Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Q J Nucl Med Mol Imaging ; 64(4): 338-345, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33026211

RESUMO

Copper-64 is a very attractive radioisotope with unique nuclear properties that allow using it as both a diagnostic and therapeutic agent, thus providing an almost ideal example of a theranostic radionuclide. A characteristic of Cu-64 stems from the intrinsic biological nature of copper ions that play a fundamental role in a large number of cellular processes. Cu-64 is a radionuclide that reflects the natural biochemical pathways of Cu-64 ions, therefore, can be exploited for the detection and therapy of certain malignancies and metabolic diseases. Beside these applications of Cu-64 ions, this radionuclide can be also used for radiolabelling bifunctional chelators carrying a variety of pharmacophores for targeting different biological substrates. These include peptide-based substrates and immunoconjugates as well as small-molecule bioactive moieties. Fueled by the growing interest of Member States (MS) belonging to the International Atomic Energy Agency (IAEA) community, a dedicated Coordinated Research Project (CRP) was initiated in 2016, which recruited thirteen participating MS from four continents. Research activities and collaborations between the participating countries allowed for collection of an impressive series of results, particularly on the production, preclinical evaluation and, in a few cases, clinical evaluation of various 64Cu-radiopharmaceuticals that may have potential impact on future development of the field. Since this CRP was finalized at the beginning of 2020, this short review summarizes outcomes, outputs and results of this project with the purpose to propagate to other MS and to the whole scientific community, some of the most recent achievements on this novel class of theranostic 64Cu-pharmaceuticals.


Assuntos
Radioisótopos de Cobre/farmacologia , Doenças Metabólicas/diagnóstico por imagem , Doenças Metabólicas/radioterapia , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Compostos Radiofarmacêuticos/farmacologia , Animais , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Radioisótopos de Cobre/química , Humanos , Energia Nuclear , Peptídeos/química , Compostos Radiofarmacêuticos/química , Coloração e Rotulagem , Resultado do Tratamento
2.
Lasers Med Sci ; 34(2): 317-327, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30074108

RESUMO

The human microbiome is intimately associated with human health, with a role in obesity, metabolic diseases such as type 2 diabetes, and divergent diseases such as cardiovascular and neurodegenerative diseases. The microbiome can be changed by diet, probiotics, and faecal transplants, which has flow-on effects to health outcomes. Photobiomodulation has a therapeutic effect on inflammation and neurological disorders (amongst others) and has been reported to influence metabolic disorders and obesity. The aim of this study was to examine the possibility that PBM could influence the microbiome of mice. Mice had their abdomen irradiated with red (660 nm) or infrared (808 nm) low-level laser, either as single or multiple doses, over a 2-week period. Genomic DNA extracted from faecal pellets was pyrosequenced for the 16S rRNA gene. There was a significant (p < 0.05) difference in microbial diversity between PBM- and sham-treated mice. One genus of bacterium (Allobaculum) significantly increased (p < 0.001) after infrared (but not red light) PBM by day 14. Despite being a preliminary trial with small experimental numbers, we have demonstrated for the first time that PBM can alter microbiome diversity in healthy mice and increase numbers of Allobaculum, a bacterium associated with a healthy microbiome. This change is most probably a result of PBMt affecting the host, which in turn influenced the microbiome. If this is confirmed in humans, the possibility exists for PBMt to be used as an adjunct therapy in treatment of obesity and other lifestyle-related disorders, as well as cardiovascular and neurodegenerative diseases. The clinical implications of altering the microbiome using PBM warrants further investigation.


Assuntos
Inflamação/radioterapia , Terapia com Luz de Baixa Intensidade , Doenças Metabólicas/radioterapia , Microbiota/efeitos da radiação , Animais , Fezes/microbiologia , Humanos , Masculino , Camundongos Endogâmicos BALB C , Microbiota/genética , Filogenia , Análise de Componente Principal , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA