Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Dis Model Mech ; 17(10)2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39301689

RESUMO

Lafora disease (LD), a fatal neurodegenerative disorder, is caused by mutations in the EPM2A gene encoding laforin phosphatase or NHLRC1 gene encoding malin ubiquitin ligase. LD symptoms include epileptic seizures, ataxia, dementia and cognitive decline. Studies on LD have primarily concentrated on the pathophysiology in the brain. A few studies have reported motor symptoms, muscle weakness and muscle atrophy. Intriguingly, skeletal muscles are known to accumulate Lafora polyglucosan bodies. Using laforin-deficient mice, an established model for LD, we demonstrate that LD pathology correlated with structural and functional impairments in the neuromuscular junction (NMJ). Specifically, we found impairment in NMJ transmission, which coincided with altered expression of NMJ-associated genes and reduced motor endplate area, fragmented junctions and loss of fully innervated junctions at the NMJ. We also observed a reduction in alpha-motor neurons in the lumbar spinal cord, with significant presynaptic morphological alterations. Disorganised myofibrillar patterns, slight z-line streaming and muscle atrophy were also evident in LD animals. In summary, our study offers insight into the neuropathic and myopathic alterations leading to motor deficits in LD.


Assuntos
Doença de Lafora , Junção Neuromuscular , Proteínas Tirosina Fosfatases não Receptoras , Animais , Doença de Lafora/patologia , Doença de Lafora/fisiopatologia , Doença de Lafora/genética , Junção Neuromuscular/patologia , Junção Neuromuscular/fisiopatologia , Proteínas Tirosina Fosfatases não Receptoras/genética , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/deficiência , Camundongos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/deficiência , Neurônios Motores/patologia , Transmissão Sináptica , Miofibrilas/patologia , Miofibrilas/metabolismo , Medula Espinal/patologia , Medula Espinal/fisiopatologia , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Modelos Animais de Doenças
2.
Neurosci Res ; 204: 58-63, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38458494

RESUMO

Neurodegenerative diseases (ND) affect distinct populations of neurons and manifest various clinical and pathological symptoms. A subset of ND prognoses has been linked to vascular risk factors. Consequently, the current study investigated retinal vascular abnormalities in a murine model of Lafora neurodegenerative disease (LD), a fatal and genetic form of progressive myoclonus epilepsy that affects children. Here, arterial rigidity was evaluated by measuring pulse wave velocity and vasculature deformations in the retina. Our findings in the LD mouse model indicate altered pulse wave velocity, retinal vascular thinning, and convoluted retinal arteries.


Assuntos
Modelos Animais de Doenças , Doença de Lafora , Vasos Retinianos , Animais , Doença de Lafora/genética , Doença de Lafora/patologia , Doença de Lafora/fisiopatologia , Camundongos , Vasos Retinianos/patologia , Camundongos Endogâmicos C57BL , Masculino , Epilepsias Mioclônicas Progressivas/genética , Epilepsias Mioclônicas Progressivas/fisiopatologia , Epilepsias Mioclônicas Progressivas/patologia
3.
Mol Neurobiol ; 58(6): 2508-2522, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33447969

RESUMO

Lafora disease (LD; OMIM#274780) is a fatal rare neurodegenerative disorder characterized by generalized epileptic seizures and the presence of polyglucosan inclusions (PGs), called Lafora bodies (LBs), typically in the brain. LD is caused by mutations in two genes EPM2A or EPM2B, which encode respectively laforin, a glucan phosphatase, and malin, an E3-ubiquitin ligase. Much remains unknown about the molecular bases of LD and, unfortunately, appropriate treatment is still missing; therefore patients die within 10 years from the onset of the disease. Recently, we have identified neuroinflammation as one of the initial determinants in LD. In this work, we have investigated anti-inflammatory treatments as potential therapies in LD. With this aim, we have performed a preclinical study in an Epm2b-/- mouse model with propranolol, a ß-adrenergic antagonist, and epigallocatechin gallate (EGCG), an antioxidant from green tea extract, both of which displaying additional anti-inflammatory properties. In vivo motor and cognitive behavioral tests and ex vivo histopathological brain analyses were used as parameters to assess the therapeutic potential of propranolol and EGCG. After 2 months of treatment, we observed an improvement not only in attention defects but also in neuronal disorganization, astrogliosis, and microgliosis present in the hippocampus of Epm2b-/- mice. In general, propranolol intervention was more effective than EGCG in preventing the appearance of astrocyte and microglia reactivity. In summary, our results confirm the potential therapeutic effectiveness of the modulators of inflammation as novel treatments in Lafora disease.


Assuntos
Encéfalo/patologia , Inflamação/patologia , Doença de Lafora/patologia , Animais , Biomarcadores/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Catequina/análogos & derivados , Catequina/farmacologia , Modelos Animais de Doenças , Gliose/complicações , Gliose/patologia , Gliose/fisiopatologia , Glucanos/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Hipocampo/fisiopatologia , Corpos de Inclusão/efeitos dos fármacos , Corpos de Inclusão/metabolismo , Inflamação/complicações , Inflamação/fisiopatologia , Doença de Lafora/complicações , Doença de Lafora/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Atividade Motora , Degeneração Neural/complicações , Degeneração Neural/patologia , Degeneração Neural/fisiopatologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fenótipo , Propranolol/farmacologia , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/metabolismo
5.
Seizure ; 83: 145-153, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33152654

RESUMO

PURPOSE: To elucidate the presenting symptoms of Lafora Disease (LD) to differentiate it from Juvenile Myoclonic Epilepsy (JME). METHODS: We collected and evaluated the early electroclinical data of 5 unrelated Apulian (Southern Italy) LD families, 30 LD patients selected from the literature, and 30 Apulian JME patients. RESULTS: The Apulian LD patients presented with generalised tonic-clonic and focal visual seizures, followed by myoclonic seizures and action-postural myoclonus. In these patients, EEG background slowing and occipital epileptiform abnormalities were significantly more evident than in the other groups. Genetic analysis revealed the presence of mutations in the EPM2A gene in 4 families, and in the NHLRC1 gene in the remaining family. In detail, we identified 2 different point mutations in EPM2A and only 1 in NHLRC1, and expanded the molecular spectrum of the EPM2A gene mutations reporting for the first time a patient carrier of the c.243_246del genetic variant. In the previously reported LD cases, generalised tonic-clonic and focal visual seizures and myoclonus were the most frequent symptoms, as confirmed by the first EEGs showing occipital or diffuse epileptiform abnormalities with photosensitivity in the background activity slowing. In the Apulian JME patients, myoclonus appeared earlier, usually at awakening, with diffuse epileptiform abnormalities during sleep and photosensitivity in the normal background activity. The diagnosis of JME was established much earlier than the LD one. During evolution, unlike JME patients, LD patients showed a significant resistance to drugs. CONCLUSIONS: Tonic-clonic and focal visual seizures followed by myoclonic seizures and action-postural myoclonus together with EEG background slowing with diffuse and occipital epileptiform abnormalities suggest a diagnosis of LD. An early molecular confirmation allows a better diagnosis, counselling and management of affected patients and their families, and it may be useful to improve the patients' quality of life using, when possible, emerging personalized treatments that may slow the evolution of the disease.


Assuntos
Doença de Lafora/genética , Doença de Lafora/fisiopatologia , Mutação/genética , Epilepsia Mioclônica Juvenil/genética , Convulsões/genética , Adolescente , Adulto , Proteínas de Transporte/genética , Criança , Feminino , Testes Genéticos , Humanos , Itália , Masculino , Proteínas Tirosina Fosfatases não Receptoras/genética , Qualidade de Vida , Adulto Jovem
6.
Epilepsia ; 61(9): e124-e128, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32949474

RESUMO

Our goal was to assess the interrater agreement (IRA) of photoparoxysmal response (PPR) using the classification proposed by a task force of the International League Against Epilepsy (ILAE), and a simplified classification system proposed by our group. In addition, we evaluated IRA of epileptiform discharges (EDs) and the diagnostic significance of the electroencephalographic (EEG) abnormalities. We used EEG recordings from the European Reference Network (EpiCARE) and Standardized Computer-based Organized Reporting of EEG (SCORE). Six raters independently scored EEG recordings from 30 patients. We calculated the agreement coefficient (AC) for each feature. IRA of PPR using the classification proposed by the ILAE task force was only fair (AC = 0.38). This improved to a moderate agreement by using the simplified classification (AC = 0.56; P = .004). IRA of EDs was almost perfect (AC = 0.98), and IRA of scoring the diagnostic significance was moderate (AC = 0.51). Our results suggest that the simplified classification of the PPR is suitable for implementation in clinical practice.


Assuntos
Encéfalo/fisiopatologia , Eletroencefalografia , Epilepsia/classificação , Transtornos de Fotossensibilidade/classificação , Adolescente , Adulto , Criança , Pré-Escolar , Epilepsias Mioclônicas/fisiopatologia , Epilepsia/fisiopatologia , Epilepsia Tipo Ausência/fisiopatologia , Feminino , Humanos , Lactente , Doença de Lafora/fisiopatologia , Masculino , Pessoa de Meia-Idade , Encefalomiopatias Mitocondriais/fisiopatologia , Epilepsia Mioclônica Juvenil/fisiopatologia , Neurofibromatose 1/fisiopatologia , Lipofuscinoses Ceroides Neuronais/fisiopatologia , Variações Dependentes do Observador , Estimulação Luminosa , Transtornos de Fotossensibilidade/fisiopatologia , Reprodutibilidade dos Testes , Síndrome de Rett/fisiopatologia , Adulto Jovem
7.
Epileptic Disord ; 22(2): 233-236, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32301727

RESUMO

We report the atypical presentation of Lafora disease in a Senegalese girl carrying the homozygous variant, c.560A>C, in the NHLRC1 gene. At 13 years, the patient developed myoclonic and visual seizures, progressive psychomotor slowing, and cognitive decline. At 14 years, a neurological examination showed severe hypomimia, bradykinesia, rigidity and low-amplitude myoclonic jerks. Flash-visual and somatosensory evoked potentials showed an increased amplitude of the cortical components, while an electroretinogram showed attenuated responses. An EEG showed diffuse polyspikes associated with positive-negative jerks as well as posterior slow waves and irregular spikes. The electroclinical picture suggested the diagnosis of Lafora disease regarding the association of visual seizures, cognitive deterioration, and action myoclonus, together with the EEG and evoked potential findings. Two uncommon findings were the prominence of extrapyramidal signs in the early stage of disease (which are rarely reported) and attenuation of electroretinal responses. We consider that Lafora disease should be included in the diagnostic work-up for juvenile Parkinsonism, when associated with epilepsy.


Assuntos
Disfunção Cognitiva , Doença de Lafora , Transtornos Parkinsonianos , Adolescente , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/fisiopatologia , Eletroencefalografia , Potenciais Evocados/fisiologia , Feminino , Humanos , Doença de Lafora/complicações , Doença de Lafora/genética , Doença de Lafora/fisiopatologia , Transtornos Parkinsonianos/etiologia , Transtornos Parkinsonianos/fisiopatologia , Retina/fisiopatologia , Senegal , Ubiquitina-Proteína Ligases/genética
8.
Neuropediatrics ; 49(6): 357-362, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30336494

RESUMO

Lafora's disease is a neurodegenerative disorder caused by recessive loss-of-function mutations in the EPM2A (laforin glycogen phosphatase) or EPM2B (malin E3 ubiquitin ligase) genes. Neuropathology is characterized by malformed precipitated glycogen aggregates termed Lafora bodies. Asymptomatic until adolescence, patients undergo first insidious then rapid progressive myoclonus epilepsy toward a vegetative state and death within a decade. Laforin and malin interact to regulate glycogen phosphorylation and chain length pattern, the latter critical to glycogen's solubility. Significant gaps remain in precise mechanistic understanding. However, demonstration that partial reduction in brain glycogen synthesis near-completely prevents the disease in its genetic animal models opens a direct present path to therapy.


Assuntos
Doença de Lafora , Animais , Humanos , Doença de Lafora/genética , Doença de Lafora/metabolismo , Doença de Lafora/fisiopatologia , Doença de Lafora/terapia
11.
Int J Neurosci ; 127(12): 1150-1153, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28556688

RESUMO

Lafora disease (LD), also known as progressive myoclonic epilepsy-2 (EPM2), is a rare, fatal autosomal recessive disorder typically starting during adolescence in otherwise neurologically normal individuals. It is clinically characterized by insidious of progressive neurological features including seizures, action myoclonus, visual hallucination, ataxia and dementia. Mutations in the laforin (EPM2A) gene on chromosome 6q24 or in the malin gene (NHLRC1) on chromosome 6p22 are responsible of LD phenotype. Diagnostic workup includes genetic analysis as well as axillary skin biopsy with evidence of typical periodic acid-Schiff (PAS)-positive polyglucosan inclusion bodies (Lafora bodies) in the apocrine glands and/or in the eccrine duct. Usually, genotype-phenotype correlations do not reveal substantial differences between patients carrying EPM2A and NHLRC1 mutations, but a few specific NHLRC1 mutations appear to correlate with a late onset and slow progressing LD. We report a case of LD due to compound heterozygote NHLRC1 mutation in an adolescent presenting with severe and atypical electro-clinical features, mimicking an autoimmune encephalopathy, and a rapidly progressive clinical course.


Assuntos
Proteínas de Transporte/genética , Doença de Lafora/genética , Doença de Lafora/fisiopatologia , Adolescente , Humanos , Doença de Lafora/diagnóstico , Masculino , Ubiquitina-Proteína Ligases
12.
Epileptic Disord ; 19(1): 82-86, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28238966

RESUMO

A 17-year-old female, of consanguineous parents, presented with a history of seizures and cognitive decline since the age of 12 years. She had absence, focal dyscognitive, generalized myoclonic, and generalized tonic-clonic seizures, all of which were drug resistant. The diagnosis of Lafora body disease was made based on a compatible clinical, EEG, seizure semiology picture and a disease-causing homozygous mutation in the EPM2A gene. A vagus nerve stimulator (VNS) was inserted and well tolerated with a steady decrease and then stabilization in seizure frequency during the six months following insertion (months 1-6). At follow-up, at 12 months after VNS insertion, there was a persistent improvement. Seizure frequency during months 7-12, compared to pre-VNS, was documented as follows: the absence seizures observed by the family had decreased from four episodes per month to 0 per month, the focal dyscognitive seizures from 300 episodes per month to 90 per month, the generalized myoclonic seizures from 90 clusters per month to eight per month, and the generalized tonic-clonic seizures from 30 episodes per month to 1.5 per month on average. To our knowledge, this is the second case reported in the literature showing efficacy of VNS in the management of seizures in Lafora body disease.


Assuntos
Doença de Lafora/fisiopatologia , Doença de Lafora/terapia , Estimulação do Nervo Vago/métodos , Adolescente , Consanguinidade , Feminino , Humanos , Doença de Lafora/genética , Proteínas Tirosina Fosfatases não Receptoras
13.
J Neurol Sci ; 373: 263-267, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28131202

RESUMO

Lafora disease (LD) is progressive myoclonic epilepsy with late childhood- to teenage-onset. Mutations in two genes, EPM2A and NHLRC1, are responsible for this autosomal recessive disease in many patients Worldwide. In present study, we reported two unrelated consanguineous Pakistani families with Lafora disease (Families A and B). Affected individuals in both families presented with generalized tonic clonic seizures, intellectual disability, ataxia and cognitive decline. Diagnosis of Lafora disease was made on histo-pathological analysis of the skin biopsy, found positive for lafora bodies in periodic acid schiff stain and frequent generalized epileptiform discharges on electroencephalogram (EEG). Bi-directional sequencing in family A was performed for EPM2A and NHLRC1 genes but no mutation was found. In family B, Illumina TruSight One Sequencing Panel covering 4813 OMIM genes was carried out and we identified a novel homozygous mutation c.95G>T; p.32Trp>Leu of EPM2A gene which was found co-segregated in this family through Sanger sequencing. Structural analysis of this mutation, through different in silico approaches, predicted loss of stability and conformation in Laforin protein.


Assuntos
Doença de Lafora/diagnóstico , Doença de Lafora/genética , Proteínas Tirosina Fosfatases não Receptoras/genética , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Proteínas de Transporte/genética , Diagnóstico Diferencial , Feminino , Humanos , Doença de Lafora/patologia , Doença de Lafora/fisiopatologia , Mutação , Paquistão , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Pele/patologia , Ubiquitina-Proteína Ligases
14.
Epileptic Disord ; 18(S2): 38-62, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27702709

RESUMO

Lafora disease (LD) is an autosomal recessive progressive myoclonus epilepsy due to mutations in the EPM2A (laforin) and EPM2B (malin) genes, with no substantial genotype-phenotype differences between the two. Founder effects and recurrent mutations are common, and mostly isolated to specific ethnic groups and/or geographical locations. Pathologically, LD is characterized by distinctive polyglucosans, which are formations of abnormal glycogen. Polyglucosans, or Lafora bodies (LB) are typically found in the brain, periportal hepatocytes of the liver, skeletal and cardiac myocytes, and in the eccrine duct and apocrine myoepithelial cells of sweat glands. Mouse models of the disease and other naturally occurring animal models have similar pathology and phenotype. Hypotheses of LB formation remain controversial, with compelling evidence and caveats for each hypothesis. However, it is clear that the laforin and malin functions regulating glycogen structure are key. With the exception of a few missense mutations LD is clinically homogeneous, with onset in adolescence. Symptoms begin with seizures, and neurological decline follows soon after. The disease course is progressive and fatal, with death occurring within 10 years of onset. Antiepileptic drugs are mostly non-effective, with none having a major influence on the progression of cognitive and behavioral symptoms. Diagnosis and genetic counseling are important aspects of LD, and social support is essential in disease management. Future therapeutics for LD will revolve around the pathogenesics of the disease. Currently, efforts at identifying compounds or approaches to reduce brain glycogen synthesis appear to be highly promising.


Assuntos
Doença de Lafora , Animais , Modelos Animais de Doenças , Aconselhamento Genético , Glicogênio/metabolismo , Humanos , Doença de Lafora/tratamento farmacológico , Doença de Lafora/genética , Doença de Lafora/metabolismo , Doença de Lafora/fisiopatologia , Camundongos , Proteínas Tirosina Fosfatases não Receptoras/genética
15.
Mol Neurobiol ; 53(2): 1296-1309, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25627694

RESUMO

Lafora disease (LD, OMIM 254780) is a rare fatal neurodegenerative disorder that usually occurs during childhood with generalized tonic-clonic seizures, myoclonus, absences, drop attacks, or visual seizures. Unfortunately, at present, available treatments are only palliatives and no curative drugs are available yet. The hallmark of the disease is the accumulation of insoluble polyglucosan inclusions, called Lafora bodies (LBs), within the neurons but also in heart, muscle, and liver cells. Mouse models lacking functional EPM2A or EPM2B genes (the two major loci related to the disease) recapitulate the Lafora disease phenotype: they accumulate polyglucosan inclusions, show signs of neurodegeneration, and have a dysregulation of protein clearance and endoplasmic reticulum stress response. In this study, we have subjected a mouse model of LD (Epm2b-/-) to different pharmacological interventions aimed to alleviate protein clearance and endoplasmic reticulum stress. We have used two chemical chaperones, trehalose and 4-phenylbutyric acid. In addition, we have used metformin, an activator of AMP-activated protein kinase (AMPK), as it has a recognized neuroprotective role in other neurodegenerative diseases. Here, we show that treatment with 4-phenylbutyric acid or metformin decreases the accumulation of Lafora bodies and polyubiquitin protein aggregates in the brain of treated animals. 4-Phenylbutyric acid and metformin also diminish neurodegeneration (measured in terms of neuronal loss and reactive gliosis) and ameliorate neuropsychological tests of Epm2b-/- mice. As these compounds have good safety records and are already approved for clinical uses on different neurological pathologies, we think that the translation of our results to the clinical practice could be straightforward.


Assuntos
Encéfalo/patologia , Doença de Lafora/tratamento farmacológico , Doença de Lafora/patologia , Animais , Modelos Animais de Doenças , Imunofluorescência , Gliose/complicações , Gliose/tratamento farmacológico , Gliose/patologia , Glucanos/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Corpos de Inclusão/efeitos dos fármacos , Corpos de Inclusão/metabolismo , Doença de Lafora/parasitologia , Doença de Lafora/fisiopatologia , Metformina/farmacologia , Metformina/uso terapêutico , Camundongos Endogâmicos C57BL , Camundongos Knockout , Degeneração Neural/complicações , Degeneração Neural/tratamento farmacológico , Degeneração Neural/patologia , Testes Neuropsicológicos , Fenilbutiratos/farmacologia , Fenilbutiratos/uso terapêutico , Agregados Proteicos/efeitos dos fármacos , Trealose/farmacologia , Trealose/uso terapêutico , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Ubiquitinadas/metabolismo
16.
Free Radic Biol Med ; 88(Pt A): 30-41, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25680286

RESUMO

Lafora disease (LD; OMIM 254780, ORPHA501) is a devastating neurodegenerative disorder characterized by the presence of glycogen-like intracellular inclusions called Lafora bodies and caused, in most cases, by mutations in either the EPM2A or the EPM2B gene, encoding respectively laforin, a phosphatase with dual specificity that is involved in the dephosphorylation of glycogen, and malin, an E3-ubiquitin ligase involved in the polyubiquitination of proteins related to glycogen metabolism. Thus, it has been reported that laforin and malin form a functional complex that acts as a key regulator of glycogen metabolism and that also plays a crucial role in protein homeostasis (proteostasis). Regarding this last function, it has been shown that cells are more sensitive to ER stress and show defects in proteasome and autophagy activities in the absence of a functional laforin-malin complex. More recently, we have demonstrated that oxidative stress accompanies these proteostasis defects and that various LD models show an increase in reactive oxygen species and oxidative stress products together with a dysregulated antioxidant enzyme expression and activity. In this review we discuss possible connections between the multiple defects in protein homeostasis present in LD and oxidative stress.


Assuntos
Doença de Lafora/etiologia , Estresse Oxidativo , Deficiências na Proteostase/metabolismo , Antioxidantes/metabolismo , Proteínas de Transporte/genética , Glicogênio/metabolismo , Humanos , Doença de Lafora/metabolismo , Doença de Lafora/fisiopatologia , Mutação , Proteínas Tirosina Fosfatases não Receptoras/genética , Ubiquitina-Proteína Ligases
18.
Epilepsia ; 55(12): e129-33, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25270369

RESUMO

We report clinical, neurophysiologic, and genetic features of an Italian series of patients with Lafora disease (LD) to identify distinguishing features of those with a slowly progressive course. Twenty-three patients with LD (17 female; 6 male) were recruited. Mean age (± SD) at the disease onset was 14.5 ± 3.9 years and mean follow-up duration was 13.2 ± 8.0 years. NHLRC1 mutations were detected in 18 patients; EPM2A mutations were identified in 5. Patients who maintained >10 years gait autonomy were labeled as "mild" and were compared with the remaining LD patients with a typical course. Six of 23 patients were mild and presented significantly delay in the age at onset, lower neurologic disability score at 4 years after the onset, less severe seizure phenotype, lower probability of showing both photoparoxysmal response on electroencephalography (EEG) and giant somatosensory evoked potentials, as compared to patients with typical LD. However, in both mild and typical LD patients, EEG showed disorganization of background activity and frequent epileptiform abnormalities. Mild LD patients had NHLRC1 mutations and five of six carried homozygous or compound heterozygous D146N mutation. This mutation was found in none of the patients with typical LD. The occurrence of specific NHLRC1 mutations in patients with mild LD should be taken into account in clinical practice for appropriate management and counseling.


Assuntos
Proteínas de Transporte/genética , Doença de Lafora , Mutação , Proteínas Tirosina Fosfatases não Receptoras/genética , Adolescente , Adulto , Eletroencefalografia , Feminino , Humanos , Itália , Doença de Lafora/genética , Doença de Lafora/fisiopatologia , Doença de Lafora/terapia , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Ubiquitina-Proteína Ligases , Adulto Jovem
19.
Neurology ; 82(5): 405-11, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24384641

RESUMO

OBJECTIVE: To define the clinical spectrum and etiology of progressive myoclonic epilepsies (PMEs) in Italy using a database developed by the Genetics Commission of the Italian League against Epilepsy. METHODS: We collected clinical and laboratory data from patients referred to 25 Italian epilepsy centers regardless of whether a positive causative factor was identified. PMEs of undetermined origins were grouped using 2-step cluster analysis. RESULTS: We collected clinical data from 204 patients, including 77 with a diagnosis of Unverricht-Lundborg disease and 37 with a diagnosis of Lafora body disease; 31 patients had PMEs due to rarer genetic causes, mainly neuronal ceroid lipofuscinoses. Two more patients had celiac disease. Despite extensive investigation, we found no definitive etiology for 57 patients. Cluster analysis indicated that these patients could be grouped into 2 clusters defined by age at disease onset, age at myoclonus onset, previous psychomotor delay, seizure characteristics, photosensitivity, associated signs other than those included in the cardinal definition of PME, and pathologic MRI findings. CONCLUSIONS: Information concerning the distribution of different genetic causes of PMEs may provide a framework for an updated diagnostic workup. Phenotypes of the patients with PME of undetermined cause varied widely. The presence of separate clusters suggests that novel forms of PME are yet to be clinically and genetically characterized.


Assuntos
Doença de Lafora/diagnóstico , Doença de Lafora/epidemiologia , Síndrome de Unverricht-Lundborg/diagnóstico , Síndrome de Unverricht-Lundborg/epidemiologia , Adolescente , Adulto , Análise por Conglomerados , Feminino , Seguimentos , Humanos , Itália/epidemiologia , Doença de Lafora/fisiopatologia , Masculino , Pessoa de Meia-Idade , Epilepsias Mioclônicas Progressivas/diagnóstico , Epilepsias Mioclônicas Progressivas/epidemiologia , Epilepsias Mioclônicas Progressivas/fisiopatologia , Síndrome de Unverricht-Lundborg/fisiopatologia , Adulto Jovem
20.
Hum Mol Genet ; 23(12): 3147-56, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24452334

RESUMO

Lafora disease is a fatal neurodegenerative condition characterized by the accumulation of abnormal glycogen inclusions known as Lafora bodies. It is an autosomal recessive disorder caused by mutations in either the laforin or malin gene. To study whether glycogen is primarily responsible for the neurodegeneration in Lafora disease, we generated malin knockout mice with impaired (totally or partially) glycogen synthesis. These animals did not show the increase in markers of neurodegeneration, the impairments in electrophysiological properties of hippocampal synapses, nor the susceptibility to kainate-induced epilepsy seen in the malin knockout model. Interestingly, the autophagy impairment that has been described in malin knockout animals was also rescued in this double knockout model. Conversely, two other mouse models in which glycogen is over-accumulated in the brain independently of the lack of malin showed impairment in autophagy. Our findings reveal that glycogen accumulation accounts for the neurodegeneration and functional consequences seen in the malin knockout model, as well as the impaired autophagy. These results identify the regulation of glycogen synthesis as a key target for the treatment of Lafora disease.


Assuntos
Autofagia , Fosfatases de Especificidade Dupla/metabolismo , Glicogênio Sintase/genética , Glicogênio/metabolismo , Doença de Lafora/fisiopatologia , Ubiquitina-Proteína Ligases/genética , Animais , Biomarcadores/metabolismo , Modelos Animais de Doenças , Sinapses Elétricas/metabolismo , Epilepsia/induzido quimicamente , Epilepsia/patologia , Glicogênio Sintase/metabolismo , Hipocampo/fisiologia , Humanos , Corpos de Inclusão/genética , Corpos de Inclusão/metabolismo , Ácido Caínico/farmacologia , Doença de Lafora/metabolismo , Doença de Lafora/patologia , Camundongos , Camundongos Knockout , Mutação , Proteínas Tirosina Fosfatases não Receptoras , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA