Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 384
Filtrar
1.
Biomed Pharmacother ; 173: 116334, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38422658

RESUMO

Neutrophil extracellular traps (NETs) have emerged as a critical factor in malignant hematologic disease pathogenesis. These structures, comprising DNA, histones, and cytoplasmic proteins, were initially recognized for their role in immune defense against microbial threats. Growing evidence suggests that NETs contribute to malignant cell progression and dissemination, representing a double-edged sword. However, there is a paucity of reports on its involvement in hematological disorders. A comprehensive understanding of the intricate relationship between malignant cells and NETs is necessary to explore effective therapeutic strategies. This review highlights NET formation and mechanisms underlying disease pathogenesis. Moreover, we discuss recent advancements in targeted inhibitor development for selective NET disruption, empowering precise design and efficacious therapeutic interventions for malignant hematologic diseases.


Assuntos
Armadilhas Extracelulares , Doenças Hematológicas , Neoplasias Hematológicas , Neoplasias , Humanos , Neutrófilos/metabolismo , Histonas/metabolismo , DNA/metabolismo , Neoplasias Hematológicas/metabolismo , Neoplasias/patologia , Doenças Hematológicas/metabolismo
2.
Exp Hematol ; 128: 10-18, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37816445

RESUMO

Our dietary choices significantly impact all the cells in our body. Increasing evidence suggests that diet-derived metabolites influence hematopoietic stem cell (HSC) metabolism and function, thereby actively modulating blood homeostasis. This is of particular relevance because regulating the metabolic activity of HSCs is crucial for maintaining stem cell fitness and mitigating the risk of hematologic disorders. In this review, we examine the current scientific knowledge of the impact of diet on stemness features, and we specifically highlight the established mechanisms by which dietary components modulate metabolic and transcriptional programs in adult HSCs. Gaining a deeper understanding of how nutrition influences our HSC compartment may pave the way for targeted dietary interventions with the potential to decelerate aging and improve the effectiveness of transplantation and cancer therapies.


Assuntos
Doenças Hematológicas , Células-Tronco Hematopoéticas , Humanos , Células-Tronco Hematopoéticas/metabolismo , Envelhecimento/fisiologia , Doenças Hematológicas/metabolismo
3.
Exp Hematol ; 127: 8-13, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37647982

RESUMO

Chronic inflammation, although subtle, puts the body in a constant state of alertness and is associated with many diseases, including cancer and cardiovascular diseases. It leads hematopoietic cells to produce and release proinflammatory cytokines, which trigger specific signaling pathways in hematopoietic stem cells (HSCs) that cause changes in proliferation, differentiation, and migration. This response is essential when HSCs are needed to produce specific blood cells to eliminate an intruder, such as a pathogenic virus, but mutant HSCs can use these proinflammatory signals to their advantage and accelerate the development of hematologic disease or malignancy. Understanding this complex process is vital for monitoring and controlling disease progression in patients. In the 2023 International Society for Experimental Hematology winter webinar, Dr. Eric Pietras (University of Colorado Anschutz Medical Campus, United States) and Dr. Katherine Y. King (Baylor College of Medicine, United States) gave a presentation on this topic, which is summarized in this review article.


Assuntos
Doenças Hematológicas , Células-Tronco Hematopoéticas , Humanos , Células-Tronco Hematopoéticas/metabolismo , Diferenciação Celular , Transdução de Sinais , Doenças Hematológicas/metabolismo , Inflamação/patologia
4.
Exp Hematol ; 125-126: 1-5, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37433369

RESUMO

Aging of hematopoietic stem cells (HSCs) is characterized by lineage bias, increased clonal expansion, and functional decrease. At the molecular level, aged HSCs typically display metabolic dysregulation, upregulation of inflammatory pathways, and downregulation of DNA repair pathways. Cellular aging of HSCs, driven by cell-intrinsic and cell-extrinsic factors, causes a predisposition to anemia, adaptive immune compromise, myelodys, plasia, and malignancy. Most hematologic diseases are strongly associated with age. But what is the biological foundation for decreased fitness with age? And are there therapeutic windows to resolve age-related hematopoietic decline? These questions were the focus of the International Society for Experimental Hematology (ISEH) New Investigator Committee Fall 2022 Webinar. This review touches on the latest insights from two leading laboratories into inflammatory- and niche-driven stem cell aging and includes speculation on strategies to prevent or correct age-related decline in HSC function.


Assuntos
Envelhecimento , Doenças Hematológicas , Humanos , Idoso , Envelhecimento/patologia , Células-Tronco Hematopoéticas/metabolismo , Senescência Celular/genética , Doenças Hematológicas/metabolismo
5.
Front Immunol ; 13: 1041010, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36561751

RESUMO

With the major advances in cancer immunology and immunotherapy, it is critical to consider that most immune cells are short-lived and need to be continuously replenished from hematopoietic stem and progenitor cells. Hematologic abnormalities are prevalent in cancer patients, and many ground-breaking studies over the past decade provide insights into their underlying cellular and molecular mechanisms. Such studies demonstrate that the dysfunction of hematopoiesis is more than a side-effect of cancer pathology, but an important systemic feature of cancer disease. Here we review these many advances, covering the cancer-associated phenotypes of hematopoietic stem and progenitor cells, the dysfunction of myelopoiesis and erythropoiesis, the importance of extramedullary hematopoiesis in cancer disease, and the developmental origins of tumor associated macrophages. We address the roles of many secreted mediators, signaling pathways, and transcriptional and epigenetic mechanisms that mediate such hematopoietic dysfunction. Furthermore, we discuss the important contribution of the hematopoietic dysfunction to cancer immunosuppression, the possible avenues for therapeutic intervention, and highlight the unanswered questions and directions for future work. Overall, hematopoietic dysfunction is established as an active component of the cancer disease mechanisms and an important target for therapeutic intervention.


Assuntos
Doenças Hematológicas , Neoplasias , Humanos , Células-Tronco Hematopoéticas/metabolismo , Hematopoese/genética , Neoplasias/metabolismo , Mielopoese , Doenças Hematológicas/metabolismo , Progressão da Doença
6.
Biomed Pharmacother ; 153: 113519, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36076604

RESUMO

Secreted protein acidic and rich in cysteine (SPARC), also known as osteonectin or BM-40, is a matricellular protein involved in several biological processes including cell adhesion, growth factor availability, extracellular matrix remodeling and immune-regulation. SPARC has also been associated with a variety of diseases including diabetes, colon cancer, and leukemia. The expression of SPARC in different diseases exhibits some degree of ambiguity, especially in hemopathies. Herein, we review the current expression and effects of SPARC in various hematologic disorders with respect to nanoparticle albumin bound innovative therapies and related diagnostic research, providing a clinical perspective on the use of NAB technology in the frontier treatment of hematologic diseases.


Assuntos
Neoplasias Hematológicas , Osteonectina , Albuminas , Adesão Celular , Matriz Extracelular/metabolismo , Doenças Hematológicas/genética , Doenças Hematológicas/metabolismo , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/metabolismo , Humanos , Osteonectina/genética , Osteonectina/metabolismo
7.
Biomolecules ; 12(6)2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35740926

RESUMO

Microvesicles or ectosomes represent a major type of extracellular vesicles that are formed by outward budding of the plasma membrane. Typically, they are bigger than exosomes but smaller than apoptotic vesicles, although they may overlap with both in size and content. Their release by cells is a means to dispose redundant, damaged, or dangerous material; to repair membrane lesions; and, primarily, to mediate intercellular communication. By participating in these vital activities, microvesicles may impact a wide array of cell processes and, consequently, changes in their concentration or components have been associated with several pathologies. Of note, microvesicles released by leukocytes, red blood cells, and platelets, which constitute the vast majority of plasma microvesicles, change under a plethora of diseases affecting not only the hematological, but also the nervous, cardiovascular, and urinary systems, among others. In fact, there is evidence that microvesicles released by blood cells are significant contributors towards pathophysiological states, having inflammatory and/or coagulation and/or immunomodulatory arms, by either promoting or inhibiting the relative disease phenotypes. Consequently, even though microvesicles are typically considered to have adverse links with disease prognosis, progression, or outcomes, not infrequently, they exert protective roles in the affected cells. Based on these functional relations, microvesicles might represent promising disease biomarkers with diagnostic, monitoring, and therapeutic applications, equally to the more thoroughly studied exosomes. In the current review, we provide a summary of the features of microvesicles released by blood cells and their potential implication in hematological and non-hematological diseases.


Assuntos
Micropartículas Derivadas de Células , Exossomos , Vesículas Extracelulares , Doenças Hematológicas , Plaquetas , Micropartículas Derivadas de Células/metabolismo , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Doenças Hematológicas/metabolismo , Humanos
8.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 38(4): 374-377, 2022 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-35583068

RESUMO

Neutrophil extracellular traps (NETs) are characterized by a extracellular fibrous network structure produced by neutrophils with DNA and proteins. NETs can be formed by NADPH-dependent NETosis and NADPH-independent NETosis. After formation, it is not only hydrolyzed by DNase in plasma but can also be degraded intracellularly and extracellularly by macrophages and dendritic cells. Recent researches on NETs have reported the increased expression of NETs in a variety of hematological diseases and its immunomodulatory effect on blood system diseases. For example, NETs are closely linked to infections related to leukemia treatment, which affects the treatment and prognosis of leukemia; NETs are also involved in the progression of multiple myeloma, promote the progression of diffuse large B-cell lymphoma, and mediate the thrombotic events of chronic myeloproliferative tumors.


Assuntos
Armadilhas Extracelulares , Doenças Hematológicas , Leucemia , Armadilhas Extracelulares/metabolismo , Doenças Hematológicas/metabolismo , Humanos , NADP/metabolismo , Neutrófilos/metabolismo
9.
Front Immunol ; 13: 813676, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250989

RESUMO

Polygonatum sibiricum Red. has been used as a medicinal herb and nutritional food in traditional Chinese medicine for a long time. It must be processed prior to clinical use for safe and effective applications. However, the present studies mainly focused on crude Polygonatum sibiricum (PS). This study aimed to investigate the chemical properties, blood-enriching effects and mechanism of polysaccharide from the steam-processed Polygonatum sibiricum (SPS), which is a common form of PS in clinical applications. Instrumentation analyses and chemistry analyses revealed the structure of SPS polysaccharide (SPSP). A mice model of blood deficiency syndrome (BDS) was induced by acetylphenylhydrazine (APH) and cyclophosphamide (CTX). Blood routine test, spleen histopathological changes, serum cytokines, etc. were measured. The spleen transcriptome changes of BDS mice were detected by RNA sequencing (RNA-seq). The results showed that SPSP consists predominantly of Gal and GalA together with fewer amounts of Man, Glc, Ara, Rha and GlcN. It could significantly increase peripheral blood cells, restore the splenic trabecular structure, and reverse hematopoietic cytokines to normal levels. RNA-seq analysis showed that 122 differentially expressed genes (DEGs) were obtained after SPSP treatment. GO and KEGG analysis revealed that SPSP-regulated DEGs were mainly involved in hematopoiesis, immune regulation signaling pathways. The reliability of transcriptome profiling was validated by quantitative real-time PCR and Western blot, and the results indicated that the potential molecular mechanisms of the blood-enriching effects of SPSP might be associated with the regulating of JAK1-STAT1 pathway, and elevated the hematopoietic cytokines (EPO, G-CSF, TNF-α and IL-6). This work provides important information on the potential mechanisms of SPSP against BDS.


Assuntos
Doenças Hematológicas , Polygonatum , Polissacarídeos , Animais , Citocinas/metabolismo , Doenças Hematológicas/imunologia , Doenças Hematológicas/metabolismo , Camundongos , Polygonatum/química , Polygonatum/metabolismo , Polissacarídeos/metabolismo , Polissacarídeos/farmacologia , Reprodutibilidade dos Testes , Vapor
10.
Nucleic Acids Res ; 50(D1): D231-D235, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34893873

RESUMO

The MODOMICS database has been, since 2006, a manually curated and centralized resource, storing and distributing comprehensive information about modified ribonucleosides. Originally, it only contained data on the chemical structures of modified ribonucleosides, their biosynthetic pathways, the location of modified residues in RNA sequences, and RNA-modifying enzymes. Over the years, prompted by the accumulation of new knowledge and new types of data, it has been updated with new information and functionalities. In this new release, we have created a catalog of RNA modifications linked to human diseases, e.g., due to mutations in genes encoding modification enzymes. MODOMICS has been linked extensively to RCSB Protein Data Bank, and sequences of experimentally determined RNA structures with modified residues have been added. This expansion was accompanied by including nucleotide 5'-monophosphate residues. We redesigned the web interface and upgraded the database backend. In addition, a search engine for chemically similar modified residues has been included that can be queried by SMILES codes or by drawing chemical molecules. Finally, previously available datasets of modified residues, biosynthetic pathways, and RNA-modifying enzymes have been updated. Overall, we provide users with a new, enhanced, and restyled tool for research on RNA modification. MODOMICS is available at https://iimcb.genesilico.pl/modomics/.


Assuntos
Bases de Dados de Ácidos Nucleicos , Enzimas/genética , RNA/genética , Ribonucleosídeos/genética , Interface Usuário-Computador , Sequência de Bases , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Gráficos por Computador , Bases de Dados de Proteínas , Conjuntos de Dados como Assunto , Enzimas/metabolismo , Gastroenteropatias/genética , Gastroenteropatias/metabolismo , Gastroenteropatias/patologia , Doenças Hematológicas/genética , Doenças Hematológicas/metabolismo , Doenças Hematológicas/patologia , Humanos , Internet , Transtornos Mentais/genética , Transtornos Mentais/metabolismo , Transtornos Mentais/patologia , Doenças Musculoesqueléticas/genética , Doenças Musculoesqueléticas/metabolismo , Doenças Musculoesqueléticas/patologia , Mutação , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , RNA/metabolismo , Processamento Pós-Transcricional do RNA , Ribonucleosídeos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
11.
FASEB J ; 35(11): e21955, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34613626

RESUMO

Kabuki syndrome (KS) is a rare genetic disorder caused primarily by mutations in the histone modifier genes KMT2D and KDM6A. The genes have broad temporal and spatial expression in many organs, resulting in complex phenotypes observed in KS patients. Hypotonia is one of the clinical presentations associated with KS, yet detailed examination of skeletal muscle samples from KS patients has not been reported. We studied the consequences of loss of KMT2D function in both mouse and human muscles. In mice, heterozygous loss of Kmt2d resulted in reduced neuromuscular junction (NMJ) perimeter, decreased muscle cell differentiation in vitro and impaired myofiber regeneration in vivo. Muscle samples from KS patients of different ages showed presence of increased fibrotic tissue interspersed between myofiber fascicles, which was not seen in mouse muscles. Importantly, when Kmt2d-deficient muscle stem cells were transplanted in vivo in a physiologic non-Kabuki environment, their differentiation potential is restored to levels undistinguishable from control cells. Thus, the epigenetic changes due to loss of function of KMT2D appear reversible through a change in milieu, opening a potential therapeutic avenue.


Assuntos
Anormalidades Múltiplas/metabolismo , Diferenciação Celular/genética , Proteínas de Ligação a DNA/metabolismo , Face/anormalidades , Doenças Hematológicas/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Células Musculares/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas de Neoplasias/metabolismo , Transdução de Sinais/genética , Doenças Vestibulares/metabolismo , Anormalidades Múltiplas/genética , Adolescente , Animais , Criança , Pré-Escolar , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Feminino , Doenças Hematológicas/genética , Histona-Lisina N-Metiltransferase/genética , Humanos , Lactente , Masculino , Camundongos , Camundongos Transgênicos , Células Musculares/patologia , Mutação , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas de Neoplasias/genética , Junção Neuromuscular/genética , Junção Neuromuscular/metabolismo , Doenças Vestibulares/genética
12.
Elife ; 102021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34463256

RESUMO

Although each Mendelian Disorder of the Epigenetic Machinery (MDEM) has a different causative gene, there are shared disease manifestations. We hypothesize that this phenotypic convergence is a consequence of shared epigenetic alterations. To identify such shared alterations, we interrogate chromatin (ATAC-seq) and expression (RNA-seq) states in B cells from three MDEM mouse models (Kabuki [KS] type 1 and 2 and Rubinstein-Taybi type 1 [RT1] syndromes). We develop a new approach for the overlap analysis and find extensive overlap primarily localized in gene promoters. We show that disruption of chromatin accessibility at promoters often disrupts downstream gene expression, and identify 587 loci and 264 genes with shared disruption across all three MDEMs. Subtle expression alterations of multiple, IgA-relevant genes, collectively contribute to IgA deficiency in KS1 and RT1, but not in KS2. We propose that the joint study of MDEMs offers a principled approach for systematically mapping functional epigenetic variation in mammals.


Assuntos
Anormalidades Múltiplas/genética , Epigênese Genética/genética , Face/anormalidades , Variação Genética/genética , Doenças Hematológicas/genética , Síndrome de Rubinstein-Taybi/genética , Transcriptoma/genética , Doenças Vestibulares/genética , Anormalidades Múltiplas/metabolismo , Animais , Cromatina/genética , Modelos Animais de Doenças , Feminino , Técnicas Genéticas , Doenças Hematológicas/metabolismo , Camundongos , Fenótipo , Síndrome de Rubinstein-Taybi/metabolismo , Doenças Vestibulares/metabolismo
13.
Blood ; 138(24): 2455-2468, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33945606

RESUMO

The BCL6 corepressor (BCOR) is a transcription factor involved in the control of embryogenesis, mesenchymal stem cells function, hematopoiesis, and lymphoid development. Recurrent somatic clonal mutations of the BCOR gene and its homolog BCORL1 have been detected in several hematologic malignancies and aplastic anemia. They are scattered across the whole gene length and mostly represent frameshifts (deletions, insertions), nonsense, and missence mutations. These disruptive events lead to the loss of full-length BCOR protein and to the lack or low expression of a truncated form of the protein, both consistent with the tumor suppressor role of BCOR.BCOR and BCORL1 mutations are similar to those causing 2 rare X-linked diseases: oculofaciocardiodental (OFCD) and Shukla-Vernon syndromes, respectively. Here, we focus on the structure and function of normal BCOR and BCORL1 in normal hematopoietic and lymphoid tissues and review the frequency and clinical significance of the mutations of these genes in malignant and nonmalignant hematologic diseases. Moreover, we discuss the importance of mouse models to better understand the role of Bcor loss, alone and combined with alterations of other genes (eg, Dnmt3a and Tet2), in promoting hematologic malignancies and in providing a useful platform for the development of new targeted therapies.


Assuntos
Doenças Hematológicas/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética , Animais , Regulação Neoplásica da Expressão Gênica , Doenças Hematológicas/metabolismo , Doenças Hematológicas/patologia , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patologia , Humanos , Mutação , Proteínas Proto-Oncogênicas/análise , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/análise , Proteínas Repressoras/metabolismo
14.
Cell Physiol Biochem ; 55(S3): 65-86, 2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33667332

RESUMO

The family of two-pore domain potassium (K2P) channels is critically involved in central cellular functions such as ion homeostasis, cell development, and excitability. K2P channels are widely expressed in different human cell types and organs. It is therefore not surprising that aberrant expression and function of K2P channels are related to a spectrum of human diseases, including cancer, autoimmune, CNS, cardiovascular, and urinary tract disorders. Despite homologies in structure, expression, and stimulus, the functional diversity of K2P channels leads to heterogeneous influences on human diseases. The role of individual K2P channels in different disorders depends on expression patterns and modulation in cellular functions. However, an imbalance of potassium homeostasis and action potentials contributes to most disease pathologies. In this review, we provide an overview of current knowledge on the role of K2P channels in human diseases. We look at altered channel expression and function, the potential underlying molecular mechanisms, and prospective research directions in the field of K2P channels.


Assuntos
Doenças Autoimunes/metabolismo , Doenças Cardiovasculares/metabolismo , Gastroenteropatias/metabolismo , Doenças Hematológicas/metabolismo , Neoplasias/metabolismo , Doenças Neurodegenerativas/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Doenças Urológicas/metabolismo , Potenciais de Ação/fisiologia , Doenças Autoimunes/genética , Doenças Autoimunes/patologia , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/patologia , Gastroenteropatias/genética , Gastroenteropatias/patologia , Expressão Gênica , Doenças Hematológicas/genética , Doenças Hematológicas/patologia , Homeostase/genética , Humanos , Transporte de Íons , Neoplasias/genética , Neoplasias/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Especificidade de Órgãos , Potássio/metabolismo , Canais de Potássio de Domínios Poros em Tandem/classificação , Canais de Potássio de Domínios Poros em Tandem/genética , Isoformas de Proteínas/classificação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Doenças Urológicas/genética , Doenças Urológicas/patologia
15.
PLoS One ; 16(2): e0247489, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33630943

RESUMO

The gene SON is on human chromosome 21 (21q22.11) and is thought to be associated with hematopoietic disorders that accompany Down syndrome. Additionally, SON is an RNA splicing factor that plays a role in the transcription of leukemia-associated genes. Previously, we showed that mutations in SON cause malformations in human and zebrafish spines and brains during early embryonic development. To examine the role of SON in normal hematopoiesis, we reduced expression of the zebrafish homolog of SON in zebrafish at the single-cell developmental stage with specific morpholinos. In addition to the brain and spinal malformations we also observed abnormal blood cell levels upon son knockdown. We then investigated how blood production was altered when levels of son were reduced. Decreased levels of son resulted in lower amounts of red blood cells when visualized with lcr:GFP transgenic fish. There were also reduced thrombocytes seen with cd41:GFP fish, and myeloid cells when mpx:GFP fish were examined. We also observed a significant decrease in the quantity of T cells, visualized with lck:GFP fish. However, when we examined their hematopoietic stem and progenitor cells (HSPCs), we saw no difference in colony-forming capability. These studies indicate that son is essential for the proper differentiation of the innate and adaptive immune system, and further investigation determining the molecular pathways involved during blood development should elucidate important information about vertebrate HSPC generation, proliferation, and differentiation.


Assuntos
Embrião não Mamífero/citologia , Hematopoese , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados/embriologia , Diferenciação Celular , Proliferação de Células , Proteínas de Ligação a DNA/fisiologia , Doenças Hematológicas/metabolismo , Células-Tronco Hematopoéticas/citologia , Humanos , Antígenos de Histocompatibilidade Menor/fisiologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/fisiologia
16.
Sci Rep ; 11(1): 89, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420217

RESUMO

Current models to study the hematopoietic syndrome largely rely on the uniform whole-body exposures. However, in the radio-nuclear accidents or terrorist events, exposure can be non-uniform. The data available on the non-uniform exposures is limited. Thus, we have developed a mice model for studying the hematopoietic syndrome in the non-uniform or partial body exposure scenarios using the localized cobalt60 gamma radiation exposure. Femur region of Strain 'A' male mice was exposed to doses ranging from 7 to 20 Gy. The 30 day survival assay showed 19 Gy as LD100 and 17 Gy as LD50. We measured an array of cytokines and important stem cell markers such as IFN-γ, IL-3, IL-6, GM-CSF, TNF-α, G-CSF, IL-1α, IL-1ß, CD 34 and Sca 1. We found significant changes in IL-6, GM-CSF, TNF-α, G-CSF, and IL-1ß levels compared to untreated groups and amplified levels of CD 34 and Sca 1 positive population in the irradiated mice compared to the untreated controls. Overall, we have developed a mouse model of the hematopoietic acute radiation syndrome that might be useful for understanding of the non-uniform body exposure scenarios. This may also be helpful in the screening of drugs intended for individuals suffering from radiation induced hematopoietic syndrome.


Assuntos
Síndrome Aguda da Radiação/etiologia , Modelos Animais de Doenças , Doenças Hematológicas/etiologia , Exposição à Radiação/efeitos adversos , Síndrome Aguda da Radiação/genética , Síndrome Aguda da Radiação/metabolismo , Animais , Radioisótopos de Cobalto/efeitos adversos , Radioisótopos de Cobalto/química , Citocinas/genética , Citocinas/metabolismo , Fêmur/metabolismo , Fêmur/efeitos da radiação , Raios gama/efeitos adversos , Doenças Hematológicas/genética , Doenças Hematológicas/metabolismo , Humanos , Masculino , Camundongos
17.
Asian Pac J Cancer Prev ; 21(10): 2817-2821, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33112535

RESUMO

OBJECTIVE: Bone marrow fluid (BMF) consists of various components that establishes a microenvironment for cell differentiation and remodeling. MicroRNA-21 (miR-21) levels have recently emerged as novel biomarkers for different diseases. However, the conventional RNU6B (U6), used as the reference for intracellular miRNA, may not be appropriate for the normalization of circulating miRNAs. METHODS: We measured the levels of U6, spiked-in RNA, and miR-21 in the BMF of 13 healthy controls and 37 patients with hematological disorders to investigate the reliability of either U6 or spike-in RNA as an endogenous reference and also to study the correlation between miR-21, hematological disorders and mortality. RESULTS: Notably, the levels of U6 demonstrated a high variability in BMF of healthy controls and patients. In contrast, the levels of spiked-in RNA displayed a significantly higher stability in both cohorts. Compared with controls, the levels of miR-21 were significantly upregulated in BMF of patients with leukemia but not lymphoma. Also, using 21 as the cut-off value of miR-21, it differentiated the mortality of patients with hematologic disorders. CONCLUSIONS: Collectively, using spiked-in RNA as a reference the upregulated miR-21 levels in BMF could be an indicator of the diagnosis of leukemia and a predictor of mortality.


Assuntos
Biomarcadores Tumorais/genética , Medula Óssea/metabolismo , Doenças Hematológicas/diagnóstico , Doenças Hematológicas/mortalidade , MicroRNAs/genética , Idoso , Medula Óssea/patologia , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Seguimentos , Regulação Neoplásica da Expressão Gênica , Doenças Hematológicas/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Taxa de Sobrevida
18.
JCI Insight ; 5(21)2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32990679

RESUMO

Somatic KRAS mutations are highly prevalent in many cancers. In addition, a distinct spectrum of germline KRAS mutations causes developmental disorders called RASopathies. The mutant proteins encoded by these germline KRAS mutations are less biochemically and functionally activated than those in cancer. We generated mice harboring conditional KrasLSL-P34Rand KrasLSL-T58I knock-in alleles and characterized the consequences of each mutation in vivo. Embryonic expression of KrasT58I resulted in craniofacial abnormalities reminiscent of those seen in RASopathy disorders, and these mice exhibited hyperplastic growth of multiple organs, modest alterations in cardiac valvulogenesis, myocardial hypertrophy, and myeloproliferation. By contrast, embryonic KrasP34R expression resulted in early perinatal lethality from respiratory failure due to defective lung sacculation, which was associated with aberrant ERK activity in lung epithelial cells. Somatic Mx1-Cre-mediated activation in the hematopoietic compartment showed that KrasP34R and KrasT58I expression had distinct signaling effects, despite causing a similar spectrum of hematologic diseases. These potentially novel strains are robust models for investigating the consequences of expressing endogenous levels of hyperactive K-Ras in different developing and adult tissues, for comparing how oncogenic and germline K-Ras proteins perturb signaling networks and cell fate decisions, and for performing preclinical therapeutic trials.


Assuntos
Cardiomiopatias/patologia , Craniossinostoses/patologia , Doenças Hematológicas/patologia , Pneumopatias/patologia , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Craniossinostoses/etiologia , Craniossinostoses/metabolismo , Feminino , Doenças Hematológicas/etiologia , Doenças Hematológicas/metabolismo , Pneumopatias/etiologia , Pneumopatias/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez
20.
FASEB J ; 34(6): 8416-8427, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32350948

RESUMO

During human erythroid maturation, Hsp70 translocates into the nucleus and protects GATA-1 from caspase-3 cleavage. Failure of Hsp70 to localize to the nucleus was found in Myelodysplastic syndrome (MDS) erythroblasts and can induce dyserythropoiesis, with arrest of maturation and death of erythroblasts. However, the mechanism of the nuclear trafficking of Hsp70 in erythroblasts remains unknown. Here, we found the hematopoietic transcriptional regulator, EDAG, to be a novel binding partner of Hsp70 that forms a protein complex with Hsp70 and GATA-1 during human normal erythroid differentiation. EDAG overexpression blocked the cytoplasmic translocation of Hsp70 induced by EPO deprivation, inhibited GATA-1 degradation, thereby promoting erythroid maturation in an Hsp70-dependent manner. Furthermore, in myelodysplastic syndrome (MDS) patients with dyserythropoiesis, EDAG is dramatically down-regulated, and forced expression of EDAG has been found to restore the localization of Hsp70 in the nucleus and elevate the protein level of GATA-1 to a significant extent. In addition, EDAG rescued the dyserythropoiesis of MDS patients by increasing erythroid differentiation and decreasing cell apoptosis. This study demonstrates the molecular mechanism of Hsp70 nuclear sustaining during erythroid maturation and establishes that EDAG might be a suitable therapeutic target for dyserythropoiesis in MDS patients.


Assuntos
Núcleo Celular/metabolismo , Eritroblastos/metabolismo , Eritropoese/fisiologia , Proteínas de Choque Térmico HSP70/metabolismo , Síndromes Mielodisplásicas/metabolismo , Proteínas Nucleares/metabolismo , Apoptose/fisiologia , Caspase 3/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Citoplasma/metabolismo , Regulação da Expressão Gênica/fisiologia , Doenças Hematológicas/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA