Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Heart Rhythm ; 21(3): 331-339, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38008367

RESUMO

BACKGROUND: Brugada syndrome (BrS) is an inherited cardiac arrhythmogenic disease that predisposes patients to sudden cardiac death. It is associated with mutations in SCN5A, which encodes the cardiac sodium channel alpha subunit (NaV1.5). BrS-related mutations have incomplete penetrance and variable expressivity within families. OBJECTIVE: The purpose of this study was to determine the role of patient-specific genetic background on the cellular and clinical phenotype among carriers of NaV1.5_p.V1525M. METHODS: We studied sodium currents from patient-specific human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and heterologously transfected human embryonic kidney (HEK) tsA201 cells using the whole-cell patch-clamp technique. We determined gene and protein expression by quantitative polymerase chain reaction, RNA sequencing, and western blot and performed a genetic panel for arrhythmogenic diseases. RESULTS: Our results showed a large reduction in INa density in hiPSC-CM derived from 2 V1525M single nucleotide variant (SNV) carriers compared with hiPSC-CM derived from a noncarrier, suggesting a dominant-negative effect of the NaV1.5_p.V1525M channel. INa was not affected in hiPSC-CMs derived from a V1525M SNV carrier who also carries the NaV1.5_p.H558R polymorphism. Heterozygous expression of V1525M in HEK-293T cells produced a loss of INa function, not observed when this variant was expressed together with H558R. In addition, the antiarrhythmic drug mexiletine rescued INa function in hiPSC-CM. SCN5A expression was increased in the V1525M carrier who also expresses NaV1.5_p.H558R. CONCLUSION: Our results in patient-specific hiPSC-CM point to a dominant-negative effect of NaV1.5_p.V1525M, which can be reverted by the presence of NaV1.5_p.H558R. Overall, our data points to a role of patient-specific genetic background as a determinant for incomplete penetrance in BrS.


Assuntos
Síndrome de Brugada , Humanos , Sódio/metabolismo , Arritmias Cardíacas/metabolismo , Doença do Sistema de Condução Cardíaco/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo
2.
Cardiovasc Res ; 119(1): 167-182, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35394010

RESUMO

AIMS: Human-induced pluripotent stem cell-cardiomyocytes (hiPSC-CMs) are widely used to study arrhythmia-associated mutations in ion channels. Among these, the cardiac sodium channel SCN5A undergoes foetal-to-adult isoform switching around birth. Conventional hiPSC-CM cultures, which are phenotypically foetal, have thus far been unable to capture mutations in adult gene isoforms. Here, we investigated whether tri-cellular cross-talk in a three-dimensional (3D) cardiac microtissue (MT) promoted post-natal SCN5A maturation in hiPSC-CMs. METHODS AND RESULTS: We derived patient hiPSC-CMs carrying compound mutations in the adult SCN5A exon 6B and exon 4. Electrophysiological properties of patient hiPSC-CMs in monolayer were not altered by the exon 6B mutation compared with isogenic controls since it is not expressed; further, CRISPR/Cas9-mediated excision of the foetal exon 6A did not promote adult SCN5A expression. However, when hiPSC-CMs were matured in 3D cardiac MTs, SCN5A underwent isoform switch and the functional consequences of the mutation located in exon 6B were revealed. Up-regulation of the splicing factor muscleblind-like protein 1 (MBNL1) drove SCN5A post-natal maturation in microtissues since its overexpression in hiPSC-CMs was sufficient to promote exon 6B inclusion, whilst knocking-out MBNL1 failed to foster isoform switch. CONCLUSIONS: Our study shows that (i) the tri-cellular cardiac microtissues promote post-natal SCN5A isoform switch in hiPSC-CMs, (ii) adult splicing of SCN5A is driven by MBNL1 in these tissues, and (iii) this model can be used for examining post-natal cardiac arrhythmias due to mutations in the exon 6B. TRANSLATIONAL PERSPECTIVE: The cardiac sodium channel is essential for conducting the electrical impulse in the heart. Postnatal alternative splicing regulation causes mutual exclusive inclusion of fetal or adult exons of the corresponding gene, SCN5A. Typically, immature hiPSCCMs fall short in studying the effect of mutations located in the adult exon. We describe here that an innovative tri-cellular three-dimensional cardiac microtissue culture promotes hiPSC-CMs maturation through upregulation of MBNL1, thus revealing the effect of a pathogenic genetic variant located in the SCN5A adult exon. These results help advancing the use of hiPSC-CMs in studying adult heart disease and for developing personalized medicine applications.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Adulto , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Processamento Alternativo , Sódio/metabolismo , Arritmias Cardíacas/metabolismo , Doença do Sistema de Condução Cardíaco/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/farmacologia , Potenciais de Ação
3.
Physiol Rep ; 9(22): e15121, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34806324

RESUMO

Variants in the LMNA gene, which encodes for Lamin A/C, are associated with cardiac conduction disease (CCD). We previously reported that Lamin A/C variants p.R545H and p.A287Lfs*193, which were identified in CCD patients, decreased peak INa in HEK-293 cells expressing Nav 1.5. Decreased peak INa in the cardiac conduction system could account for patients' atrioventricular block. We found that serine 22 (Ser 22) phosphorylation of Lamin A/C was decreased in the p.R545H variant and hypothesized that lamin phosphorylation modulated Nav 1.5 activity. To test this hypothesis, we assessed Nav 1.5 function in HEK-293 cells co-transfected with LMNA variants or treated with the small molecule LBL1 (lamin-binding ligand 1). LBL1 decreased Ser 22 phosphorylation by 65% but did not affect Nav 1.5 function. To test the complete loss of phosphorylation, we generated a version of LMNA with serine 22 converted to alanine 22 (S22A-LMNA); and a version of mutant R545H-LMNA that mimics phosphorylation via serine 22 to aspartic acid 22 substitution (S22D-R545H-LMNA). We found that S22A-LMNA inhibited Lamin-mediated activation of peak INa by 63% and shifted voltage-dependency of steady-state inactivation of Nav 1.5. Conversely, S22D-R545H-LMNA abolished the effects of mutant R545H-LMNA on voltage-dependency but not peak INa . We conclude that Lamin A/C Ser 22 phosphorylation can modulate Nav 1.5 function and contributes to the mechanism by which R545H-LMNA alters Nav 1.5 function. The differential impact of complete versus partial loss of Ser 22 phosphorylation suggests a threshold of phosphorylation that is required for full Nav 1.5 modulation. This is the first study to link Lamin A/C phosphorylation to Nav 1.5 function.


Assuntos
Doença do Sistema de Condução Cardíaco/genética , Lamina Tipo A/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Doença do Sistema de Condução Cardíaco/metabolismo , Células HEK293 , Humanos , Lamina Tipo A/metabolismo , Mutação , Mutação de Sentido Incorreto , Técnicas de Patch-Clamp , Fosforilação
4.
J Med Chem ; 64(9): 5384-5403, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33942619

RESUMO

Ventricular cardiac arrhythmia (VA) arises in acquired or congenital heart disease. Long QT syndrome type-3 (LQT3) is a congenital form of VA caused by cardiac sodium channel (INaL) SCN5A mutations that prolongs cardiac action potential (AP) and enhances INaL current. Mexiletine inhibits INaL and shortens the QT interval in LQT3 patients. Above therapeutic doses, mexiletine prolongs the cardiac AP. We explored structure-activity relationships (SAR) for AP shortening and prolongation using dynamic medicinal chemistry and AP kinetics in human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Using patient-derived LQT3 and healthy hiPSC-CMs, we resolved distinct SAR for AP shortening and prolongation effects in mexiletine analogues and synthesized new analogues with enhanced potency and selectivity for INaL. This resulted in compounds with decreased AP prolongation effects, increased metabolic stability, increased INaL selectivity, and decreased avidity for the potassium channel. This study highlights using hiPSC-CMs to guide medicinal chemistry and "drug development in a dish".


Assuntos
Antiarrítmicos/química , Doença do Sistema de Condução Cardíaco/patologia , Síndrome do QT Longo/patologia , Mexiletina/análogos & derivados , Potenciais de Ação/efeitos dos fármacos , Animais , Antiarrítmicos/farmacologia , Comportamento Animal/efeitos dos fármacos , Doença do Sistema de Condução Cardíaco/metabolismo , Células Cultivadas , Desenho de Fármacos , Estabilidade de Medicamentos , Meia-Vida , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Síndrome do QT Longo/metabolismo , Masculino , Mexiletina/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
5.
Cell Physiol Biochem ; 55(S3): 87-107, 2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33667333

RESUMO

Potassium channels of the tandem of two-pore-domain (K2P) family were among the last potassium channels cloned. However, recent progress in understanding their physiological relevance and molecular pharmacology revealed their therapeutic potential and thus these channels evolved as major drug targets against a large variety of diseases. However, after the initial cloning of the fifteen family members there was a lack of potent and/or selective modulators. By now a large variety of K2P channel modulators (activators and blockers) have been described, especially for TASK-1, TASK-3, TREK-1, TREK2, TRAAK and TRESK channels. Recently obtained crystal structures of K2P channels, alanine scanning approaches to map drug binding sites, in silico experiments with molecular dynamics simulations (MDs) combined with electrophysiological studies to reveal the mechanism of channel inhibition/activation, yielded a good understanding of the molecular pharmacology of these channels. Besides summarizing drugs that were identified to modulate K2P channels, the main focus of this article is on describing the differential binding sites and mechanisms of channel modulation that are utilized by the different K2P channel blockers and activators.


Assuntos
Doença do Sistema de Condução Cardíaco/tratamento farmacológico , Moduladores de Transporte de Membrana/farmacologia , Transtornos de Enxaqueca/tratamento farmacológico , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Potássio/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Sítios de Ligação , Doença do Sistema de Condução Cardíaco/genética , Doença do Sistema de Condução Cardíaco/metabolismo , Doença do Sistema de Condução Cardíaco/patologia , Expressão Gênica , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Transporte de Íons , Ligantes , Moduladores de Transporte de Membrana/química , Moduladores de Transporte de Membrana/classificação , Transtornos de Enxaqueca/genética , Transtornos de Enxaqueca/metabolismo , Transtornos de Enxaqueca/patologia , Simulação de Dinâmica Molecular , Especificidade de Órgãos , Canais de Potássio de Domínios Poros em Tandem/classificação , Canais de Potássio de Domínios Poros em Tandem/genética , Ligação Proteica , Isoformas de Proteínas/classificação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Secundária de Proteína
6.
Med Mol Morphol ; 54(3): 259-264, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33651170

RESUMO

A 16-year-old Japanese man was admitted to our hospital because of syncope during exercise. His father and his younger brother had permanent pacemaker implantation because of sick sinus syndrome. Several examinations revealed first-degree atrioventricular block, complete right bundle branch block, sick sinus syndrome, and ventricular tachycardia with normal cardiac function. As no abnormalities were evident on coronary angiography, right ventricular endomyocardial biopsy was performed. It showed myocardial disarrangement and lipofuscin accumulation in hypertrophic myocytes. Moreover, electron microscopy showed a few degenerative myocytes, Z-band streaming, disarrangement, increased small capillaries with Weibel-Palade bodies in endothelial cells, and endothelial proliferations. Genetic analysis of the proband, his father, and his younger brother revealed a missense mutation, D1275N, in SCN5A, a gene which encodes sodium ion channel protein, are related to cardiomyopathy and arrhythmia. The proband was diagnosed with a cardiac conduction defect (CCD) and underwent permanent pacemaker implantation. These pathological findings suggest various myocardial changes presented in CCD patients with a missense mutation, D1275N, in SCN5A.


Assuntos
Doença do Sistema de Condução Cardíaco/genética , Mutação de Sentido Incorreto , Miocárdio/patologia , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Adolescente , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , Doença do Sistema de Condução Cardíaco/metabolismo , Doença do Sistema de Condução Cardíaco/patologia , Doença do Sistema de Condução Cardíaco/terapia , Humanos , Masculino , Linhagem
7.
Pflugers Arch ; 473(3): 377-387, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33404893

RESUMO

Sudden cardiac death due to malignant ventricular arrhythmias remains the major cause of mortality in the postindustrial world. Defective intracellular Ca2+ homeostasis has been well established as a key contributing factor to the enhanced propensity for arrhythmia in acquired cardiac disease, such as heart failure or diabetic cardiomyopathy. More recent advances provide a strong basis to the emerging view that hereditary cardiac arrhythmia syndromes are accompanied by maladaptive remodeling of Ca2+ homeostasis which substantially increases arrhythmic risk. This brief review will focus on functional changes in elements of Ca2+ handling machinery in cardiomyocytes that occur secondary to genetic mutations associated with catecholaminergic polymorphic ventricular tachycardia, and long QT syndrome.


Assuntos
Cálcio/metabolismo , Doença do Sistema de Condução Cardíaco/metabolismo , Homeostase/fisiologia , Miócitos Cardíacos/metabolismo , Animais , Humanos
8.
J Mol Cell Cardiol ; 153: 60-71, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33373643

RESUMO

Cardiac action potentials are initiated by sodium ion (Na+) influx through voltage-gated Na+ channels. Na+ channel gain-of-function (GOF) can arise in inherited conditions due to mutations in the gene encoding the cardiac Na+ channel, such as Long QT syndrome type 3 (LQT3). LQT3 can be a "concealed" disease, as patients with LQT3-associated mutations can remain asymptomatic until later in life; however, arrhythmias can also arise early in life in LQT3 patients, demonstrating a complex age-associated manifestation. We and others recently demonstrated that cardiac Na+ channels preferentially localize at the intercalated disc (ID) in adult cardiac tissue, which facilitates ephaptic coupling and formation of intercellular Na+ nanodomains that regulate pro-arrhythmic early afterdepolarization (EAD) formation in tissue with Na+ channel GOF. Several properties related to ephaptic coupling vary with age, such as cell size and Na+ channel and gap junction (GJ) expression and distribution: neonatal cells have immature IDs, with Na+ channels and GJs primarily diffusively distributed, while adult myocytes have mature IDs with preferentially localized Na+ channels and GJs. Here, we perform an in silico study varying critical age-dependent parameters to investigate mechanisms underlying age-associated manifestation of Na+ channel GOF in a model of guinea pig cardiac tissue. Simulations predict that total Na+ current conductance is a critical factor in action potential duration (APD) prolongation. We find a complex cell size/ Na+ channel expression relationship: increases in cell size (without concurrent increases in Na+ channel expression) suppress EAD formation, while increases in Na+ channel expression (without concurrent increases in cell size) promotes EAD formation. Finally, simulations with neonatal and early age-associated parameters predict normal APD with minimal dependence on intercellular cleft width; however, variability in cellular properties can lead to EADs presenting in early developmental stages. In contrast, for adult-associated parameters, EAD formation is highly dependent on cleft width, consistent with a mechanism underlying the age-associated manifestation of the Na+ channel GOF.


Assuntos
Potenciais de Ação , Arritmias Cardíacas/patologia , Doença do Sistema de Condução Cardíaco/metabolismo , Mutação com Ganho de Função , Junções Comunicantes/fisiologia , Síndrome do QT Longo/metabolismo , Miócitos Cardíacos/patologia , Sódio/metabolismo , Adulto , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Doença do Sistema de Condução Cardíaco/genética , Humanos , Recém-Nascido , Síndrome do QT Longo/genética , Miócitos Cardíacos/metabolismo
9.
Cell Physiol Biochem ; 54(4): 696-706, 2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32706220

RESUMO

BACKGROUND/AIMS: Mutations of desmosomal genes are known to cause arrhythmogenic cardiomyopathy characterized by arrhythmias and sudden cardiac death. Previously, we described a novel genetic variant H1684R in desmoplakin gene (DSP), associated with a progressive cardiac conduction disease (PCCD). In the present study, we aimed to investigate an effect of the DSP-H1684R genetic variant on the activity of ion channels. METHODS: We used cardiomyocytes derived from induced pluripotent stem cells (iPSC cardiomyocytes) from a patient with DSP-H1684R genetic variant and from two healthy donors. Immunofluorescent staining and western blot analyses were used to characterize patient-specific cardiomyocytes. By the whole-cell voltage-clamp technique we estimated the activity of voltage-gated sodium, calcium, and potassium channels that are responsible for action potential generation and its shape. Action potentials' parameters were measured using whole-cell current-clamp technique. RESULTS: In patient-specific cardiomyocytes we observed both lower amplitudes of currents through sodium Nav1.5 channels and L-type calcium channels, but higher amplitude of current through transient-outward potassium channels in comparison to donor cardiomyocytes. Current-clamp measurements revealed shortening of action-potential in DSP-H1684R-carrying iPSC cardiomyocytes. Therefore, observed alterations in the channels activity might have a great impact on the properties of action potential and development of PCCD. CONCLUSION: Our results show that desmoplakin genetic variants, besides conduction slowing caused by structural heart remodeling, could affect multiple ion channel activity aggravating arrhythmia manifestation in PCCD.


Assuntos
Doença do Sistema de Condução Cardíaco/genética , Desmoplaquinas/genética , Bloqueio Cardíaco/genética , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Canais Iônicos/fisiologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Potenciais de Ação/fisiologia , Canais de Cálcio/fisiologia , Doença do Sistema de Condução Cardíaco/metabolismo , Desmoplaquinas/metabolismo , Imunofluorescência , Bloqueio Cardíaco/metabolismo , Humanos , Canais Iônicos/metabolismo , Técnicas de Patch-Clamp , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Canais de Sódio Disparados por Voltagem/fisiologia
10.
Biomolecules ; 10(6)2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599724

RESUMO

Type 3 long QT syndromes (LQT3) are associated with arrhythmogenic gain-of-function mutations in the cardiac voltage-gated Na+ channel (hNaV1.5). The citrus flavanone hesperetin (HSP) was previously suggested as a template molecule to develop new anti-arrhythmic drugs, as it blocks slowly-inactivating currents carried by the LQT3-associated hNaV1.5 channel mutant R1623Q. Here we investigated whether HSP also has potentially beneficial effects on another LQT3 hNaV1.5 channel variant, the ΔKPQ, which is associated to lethal ventricular arrhythmias. We used whole-cell patch-clamp to record Na+ currents (INa) in HEK293T cells transiently expressing hNaV1.5 wild type or ΔKPQ mutant channels. HSP blocked peak INa and the late INa carried by ΔKPQ mutant channels with an effective concentration of ≈300 µM. This inhibition was largely voltage-independent and tonic. HSP decreased the rate of inactivation of ΔKPQ channels and, consequently, was relatively weak in reducing the intracellular Na+ load in this mutation. We conclude that, although HSP has potential value for the treatment of the R1623Q LQT3 variant, this compound is inadequate to treat the LQT3 associated to the ΔKPQ genetic variant. Our results underscore the precision medicine rationale of better understanding the basic pathophysiological and pharmacological mechanisms to provide phenotype- genotype-directed individualization of treatment.


Assuntos
Antiarrítmicos/farmacologia , Doença do Sistema de Condução Cardíaco/tratamento farmacológico , Citrus/química , Hesperidina/farmacologia , Síndrome do QT Longo/tratamento farmacológico , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Doença do Sistema de Condução Cardíaco/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Síndrome do QT Longo/metabolismo , Mutação , Canal de Sódio Disparado por Voltagem NAV1.5/genética
11.
Am J Physiol Heart Circ Physiol ; 318(6): H1436-H1440, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32383994

RESUMO

Cardiac arrhythmias significantly contribute to mortality in Duchenne muscular dystrophy (DMD), a degenerative muscle disease triggered by mutations in the gene encoding for the intracellular protein dystrophin. A major source for the arrhythmias in patients with DMD is impaired ventricular impulse conduction, which predisposes for ventricular asynchrony, decreased cardiac output, and the development of reentrant mechanisms. The reason for ventricular conduction impairments and the associated arrhythmias in the dystrophic heart has remained unidentified. In the present study, we explored the hypothesis that dystrophin-deficient cardiac Purkinje fibers have reduced Na+ currents (INa), which would represent a potential mechanism underlying slowed ventricular conduction in the dystrophic heart. Therefore, by using a Langendorff perfusion system, we isolated Purkinje fibers from the hearts of adult wild-type control and dystrophin-deficient mdx mice. Enhanced green fluorescent protein (eGFP) expression under control of the connexin 40 gene allowed us to discriminate Purkinje fibers from eGFP-negative ventricular working cardiomyocytes after cell isolation. Finally, we recorded INa from wild-type and dystrophic mdx Purkinje fibers for comparison by means of the whole cell patch clamp technique. We found substantially reduced INa densities in mdx compared with wild-type Purkinje fibers, suggesting that dystrophin deficiency diminishes INa. Because Na+ channels in the Purkinje fiber membrane represent key determinants of ventricular conduction velocity, we propose that reduced INa in Purkinje fibers at least partly explains impaired ventricular conduction and the associated arrhythmias in the dystrophic heart.NEW & NOTEWORTHY Dystrophic cardiac Purkinje fibers have abnormally reduced Na+ current densities. This explains impaired ventricular conduction in the dystrophic heart.


Assuntos
Arritmias Cardíacas/metabolismo , Doença do Sistema de Condução Cardíaco/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Ramos Subendocárdicos/metabolismo , Canais de Sódio/metabolismo , Potenciais de Ação/fisiologia , Animais , Arritmias Cardíacas/complicações , Arritmias Cardíacas/fisiopatologia , Doença do Sistema de Condução Cardíaco/complicações , Doença do Sistema de Condução Cardíaco/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/complicações , Distrofia Muscular de Duchenne/fisiopatologia , Sódio/metabolismo
12.
Eur J Pharmacol ; 881: 173131, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32450177

RESUMO

Cardiac conduction delay may occur as a common complication of several cardiac diseases. A few therapies and drugs have a good effect on cardiac conduction delay. Metformin (Met) has a protective effect on the heart. This study's aim was to investigate whether Met could ameliorate cardiac conduction delay and its potential mechanism. Cardiac-specific microRNA-1 (miR-1) transgenic (TG) and myocardial infarction (MI) mouse models were used. Mice were administered with Met in an intragastric manner. We found that the expression of miR-1 was significantly up-regulated in H2O2 treated cardiomyocytes as well as in TG and MI mice. The protein levels of inwardly rectifying potassium channel 2.1 (Kir2.1) and Connexin43 (CX43) were down-regulated both in cardiomyocytes treated with H2O2 as well as cardiac tissues of TG and MI mice, as compared to their controls. Furthermore, the PR and QT intervals were prolonged, action potential duration (APD) was delayed, and conduction velocity (CV) was reduced, with upregulation of miR-1 in the hearts. In the meanwhile, intercalated disc injuries were found in the hearts of MI mice. Interestingly, Met can noticeably inhibit miR-1 upregulation and attenuate the changes mentioned above. Taken together, this suggested that Met could play an important role in improving cardiac conduction delay through inhibition of miR-1 expression. Our study proposes that Met is a potential candidate for the treatment of cardiac conduction delay and provides a new idea of treating arrhythmia with a drug.


Assuntos
Antiarrítmicos/farmacologia , Doença do Sistema de Condução Cardíaco/prevenção & controle , Sistema de Condução Cardíaco/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Metformina/farmacologia , MicroRNAs/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Doença do Sistema de Condução Cardíaco/genética , Doença do Sistema de Condução Cardíaco/metabolismo , Doença do Sistema de Condução Cardíaco/fisiopatologia , Conexina 43/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Sistema de Condução Cardíaco/metabolismo , Sistema de Condução Cardíaco/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/genética , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Transdução de Sinais
13.
J Mol Cell Cardiol ; 144: 1-11, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32339567

RESUMO

BACKGROUND: Genetic variants in SCN5A can result in channelopathies such as the long QT syndrome type 3 (LQT3), but the therapeutic response to Na+ channel blockers can vary. We previously reported a case of an infant with malignant LQT3 and a missense Q1475P SCN5A variant, who was effectively treated with phenytoin, but only partially with mexiletine. Here, we functionally characterized this variant and investigated possible mechanisms for the differential drug actions. METHODS: Wild-type or mutant Nav1.5 cDNAs were examined in transfected HEK293 cells with patch clamping and biochemical assays. We used computational modeling to provide insights into altered channel kinetics and to predict effects on the action potential. RESULTS: The Q1475P variant in Nav1.5 reduced the current density and channel surface expression, characteristic of a trafficking defect. The variant also led to positive shifts in the voltage dependence of steady-state activation and inactivation, faster inactivation and recovery from inactivation, and increased the "late" Na+ current. Simulations of Nav1.5 gating with a 9-state Markov model suggested that transitions from inactivated to closed states were accelerated in Q1475P channels, leading to accumulation of channels in non-inactivated closed states. Simulations with a human ventricular myocyte model predicted action potential prolongation with Q1475P, compared with wild type, channels. Patch clamp data showed that mexiletine and phenytoin similarly rescued some of the gating defects. Chronic incubation with mexiletine, but not phenytoin, rescued the Nav1.5-Q1475P trafficking defect, thus increasing mutant channel expression. CONCLUSIONS: The gain-of-function effects of Nav1.5-Q1475P predominate to cause a malignant long QT phenotype. Phenytoin partially corrects the gating defect without restoring surface expression of the mutant channel, whereas mexiletine restores surface expression of the mutant channel, which may explain the lack of efficacy of mexiletine when compared to phenytoin. Our data makes a case for experimental studies before embarking on a one-for-all therapy of arrhythmias.


Assuntos
Doença do Sistema de Condução Cardíaco/etiologia , Gerenciamento Clínico , Suscetibilidade a Doenças , Síndrome do QT Longo/etiologia , Fenitoína/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/uso terapêutico , Potenciais de Ação/efeitos dos fármacos , Substituição de Aminoácidos , Antiarrítmicos/farmacologia , Doença do Sistema de Condução Cardíaco/diagnóstico , Doença do Sistema de Condução Cardíaco/tratamento farmacológico , Doença do Sistema de Condução Cardíaco/metabolismo , Células Cultivadas , Mutação com Ganho de Função , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Síndrome do QT Longo/diagnóstico , Síndrome do QT Longo/tratamento farmacológico , Síndrome do QT Longo/metabolismo , Modelos Biológicos , Mutação de Sentido Incorreto , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Técnicas de Patch-Clamp , Fenitoína/uso terapêutico
14.
Eur J Clin Invest ; 50(6): e13247, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32307703

RESUMO

BACKGROUND: The mechanism underlying the occurrence of the J wave in low temperature remains unclear. However, low temperature is associated with metabolic disorder and 5' AMP-activated protein kinase (AMPK), which modulates ionic currents and cardiac metabolism. This study investigated whether AMPK regulation can modulate the occurrence of the J wave at low temperature. METHODS: Unipolar and bipolar leads were used to record monophasic action potential (the endocardium and epicardium) and pseudo-electrocardiograms (inferior leads) to study the cardiac electrical activity. Measurements were taken in isolated Langendorff rabbit hearts at both 30℃ and 37℃ before and after administration of 4-aminopyridine (an ultrarapid delayed rectifier potassium current inhibitor, IKur , 50 µmol L-1 ), PF06409577 (an AMPK activator, 1 µmol L-1 ), compound C (an AMPK inhibitor, 10 µmol L-1 ) and glibenclamide (an ATP-sensitive inward rectifier potassium channel inhibitor, IKATP , 20 µmol L-1 ). RESULTS: The amplitude of the J wave (2.46 ± 0.34 mV vs. 1.11 ± 0.23 mV, P < .01) at 30℃ (n = 15) was larger than that at 37℃ (n = 15). PF06409577 (1 µmol L-1 ) increased the J waves at both 30℃ and 37℃. In contrast, compound C (10 µmol L-1 ) reduced J wave at both 37℃ and 30℃. Low-temperature-induced J waves were individually suppressed by 4-AP (50 µmol L-1 ) and glibenclamide (20 µmol L-1 ). CONCLUSIONS: AMPK inhibition reduces low-temperature-induced J waves and possible ventricular arrhythmogenesis by modulating IKATP and IKur channels.


Assuntos
Potenciais de Ação/fisiologia , Adenilato Quinase/metabolismo , Temperatura Baixa , Coração/fisiopatologia , Hipotermia/fisiopatologia , Adenilato Quinase/antagonistas & inibidores , Aminopiridinas/farmacologia , Animais , Doença do Sistema de Condução Cardíaco/metabolismo , Doença do Sistema de Condução Cardíaco/fisiopatologia , Eletrocardiografia , Ativadores de Enzimas/farmacologia , Glibureto/farmacologia , Coração/efeitos dos fármacos , Hipotermia/metabolismo , Preparação de Coração Isolado , Canais KATP/metabolismo , Coelhos
15.
Cardiovasc Res ; 116(13): 2116-2130, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31977013

RESUMO

AIMS: The genetic cause of cardiac conduction system disease (CCSD) has not been fully elucidated. Whole-exome sequencing (WES) can detect various genetic variants; however, the identification of pathogenic variants remains a challenge. We aimed to identify pathogenic or likely pathogenic variants in CCSD patients by using WES and 2015 American College of Medical Genetics and Genomics (ACMG) standards and guidelines as well as evaluating the usefulness of functional studies for determining them. METHODS AND RESULTS: We performed WES of 23 probands diagnosed with early-onset (<65 years) CCSD and analysed 117 genes linked to arrhythmogenic diseases or cardiomyopathies. We focused on rare variants (minor allele frequency < 0.1%) that were absent from population databases. Five probands had protein truncating variants in EMD and LMNA which were classified as 'pathogenic' by 2015 ACMG standards and guidelines. To evaluate the functional changes brought about by these variants, we generated a knock-out zebrafish with CRISPR-mediated insertions or deletions of the EMD or LMNA homologs in zebrafish. The mean heart rate and conduction velocities in the CRISPR/Cas9-injected embryos and F2 generation embryos with homozygous deletions were significantly decreased. Twenty-one variants of uncertain significance were identified in 11 probands. Cellular electrophysiological study and in vivo zebrafish cardiac assay showed that two variants in KCNH2 and SCN5A, four variants in SCN10A, and one variant in MYH6 damaged each gene, which resulted in the change of the clinical significance of them from 'Uncertain significance' to 'Likely pathogenic' in six probands. CONCLUSION: Of 23 CCSD probands, we successfully identified pathogenic or likely pathogenic variants in 11 probands (48%). Functional analyses of a cellular electrophysiological study and in vivo zebrafish cardiac assay might be useful for determining the pathogenicity of rare variants in patients with CCSD. SCN10A may be one of the major genes responsible for CCSD.


Assuntos
Doença do Sistema de Condução Cardíaco/genética , Sequenciamento do Exoma , Variação Genética , Frequência Cardíaca/genética , Potenciais de Ação/genética , Adulto , Idade de Início , Idoso , Animais , Doença do Sistema de Condução Cardíaco/epidemiologia , Doença do Sistema de Condução Cardíaco/metabolismo , Doença do Sistema de Condução Cardíaco/fisiopatologia , Estudos de Casos e Controles , Simulação por Computador , Canal de Potássio ERG1/genética , Feminino , Frequência do Gene , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Japão/epidemiologia , Lamina Tipo A/genética , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Modelos Cardiovasculares , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Proteínas Nucleares/genética , Fenótipo , Valor Preditivo dos Testes , Medição de Risco , Fatores de Risco , Adulto Jovem , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
16.
Int J Cardiol ; 298: 85-92, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31668660

RESUMO

AIMS: To recapitulate progressive human dilated cardiomyopathy (DCM) and heart block in the Lmna R225X mutant mice model and investigate the molecular basis of LMNA mutation induced cardiac conduction disorders (CD); To investigate the potential interventional impact of exercise endurance. METHODS AND RESULTS: A Lmna R225X knock-in mice model in either heterozygous or homozygous genotype was generated. Electrical remodeling was observed with higher occurrence of AV block from neonatal and aged mutant mice as measured by surface electrocardiogram and atrio-ventricular Wenckebach point detection. Histological and molecular profiles revealed an increase in apoptotic cells and activation of caspase-3 activities in heart tissue. Upon aging, extracellular cellular matrix (ECM) remodeling appeared with accumulation of collagen in Lmna R225X mutant hearts as visualized by Masson's trichrome stain. This could be explained by the upregulated ECM gene expression, such as Fibronectin: Fn1, collagen: Col12a1, intergrin: Itgb2 and 3, as detected by microarray gene chip. Also, endurance exercise for 3 month improved the ventricular ejection fraction, attenuated fibrosis and cardiomyocytes apoptosis in the aged mutant mice. CONCLUSIONS: The mechanism of LMNA nonsense mutation induced cardiac conduction defects through AV node fibrosis is due to upregulated ECM gene expression upon activation of cardiac apoptosis. Lmna R225X mutant mice hold the potential for serving as in vivo models to explore the mechanism and therapeutic methods for AV block or myopathy associated with the aging process.


Assuntos
Doença do Sistema de Condução Cardíaco/genética , Cardiomiopatia Dilatada/genética , Códon sem Sentido/genética , Lamina Tipo A/genética , Condicionamento Físico Animal/fisiologia , Animais , Animais Recém-Nascidos , Doença do Sistema de Condução Cardíaco/metabolismo , Doença do Sistema de Condução Cardíaco/terapia , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/terapia , Expressão Gênica , Técnicas de Introdução de Genes/métodos , Frequência Cardíaca/fisiologia , Lamina Tipo A/biossíntese , Camundongos , Condicionamento Físico Animal/métodos
17.
Channels (Austin) ; 12(1): 176-186, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29983085

RESUMO

INTRODUCTION: Individual mutations in the SCN5A-encoding cardiac sodium channel α-subunit usually cause a single cardiac arrhythmia disorder, some cause mixed biophysical or clinical phenotypes. Here we report an infant, female patient harboring a N406K mutation in SCN5A with a marked and mixed biophysical phenotype and assess pathogenic mechanisms. METHODS AND RESULTS: A patient suffered from recurrent seizures during sleep and torsades de pointes with a QTc of 530 ms. Mutational analysis identified a N406K mutation in SCN5A. The mutation was engineered by site-directed mutagenesis and heterologously expressed in HEK293 cells. After 48 hours incubation with and without mexiletine, macroscopic voltage-gated sodium current (INa) was measured with standard whole-cell patch clamp techniques. SCN5A-N406K elicited both a significantly decreased peak INa and a significantly increased late INa compared to wide-type (WT) channels. Furthermore, mexiletine both restored the decreased peak INa of the mutant channel and inhibited the increased late INa of the mutant channel. CONCLUSION: SCN5A-N406K channel displays both "gain-of-function" in late INa and "loss-of-function" in peak INa density contributing to a mixed biophysical phenotype. Moreover, our finding may provide the first example that mexiletine exerts a dual rescue of both "gain-of-function" and "loss-of-function" of the mutant sodium channel.


Assuntos
Antiarrítmicos/farmacologia , Doença do Sistema de Condução Cardíaco/tratamento farmacológico , Doença do Sistema de Condução Cardíaco/genética , Síndrome do QT Longo/tratamento farmacológico , Síndrome do QT Longo/genética , Mexiletina/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Doença do Sistema de Condução Cardíaco/metabolismo , Feminino , Células HEK293 , Humanos , Lactente , Síndrome do QT Longo/metabolismo , Mutação , Fenótipo
19.
Sci Rep ; 8(1): 3643, 2018 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-29483621

RESUMO

E1784K is the most common mixed syndrome SCN5a mutation underpinning both Brugada syndrome type 1 (BrS1) and Long-QT syndrome type 3 (LQT3). The charge reversal mutant enhances the late sodium current (INa) passed by the cardiac voltage-gated sodium channel (NaV1.5), delaying cardiac repolarization. Exercise-induced triggers, like elevated temperature and cytosolic calcium, exacerbate E1784K late INa. In this study, we tested the effects of Ranolazine, the late INa blocker, on voltage-dependent and kinetic properties of E1784K at elevated temperature and cytosolic calcium. We used whole-cell patch clamp to measure INa from wild type and E1784K channels expressed in HEK293 cells. At elevated temperature, Ranolazine attenuated gain-of-function in E1784K by decreasing late INa, hyperpolarizing steady-state fast inactivation, and increasing use-dependent inactivation. Both elevated temperature and cytosolic calcium hampered the capacity of Ranolazine to suppress E1784K late INa. In-silico action potential (AP) simulations were done using a modified O'Hara Rudy (ORd) cardiac model. Simulations showed that Ranolazine failed to shorten AP duration, an effect augmented at febrile temperatures. The drug-channel interaction is clearly affected by external triggers, as reported previously with ischemia. Determining drug efficacy under various physiological states in SCN5a cohorts is crucial for accurate management of arrhythmias.


Assuntos
Síndrome de Brugada/metabolismo , Cálcio/metabolismo , Doença do Sistema de Condução Cardíaco/metabolismo , Síndrome do QT Longo/metabolismo , Ranolazina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Síndrome de Brugada/genética , Doença do Sistema de Condução Cardíaco/genética , Células HEK293 , Humanos , Síndrome do QT Longo/genética , Mutação/genética , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Sódio/metabolismo , Temperatura
20.
Endocrinol Metab Clin North Am ; 47(1): 51-63, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29407056

RESUMO

The most common cause of death among adults with diabetes is cardiovascular disease (CVD). In this concise review on pathogenesis of CVD in diabetes, the 4 common conditions, atherosclerosis, microangiopathy, diabetic cardiomyopathy, and cardiac autonomic neuropathy, are explored and illustrated to be caused by interrelated pathogenetic factors. Each of these diagnoses can present alone or, commonly, along with others due to overlapping pathophysiology. Although the spectrum of physiologic abnormalities that characterize the diabetes milieu is broad and go beyond hyperglycemia, the authors highlight the most relevant evidence supporting the current knowledge of potent factors that contribute to CVD in diabetes.


Assuntos
Aterosclerose/etiologia , Doença do Sistema de Condução Cardíaco/etiologia , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 2/complicações , Angiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/etiologia , Neuropatias Diabéticas/etiologia , Aterosclerose/metabolismo , Doença do Sistema de Condução Cardíaco/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Angiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Neuropatias Diabéticas/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA