonstration of the causative misfolded prion protein (PrPCWD) in either brain or lymphoid tissue using immunodetection methods, with immunohistochemistry (IHC) recognized as the gold standard. In recent years, in vitro amplification assays have been developed that can detect CWD prion seeding activity in tissues, excreta, and body fluids of affected cervids. These methods potentially offer earlier and more facile detection of CWD, both pre- and post-mortem. Here we provide a longitudinal profile of CWD infection progression, as assessed by both real-time quaking-induced conversion (RT-QuIC) and IHC on serial biopsies of mucosal lymphoid tissues of white-tailed deer orally exposed to low doses of CWD prions. We report that detection of CWD infection by RT-QuIC preceded that by IHC in both tonsil and recto-anal lymphoid tissue (RAMALT) in 14 of 19 deer (74%). Of the 322 biopsy samples collected in post-exposure longitudinal monitoring, positive RT-QuIC results were obtained for 146 samples, 91 of which (62%) were concurrently also IHC-positive. The lower frequency of IHC positivity was manifest most in the earlier post-exposure periods and in biopsies in which lymphoid follicles were not detected. For all deer in which RT-QuIC seeding activity was detected in a tonsil or RAMALT biopsy, PrPCWD was subsequently or concurrently detected by IHC. Overall, this study (a) provides a longitudinal profile of CWD infection in deer after low yet infectious oral prion exposure; (b) illustrates the value of RT-QuIC for sensitive detection of CWD; and (c) demonstrates an ultimate high degree of correlation between RT-QuIC and IHC positivity as CWD infection progresses.


Assuntos
Imuno-Histoquímica , Técnicas de Amplificação de Ácido Nucleico/métodos , Doença de Emaciação Crônica/patologia , Administração Oral , Animais , Cervos , Progressão da Doença , Estudos Longitudinais , Tecido Linfoide/metabolismo , Tecido Linfoide/patologia , Tonsila Palatina/metabolismo , Tonsila Palatina/patologia , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Príons/administração & dosagem , Doença de Emaciação Crônica/metabolismo
17.
Prion ; 14(1): 76-87, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32033521

RESUMO

Chronic wasting disease is a fatal, horizontally transmissible prion disease of cervid species that has been reported in free-ranging and farmed animals in North America, Scandinavia, and Korea. Like other prion diseases, CWD susceptibility is partly dependent on the sequence of the prion protein encoded by the host's PRNP gene; it is unknown if variations in PRNP have any meaningful effects on other aspects of health. Conventional diagnosis of CWD relies on ELISA or IHC testing of samples collected post-mortem, with recent efforts focused on antemortem testing approaches. We report on the conclusions of a study evaluating the role of antemortem testing of rectal biopsies collected from over 570 elk in a privately managed herd, and the results of both an amplification assay (RT-QuIC) and conventional IHC among animals with a several PRNP genotypes. Links between PRNP genotype and potential markers of evolutionary fitness, including pregnancy rates, body condition, and annual return rates were also examined. We found that the RT-QuIC assay identified significantly more CWD positive animals than conventional IHC across the course of the study, and was less affected by factors known to influence IHC sensitivity - including follicle count and PRNP genotype. We also found that several evolutionary markers of fitness were not adversely correlated with specific PRNP genotypes. While the financial burden of the disease in this herd was ultimately unsustainable for the herd owners, our scientific findings and the hurdles encountered will assist future CWD management strategies in both wild and farmed elk and deer.


Assuntos
Cervos/fisiologia , Doença de Emaciação Crônica/terapia , Envelhecimento/patologia , Animais , Colorado/epidemiologia , Feminino , Genótipo , Imuno-Histoquímica , Estudos Longitudinais , Tecido Linfoide/patologia , Gravidez , Prevalência , Proteínas Priônicas/metabolismo , Análise de Sobrevida , Doença de Emaciação Crônica/epidemiologia , Doença de Emaciação Crônica/genética , Doença de Emaciação Crônica/patologia
18.
PLoS One ; 15(1): e0227487, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31910440

RESUMO

Chronic wasting disease is a transmissible spongiform encephalopathy of cervids. This fatal neurodegenerative disease is caused by misfolding of the cellular prion protein (PrPC) to pathogenic conformers (PrPSc), and the pathogenic forms accumulate in the brain and other tissues. Real-time Quaking Induced Conversion (RT-QuIC) can be used for the detection of prions and for prion strain discrimination in a variety of biological tissues from humans and animals. In this study, we evaluated how either PrPSc from cervids of different genotypes or PrPSc from different sources of CWD influence the fibril formation of recombinant bank vole (BV) or human prion proteins using RT-QuIC. We found that reaction mixtures seeded with PrPSc from different genotypes of white-tailed deer or reindeer brains have similar conversion efficiency with both substrates. Also, we observed similar results when assays were seeded with different sources of CWD. Thus, we conclude that the genotypes of all sources of CWD used in this study do not influence the level of conversion of PrPC to PrPSc.


Assuntos
Proteínas Priônicas/metabolismo , Doença de Emaciação Crônica/patologia , Animais , Arvicolinae , Encéfalo/metabolismo , Cervos , Genótipo , Humanos , Imunoensaio , Proteínas PrPC/sangue , Proteínas PrPC/genética , Proteínas PrPC/metabolismo , Proteínas PrPSc/sangue , Proteínas PrPSc/genética , Proteínas PrPSc/metabolismo , Proteínas Priônicas/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Especificidade por Substrato , Doença de Emaciação Crônica/genética , Doença de Emaciação Crônica/metabolismo
19.
Prion ; 14(1): 47-55, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-31973662

RESUMO

Chronic wasting disease is a progressively fatal, horizontally transmissible prion disease affecting several members of the cervid species. Conventional diagnosis relies on ELISA or IHC evaluation using tissues collected post-mortem; however, recent research has focused on newly developed amplification techniques using samples collected antemortem. The present study sought to cross-validate the real-time quaking-induced conversion assay (RT-QuIC) evaluation of rectal biopsies collected from an elk herd with endemic CWD, assessing both binary positive/negative test results as well as relative rates of amplification between laboratories. We found that results were correlative in both categories across all laboratories performing RT-QuIC, as well as to conventional IHC performed at a national reference laboratory. A significantly higher number of positive samples were identified using RT-QuIC, with results seemingly unhindered by low follicle counts. These findings support the continued development and implementation of amplification assays in the diagnosis of prion diseases of veterinary importance, targeting not just antemortem sampling strategies, but post-mortem testing approaches as well.


Assuntos
Bioensaio/métodos , Cervos/fisiologia , Doença de Emaciação Crônica/diagnóstico , Animais , Imuno-Histoquímica , Tecido Linfoide/patologia , Doença de Emaciação Crônica/patologia
20.
J Gen Virol ; 101(3): 347-361, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31846418

RESUMO

Infectivity associated with prion disease has been demonstrated in blood throughout the course of disease, yet the ability to detect blood-borne prions by in vitro methods remains challenging. We capitalized on longitudinal pathogenesis studies of chronic wasting disease (CWD) conducted in the native host to examine haematogenous prion load by real-time quaking-induced conversion (RT-QuIC) and protein misfolding cyclic amplification. Our study demonstrated in vitro detection of amyloid seeding activity (prions) in buffy-coat cells harvested from deer orally dosed with low concentrations of CWD positive (+) brain (1 gr and 300 ng) or saliva (300 ng RT-QuIC equivalent). These findings make possible the longitudinal assessment of prion disease and deeper investigation of the role haematogenous prions play in prion pathogenesis.


Assuntos
Cervos/sangue , Proteínas PrPC/genética , Proteínas PrPC/metabolismo , Doença de Emaciação Crônica/patologia , Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Estudos de Coortes , Estudos Longitudinais , Mesocricetus , Camundongos , Camundongos Transgênicos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Saliva/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA