Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.309
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731822

RESUMO

Our understanding of rare disease genetics has been shaped by a monogenic disease model. While the traditional monogenic disease model has been successful in identifying numerous disease-associated genes and significantly enlarged our knowledge in the field of human genetics, it has limitations in explaining phenomena like phenotypic variability and reduced penetrance. Widening the perspective beyond Mendelian inheritance has the potential to enable a better understanding of disease complexity in rare disorders. Digenic inheritance is the simplest instance of a non-Mendelian disorder, characterized by the functional interplay of variants in two disease-contributing genes. Known digenic disease causes show a range of pathomechanisms underlying digenic interplay, including direct and indirect gene product interactions as well as epigenetic modifications. This review aims to systematically explore the background of digenic inheritance in rare disorders, the approaches and challenges when investigating digenic inheritance, and the current evidence for digenic inheritance in mitochondrial disorders.


Assuntos
Doenças Mitocondriais , Doenças Raras , Humanos , Doenças Mitocondriais/genética , Doenças Raras/genética , Predisposição Genética para Doença , Epigênese Genética , Herança Multifatorial/genética , Animais
2.
Signal Transduct Target Ther ; 9(1): 124, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38744846

RESUMO

Mitochondria, with their intricate networks of functions and information processing, are pivotal in both health regulation and disease progression. Particularly, mitochondrial dysfunctions are identified in many common pathologies, including cardiovascular diseases, neurodegeneration, metabolic syndrome, and cancer. However, the multifaceted nature and elusive phenotypic threshold of mitochondrial dysfunction complicate our understanding of their contributions to diseases. Nonetheless, these complexities do not prevent mitochondria from being among the most important therapeutic targets. In recent years, strategies targeting mitochondrial dysfunction have continuously emerged and transitioned to clinical trials. Advanced intervention such as using healthy mitochondria to replenish or replace damaged mitochondria, has shown promise in preclinical trials of various diseases. Mitochondrial components, including mtDNA, mitochondria-located microRNA, and associated proteins can be potential therapeutic agents to augment mitochondrial function in immunometabolic diseases and tissue injuries. Here, we review current knowledge of mitochondrial pathophysiology in concrete examples of common diseases. We also summarize current strategies to treat mitochondrial dysfunction from the perspective of dietary supplements and targeted therapies, as well as the clinical translational situation of related pharmacology agents. Finally, this review discusses the innovations and potential applications of mitochondrial transplantation as an advanced and promising treatment.


Assuntos
Mitocôndrias , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Doenças Mitocondriais/genética , Doenças Mitocondriais/terapia , Doenças Mitocondriais/metabolismo , DNA Mitocondrial/genética , MicroRNAs/genética , Neoplasias/genética , Neoplasias/terapia , Neoplasias/metabolismo , Neoplasias/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/terapia , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/terapia , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Animais
3.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732076

RESUMO

Mitochondrial diseases (MDs) affect 4300 individuals, with different ages of presentation and manifestation in any organ. How defects in mitochondria can cause such a diverse range of human diseases remains poorly understood. In recent years, several published research articles regarding the metabolic and protein profiles of these neurogenetic disorders have helped shed light on the pathogenetic mechanisms. By investigating different pathways in MDs, often with the aim of identifying disease biomarkers, it is possible to identify molecular processes underlying the disease. In this perspective, omics technologies such as proteomics and metabolomics considered in this review, can support unresolved mitochondrial questions, helping to improve outcomes for patients.


Assuntos
Biomarcadores , Metabolômica , Mitocôndrias , Doenças Mitocondriais , Proteômica , Humanos , Metabolômica/métodos , Mitocôndrias/metabolismo , Proteômica/métodos , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/diagnóstico , Animais
4.
Medicine (Baltimore) ; 103(18): e37847, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701254

RESUMO

RATIONALE: Mitochondrial diseases are a group of disorders in which mutations in mitochondrial DNA or nuclear DNA lead to dysfunctional oxidative phosphorylation of cells, with mutations in mitochondrial DNA being the most common cause of mitochondrial disease, and mutations in nuclear genes being rarely reported. The echocardiographic findings of mitochondrial diseases with nuclear gene mutations in children's hearts are even rarer. Even more valuable is that we followed up the patient for 4 years and dynamically observed the cardiac echocardiographic manifestations of mitochondrial disease. Provide ideas for the clinical diagnosis and prognosis of mitochondrial diseases. PATIENT CONCERNS: The patient was seen in the pediatric outpatient clinic for poor strength and mental retardation. echocardiography: mild left ventricular (LV) enlargement and LV wall thickening. Nuclear genetic testing: uanosine triphosphate binding protein 3 (GTPBP3) gene mutation. Diagnosis of mitochondrial disease. DIAGNOSES: Mitochondrial disease with GTPBP3 gene mutations. OUTCOMES: After receiving drug treatment, the patient exhibited a reduction in lactate levels, an enhanced physical condition compared to prior assessments, and demonstrated average intellectual development. LESSONS SUBSECTIONS: For echocardiographic indications of LV wall thickening and LV enlargement, one needs to be alert to the possibility of hereditary cardiomyopathy, especially in children.


Assuntos
Ecocardiografia , Doenças Mitocondriais , Mutação , Feminino , Humanos , Ecocardiografia/métodos , Proteínas de Ligação ao GTP/genética , Doenças Mitocondriais/genética , Doenças Mitocondriais/diagnóstico por imagem , Doenças Mitocondriais/diagnóstico , Criança
5.
Pediatr Neurol ; 155: 91-103, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38626668

RESUMO

BACKGROUND: Pathogenic variants in the NDUFV1 gene disrupt mitochondrial complex I, leading to neuroregression with leukoencephalopathy and basal ganglia involvement on neuroimaging. This study aims to provide a concise review on NDUFV1-related disorders while adding the largest cohort from a single center to the existing literature. METHODS: We retrospectively collected genetically proven cases of NDUFV1 pathogenic variants from our center over the last decade and explored reported instances in existing literature. Magnetic resonance imaging (MRI) patterns observed in these patients were split into three types-Leigh (putamen, basal ganglia, thalamus, and brainstem involvement), mitochondrial leukodystrophy (ML) (cerebral white matter involvement with cystic cavitations), and mixed (both). RESULTS: Analysis included 44 children (seven from our center and 37 from literature). The most prevalent comorbidities were hypertonia, ocular abnormalities, feeding issues, and hypotonia at onset. Children with the Leigh-type MRI pattern exhibited significantly higher rates of breathing difficulties, whereas those with a mixed phenotype had a higher prevalence of dystonia. The c.1156C>T variant in exon 8 of the NDUFV1 gene was the most common variant among individuals of Asian ethnicity and is predominantly associated with irritability and dystonia. Seizures and Leigh pattern of MRI of the brain was found to be less commonly associated with this variant. Higher rate of mortality was observed in children with Leigh-type pattern on brain MRI and those who did not receive mitochondrial cocktail. CONCLUSIONS: MRI phenotyping might help predict outcome. Appropriate and timely treatment with mitochondrial cocktail may reduce the probability of death and may positively impact the long-term outcomes, regardless of the genetic variant or age of onset.


Assuntos
Complexo I de Transporte de Elétrons , Doenças Mitocondriais , NADH Desidrogenase , Humanos , Estudos Retrospectivos , Masculino , Complexo I de Transporte de Elétrons/genética , Feminino , Pré-Escolar , Lactente , Criança , NADH Desidrogenase/genética , Doenças Mitocondriais/genética , Doenças Mitocondriais/diagnóstico por imagem , Imageamento por Ressonância Magnética , Doença de Leigh/genética , Doença de Leigh/diagnóstico por imagem , Adolescente
6.
Cell Death Dis ; 15(4): 281, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643274

RESUMO

The human mitochondrial DNA polymerase gamma is a holoenzyme, involved in mitochondrial DNA (mtDNA) replication and maintenance, composed of a catalytic subunit (POLG) and a dimeric accessory subunit (POLG2) conferring processivity. Mutations in POLG or POLG2 cause POLG-related diseases in humans, leading to a subset of Mendelian-inherited mitochondrial disorders characterized by mtDNA depletion (MDD) or accumulation of multiple deletions, presenting multi-organ defects and often leading to premature death at a young age. Considering the paucity of POLG2 models, we have generated a stable zebrafish polg2 mutant line (polg2ia304) by CRISPR/Cas9 technology, carrying a 10-nucleotide deletion with frameshift mutation and premature stop codon. Zebrafish polg2 homozygous mutants present slower development and decreased viability compared to wild type siblings, dying before the juvenile stage. Mutants display a set of POLG-related phenotypes comparable to the symptoms of human patients affected by POLG-related diseases, including remarkable MDD, altered mitochondrial network and dynamics, and reduced mitochondrial respiration. Histological analyses detected morphological alterations in high-energy demanding tissues, along with a significant disorganization of skeletal muscle fibres. Consistent with the last finding, locomotor assays highlighted a decreased larval motility. Of note, treatment with the Clofilium tosylate drug, previously shown to be effective in POLG models, could partially rescue MDD in Polg2 mutant animals. Altogether, our results point at zebrafish as an effective model to study the etiopathology of human POLG-related disorders linked to POLG2, and a suitable platform to screen the efficacy of POLG-directed drugs in POLG2-associated forms.


Assuntos
DNA Polimerase Dirigida por DNA , Doenças Mitocondriais , Animais , Humanos , DNA Polimerase Dirigida por DNA/genética , Peixe-Zebra/genética , DNA Polimerase gama/genética , DNA Mitocondrial/genética , Mitocôndrias/genética , Mitocôndrias/patologia , Mutação/genética , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/genética
7.
J Transl Med ; 22(1): 386, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664838

RESUMO

BACKGROUND: Sequencing the mitochondrial genome has been increasingly important for the investigation of primary mitochondrial diseases (PMD) and mitochondrial genetics. To overcome the limitations originating from PCR-based mtDNA enrichment, we set out to develop and evaluate a PCR-independent approach in this study, named Pime-Seq (PCR-independent mtDNA enrichment and next generation Sequencing). RESULTS: By using the optimized mtDNA enrichment procedure, the mtDNA reads ratio reached 88.0 ± 7.9% in the sequencing library when applied on human PBMC samples. We found the variants called by Pime-Seq were highly consistent among technical repeats. To evaluate the accuracy and reliability of this method, we compared Pime-Seq with lrPCR based NGS by performing both methods simultaneously on 45 samples, yielding 1677 concordant variants, as well as 146 discordant variants with low-level heteroplasmic fraction, in which Pime-Seq showed higher reliability. Furthermore, we applied Pime-Seq on 4 samples of PMD patients retrospectively, and successfully detected all the pathogenic mtDNA variants. In addition, we performed a prospective study on 192 apparently healthy pregnant women during prenatal screening, in which Pime-Seq identified pathogenic mtDNA variants in 4 samples, providing extra information for better health monitoring in these cases. CONCLUSIONS: Pime-Seq can obtain highly enriched mtDNA in a PCR-independent manner for high quality and reliable mtDNA deep-sequencing, which provides us an effective and promising tool for detecting mtDNA variants for both clinical and research purposes.


Assuntos
DNA Mitocondrial , Sequenciamento de Nucleotídeos em Larga Escala , Doenças Mitocondriais , Reação em Cadeia da Polimerase , Humanos , DNA Mitocondrial/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Feminino , Reação em Cadeia da Polimerase/métodos , Doenças Mitocondriais/genética , Doenças Mitocondriais/diagnóstico , Gravidez , Reprodutibilidade dos Testes , Masculino , Adulto
8.
Free Radic Biol Med ; 218: 105-119, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38565400

RESUMO

Beyond their crucial role in energy production, mitochondria harbor a distinct genome subject to epigenetic regulation akin to that of nuclear DNA. This paper delves into the nascent but rapidly evolving fields of mitoepigenetics and mitoepigenomics, exploring the sophisticated regulatory mechanisms governing mitochondrial DNA (mtDNA). These mechanisms encompass mtDNA methylation, the influence of non-coding RNAs (ncRNAs), and post-translational modifications of mitochondrial proteins. Together, these epigenetic modifications meticulously coordinate mitochondrial gene transcription, replication, and metabolism, thereby calibrating mitochondrial function in response to the dynamic interplay of intracellular needs and environmental stimuli. Notably, the dysregulation of mitoepigenetic pathways is increasingly implicated in mitochondrial dysfunction and a spectrum of human pathologies, including neurodegenerative diseases, cancer, metabolic disorders, and cardiovascular conditions. This comprehensive review synthesizes the current state of knowledge, emphasizing recent breakthroughs and innovations in the field. It discusses the potential of high-resolution mitochondrial epigenome mapping, the diagnostic and prognostic utility of blood or tissue mtDNA epigenetic markers, and the promising horizon of mitochondrial epigenetic drugs. Furthermore, it explores the transformative potential of mitoepigenetics and mitoepigenomics in precision medicine. Exploiting a theragnostic approach to maintaining mitochondrial allostasis, this paper underscores the pivotal role of mitochondrial epigenetics in charting new frontiers in medical science.


Assuntos
Metilação de DNA , DNA Mitocondrial , Epigênese Genética , Mitocôndrias , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Processamento de Proteína Pós-Traducional/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia
9.
BMJ Case Rep ; 17(4)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684350

RESUMO

The POLG mutation, a leading cause of mitochondrial diseases, exhibits a wide-ranging age of onset and a complex clinical presentation. We encountered an atypical clinical profile in an elderly man with a POLG mutation, characterised by a stroke-like episode, chronic insomnia and transient oculomasticatory rhythmic movement. History revealed chronic constipation since his 50s and progressive bilateral ophthalmoplegia since his early 60s. Subsequently, he had experienced acute encephalopathy and later developed chronic insomnia. The present neurological examination showed bilateral complete ophthalmoplegia, ptosis, and rhythmic ocular and jaw movements. Imaging indicated findings suggestive of a stroke-like episode and eventual genetic analysis revealed a homozygous missense mutation in the POLG gene. This case expands the clinical spectrum of POLG mutations in individuals over 60 years, showcasing the rare combination of a stroke-like episode, chronic insomnia and oculomasticatory rhythmic movement.


Assuntos
DNA Polimerase gama , Distúrbios do Início e da Manutenção do Sono , Humanos , Masculino , DNA Polimerase gama/genética , Distúrbios do Início e da Manutenção do Sono/genética , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/complicações , Mutação de Sentido Incorreto , Doenças Mitocondriais/genética , Doenças Mitocondriais/complicações , Doenças Mitocondriais/diagnóstico , Idoso , Pessoa de Meia-Idade , Oftalmoplegia/genética , Oftalmoplegia/diagnóstico , Blefaroptose/genética , Mutação
10.
Nat Commun ; 15(1): 3631, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684731

RESUMO

Idiopathic Parkinson's disease (iPD) is believed to have a heterogeneous pathophysiology, but molecular disease subtypes have not been identified. Here, we show that iPD can be stratified according to the severity of neuronal respiratory complex I (CI) deficiency, and identify two emerging disease subtypes with distinct molecular and clinical profiles. The CI deficient (CI-PD) subtype accounts for approximately a fourth of all cases, and is characterized by anatomically widespread neuronal CI deficiency, a distinct cell type-specific gene expression profile, increased load of neuronal mtDNA deletions, and a predilection for non-tremor dominant motor phenotypes. In contrast, the non-CI deficient (nCI-PD) subtype exhibits no evidence of mitochondrial impairment outside the dopaminergic substantia nigra and has a predilection for a tremor dominant phenotype. These findings constitute a step towards resolving the biological heterogeneity of iPD with implications for both mechanistic understanding and treatment strategies.


Assuntos
DNA Mitocondrial , Complexo I de Transporte de Elétrons , Complexo I de Transporte de Elétrons/deficiência , Mitocôndrias , Doenças Mitocondriais , Doença de Parkinson , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Humanos , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Masculino , DNA Mitocondrial/genética , Feminino , Mitocôndrias/metabolismo , Mitocôndrias/genética , Idoso , Substância Negra/metabolismo , Substância Negra/patologia , Pessoa de Meia-Idade , Fenótipo , Neurônios/metabolismo
11.
Genome Res ; 34(3): 341-365, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38627095

RESUMO

Mitochondrial DNA (mtDNA) variants cause a range of diseases from severe pediatric syndromes to aging-related conditions. The percentage of mtDNA copies carrying a pathogenic variant, variant allele frequency (VAF), must reach a threshold before a biochemical defect occurs, termed the biochemical threshold. Whether the often-cited biochemical threshold of >60% VAF is similar across mtDNA variants and cell types is unclear. In our systematic review, we sought to identify the biochemical threshold of mtDNA variants in relation to VAF by human tissue/cell type. We used controlled vocabulary terms to identify articles measuring oxidative phosphorylation (OXPHOS) complex activities in relation to VAF. We identified 76 eligible publications, describing 69, 12, 16, and 49 cases for complexes I, III, IV, and V, respectively. Few studies evaluated OXPHOS activities in diverse tissue types, likely reflective of clinical access. A number of cases with similar VAFs for the same pathogenic variant had varying degrees of residual activity of the affected complex, alluding to the presence of modifying variants. Tissues and cells with VAFs <60% associated with low complex activities were described, suggesting the possibility of a biochemical threshold of <60%. Using Kendall rank correlation tests, the VAF of the m.8993T > G variant correlated with complex V activity in skeletal muscle (τ = -0.58, P = 0.01, n = 13); however, no correlation was observed in fibroblasts (P = 0.7, n = 9). Our systematic review highlights the need to investigate the biochemical threshold over a wider range of VAFs in disease-relevant cell types to better define the biochemical threshold for specific mtDNA variants.


Assuntos
DNA Mitocondrial , Fosforilação Oxidativa , Humanos , DNA Mitocondrial/genética , Mitocôndrias/metabolismo , Mitocôndrias/genética , Frequência do Gene , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Variação Genética
12.
Nature ; 628(8009): 844-853, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570685

RESUMO

Mitochondria are critical modulators of antiviral tolerance through the release of mitochondrial RNA and DNA (mtDNA and mtRNA) fragments into the cytoplasm after infection, activating virus sensors and type-I interferon (IFN-I) response1-4. The relevance of these mechanisms for mitochondrial diseases remains understudied. Here we investigated mitochondrial recessive ataxia syndrome (MIRAS), which is caused by a common European founder mutation in DNA polymerase gamma (POLG1)5. Patients homozygous for the MIRAS variant p.W748S show exceptionally variable ages of onset and symptoms5, indicating that unknown modifying factors contribute to disease manifestation. We report that the mtDNA replicase POLG1 has a role in antiviral defence mechanisms to double-stranded DNA and positive-strand RNA virus infections (HSV-1, TBEV and SARS-CoV-2), and its p.W748S variant dampens innate immune responses. Our patient and knock-in mouse data show that p.W748S compromises mtDNA replisome stability, causing mtDNA depletion, aggravated by virus infection. Low mtDNA and mtRNA release into the cytoplasm and a slow IFN response in MIRAS offer viruses an early replicative advantage, leading to an augmented pro-inflammatory response, a subacute loss of GABAergic neurons and liver inflammation and necrosis. A population databank of around 300,000 Finnish individuals6 demonstrates enrichment of immunodeficient traits in carriers of the POLG1 p.W748S mutation. Our evidence suggests that POLG1 defects compromise antiviral tolerance, triggering epilepsy and liver disease. The finding has important implications for the mitochondrial disease spectrum, including epilepsy, ataxia and parkinsonism.


Assuntos
Alelos , DNA Polimerase gama , Vírus da Encefalite Transmitidos por Carrapatos , Herpesvirus Humano 1 , Tolerância Imunológica , SARS-CoV-2 , Animais , Feminino , Humanos , Masculino , Camundongos , Idade de Início , COVID-19/imunologia , COVID-19/virologia , COVID-19/genética , DNA Polimerase gama/genética , DNA Polimerase gama/imunologia , DNA Polimerase gama/metabolismo , DNA Mitocondrial/imunologia , DNA Mitocondrial/metabolismo , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/genética , Encefalite Transmitida por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/virologia , Efeito Fundador , Técnicas de Introdução de Genes , Herpes Simples/genética , Herpes Simples/imunologia , Herpes Simples/virologia , Herpesvirus Humano 1/imunologia , Tolerância Imunológica/genética , Tolerância Imunológica/imunologia , Imunidade Inata/genética , Imunidade Inata/imunologia , Interferon Tipo I/imunologia , Doenças Mitocondriais/enzimologia , Doenças Mitocondriais/genética , Doenças Mitocondriais/imunologia , Mutação , RNA Mitocondrial/imunologia , RNA Mitocondrial/metabolismo , SARS-CoV-2/imunologia
13.
Mitochondrion ; 76: 101879, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599303

RESUMO

OBJECTIVES: Thymidine kinase 2 deficiency (TK2d) is a rare autosomal recessive mitochondrial disorder. It manifests as a continuous clinical spectrum, from fatal infantile mitochondrial DNA depletion syndromes to adult-onset mitochondrial myopathies characterized by ophthalmoplegia-plus phenotypes with early respiratory involvement. Treatment with pyrimidine nucleosides has recently shown striking effects on survival and motor outcomes in the more severe infantile-onset clinical forms. We present the response to treatment in a patient with adult-onset TK2d. METHODS: An adult with ptosis, ophthalmoplegia, facial, neck, and proximal muscle weakness, non-invasive nocturnal mechanical ventilation, and dysphagia due to biallelic pathogenic variants in TK2 received treatment with 260 mg/kg/day of deoxycytidine (dC) and deoxythymidine (dT) under a Compassionate Use Program. Prospective motor and respiratory assessments are presented. RESULTS: After 27 months of follow-up, the North Star Ambulatory Assessment improved by 11 points, he walked 195 m more in the 6 Minute-Walking-Test, ran 10 s faster in the 100-meter time velocity test, and the Forced Vital Capacity stabilized. Growth Differentiation Factor-15 (GDF15) levels, a biomarker of respiratory chain dysfunction, normalized. The only reported side effect was dose-dependent diarrhea. DISCUSSION: Treatment with dC and dT can significantly improve motor performance and stabilize respiratory function safely in patients with adult-onset TK2d.


Assuntos
Timidina Quinase , Humanos , Masculino , Timidina Quinase/genética , Timidina Quinase/deficiência , Administração Oral , Adulto , Resultado do Tratamento , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/genética , Nucleosídeos/uso terapêutico , Nucleosídeos/administração & dosagem
14.
Genes (Basel) ; 15(4)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38674434

RESUMO

Oxidative phosphorylation involves a complex multi-enzymatic mitochondrial machinery critical for proper functioning of the cell, and defects herein cause a wide range of diseases called "primary mitochondrial disorders" (PMDs). Mutations in about 400 nuclear and 37 mitochondrial genes have been documented to cause PMDs, which have an estimated birth prevalence of 1:5000. Here, we describe a 4-year-old female presenting from early childhood with psychomotor delay and white matter signal changes affecting several brain regions, including the brainstem, in addition to lactic and phytanic acidosis, compatible with Leigh syndrome, a genetically heterogeneous subgroup of PMDs. Whole genome sequencing of the family trio identified a homozygous 12.9 Kb deletion, entirely overlapping the NDUFA4 gene. Sanger sequencing of the breakpoints revealed that the genomic rearrangement was likely triggered by Alu elements flanking the gene. NDUFA4 encodes for a subunit of the respiratory chain Complex IV, whose activity was significantly reduced in the patient's fibroblasts. In one family, dysfunction of NDUFA4 was previously documented as causing mitochondrial Complex IV deficiency nuclear type 21 (MC4DN21, OMIM 619065), a relatively mild form of Leigh syndrome. Our finding confirms the loss of NDUFA4 function as an ultra-rare cause of Complex IV defect, clinically presenting as Leigh syndrome.


Assuntos
Complexo I de Transporte de Elétrons , Doença de Leigh , Humanos , Doença de Leigh/genética , Doença de Leigh/patologia , Feminino , Pré-Escolar , Complexo IV da Cadeia de Transporte de Elétrons/genética , Doenças Mitocondriais/genética , Doenças Mitocondriais/patologia , Linhagem , Deleção de Sequência
15.
BMC Neurol ; 24(1): 87, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438854

RESUMO

BACKGROUND: RARS2-related mitochondrial disorder is an autosomal recessive mitochondrial encephalopathy caused by biallelic pathogenic variants in the gene encoding the mitochondrial arginyl-transfer RNA synthetase 2 (RARS2, MIM *611524, NM_020320.5). RARS2 catalyzes the transfer of L-arginine to its cognate tRNA during the translation of mitochondrially-encoded proteins. The classical presentation of RARS2-related mitochondrial disorder includes pontocerebellar hypoplasia (PCH), progressive microcephaly, profound developmental delay, feeding difficulties, and hypotonia. Most patients also develop severe epilepsy by three months of age, which consists of focal or generalized seizures that frequently become pharmacoresistant and lead to developmental and epileptic encephalopathy (DEE). CASE PRESENTATION: Here, we describe a six-year-old boy with developmental delay, hypotonia, and failure to thrive who developed an early-onset DEE consistent with Lennox-Gastaut Syndrome (LGS), which has not previously been observed in this disorder. He had dysmorphic features including bilateral macrotia, overriding second toes, a depressed nasal bridge, retrognathia, and downslanting palpebral fissures, and he did not demonstrate progressive microcephaly. Whole genome sequencing identified two variants in RARS2, c.36 + 1G > T, a previously unpublished variant that is predicted to affect splicing and is, therefore, likely pathogenic and c.419 T > G (p.Phe140Cys), a known pathogenic variant. He exhibited significant, progressive generalized brain atrophy and ex vacuo dilation of the supratentorial ventricular system on brain MRI and did not demonstrate PCH. Treatment with a ketogenic diet (KD) reduced seizure frequency and enabled him to make developmental progress. Plasma untargeted metabolomics analysis showed increased levels of lysophospholipid and sphingomyelin-related metabolites. CONCLUSIONS: Our work expands the clinical spectrum of RARS2-related mitochondrial disorder, demonstrating that patients can present with dysmorphic features and an absence of progressive microcephaly, which can help guide the diagnosis of this condition. Our case highlights the importance of appropriate seizure phenotyping in this condition and indicates that patients can develop LGS, for which a KD may be a viable therapeutic option. Our work further suggests that analytes of phospholipid metabolism may serve as biomarkers of mitochondrial dysfunction.


Assuntos
Arginina-tRNA Ligase , Microcefalia , Doenças Mitocondriais , Humanos , Masculino , Criança , Microcefalia/genética , Hipotonia Muscular , Fenótipo , Doenças Mitocondriais/genética , Convulsões , Arginina-tRNA Ligase/genética
17.
Int J Mol Sci ; 25(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38542395

RESUMO

Mitochondria are involved in multiple aspects of neurodevelopmental processes and play a major role in the pathogenetic mechanisms leading to neuro-degenerative diseases. Fragile-X-related disorders (FXDs) are genetic conditions that occur due to the dynamic expansion of CGG repeats of the FMR1 gene encoding for the RNA-binding protein FMRP, particularly expressed in the brain. This gene expansion can lead to premutation (PM, 56-200 CGGs), full mutation (FM, >200 CGGs), or unmethylated FM (UFM), resulting in neurodegeneration, neurodevelopmental disorders, or no apparent intellectual disability, respectively. To investigate the mitochondrial mechanisms that are involved in the FXD patients, we analyzed mitochondrial morphology and bioenergetics in fibroblasts derived from patients. Donut-shaped mitochondrial morphology and excessive synthesis of critical mitochondrial proteins were detected in FM, PM, and UFM cells. Analysis of mitochondrial oxidative phosphorylation in situ reveals lower respiration in PM fibroblasts. Importantly, mitochondrial permeability transition-dependent apoptosis is sensitized to reactive oxygen species in FM, PM, and UFM models. This study elucidated the mitochondrial mechanisms that are involved in the FXD phenotypes, and indicated altered mitochondrial function and morphology. Importantly, a sensitization to permeability transition and apoptosis was revealed in FXD cells. Overall, our data suggest that mitochondria are novel drug targets to relieve the FXD symptoms.


Assuntos
Síndrome do Cromossomo X Frágil , Deficiência Intelectual , Doenças Mitocondriais , Humanos , Síndrome do Cromossomo X Frágil/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Deficiência Intelectual/genética , Morte Celular/genética , Doenças Mitocondriais/genética , Mutação , Expansão das Repetições de Trinucleotídeos
18.
Zool Res ; 45(2): 292-298, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38485499

RESUMO

Mutations in mitochondrial DNA (mtDNA) are maternally inherited and have the potential to cause severe disorders. Mitochondrial replacement therapies, including spindle, polar body, and pronuclear transfers, are promising strategies for preventing the hereditary transmission of mtDNA diseases. While pronuclear transfer has been used to generate mitochondrial replacement mouse models and human embryos, its application in non-human primates has not been previously reported. In this study, we successfully generated four healthy cynomolgus monkeys ( Macaca fascicularis) via female pronuclear transfer. These individuals all survived for more than two years and exhibited minimal mtDNA carryover (3.8%-6.7%), as well as relatively stable mtDNA heteroplasmy dynamics during development. The successful establishment of this non-human primate model highlights the considerable potential of pronuclear transfer in reducing the risk of inherited mtDNA diseases and provides a valuable preclinical research model for advancing mitochondrial replacement therapies in humans.


Assuntos
Doenças Mitocondriais , Doenças dos Roedores , Camundongos , Humanos , Feminino , Animais , Doenças Mitocondriais/genética , Doenças Mitocondriais/prevenção & controle , Doenças Mitocondriais/veterinária , Haplorrinos/genética , Mitocôndrias/genética , DNA Mitocondrial/genética , Primatas/genética
19.
Front Biosci (Schol Ed) ; 16(1): 7, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38538347

RESUMO

Disorders of mitochondrial function are responsible for many inherited neuromuscular and metabolic diseases. Their combination of high mortality, multi-systemic involvement, and economic burden cause devastating effects on patients and their families. Molecular diagnostic tools are becoming increasingly important in providing earlier diagnoses and guiding more precise therapeutic treatments for patients suffering from mitochondrial disorders. This review addresses fundamental molecular concepts relating to the pathogenesis of mitochondrial dysfunction and disorders. A series of short cases highlights the various clinical presentations, inheritance patterns, and pathogenic mutations in nuclear and mitochondrial genes that cause mitochondrial diseases. Graphical and tabular representations of the results are presented to guide the understanding of the important concepts related to mitochondrial molecular genetics and pathology. Emerging technology is incorporating preimplantation genetic testing for mtDNA disorders, while mitochondrial replacement shows promise in significantly decreasing the transfer of diseased mitochondrial DNA (mtDNA) to embryos. Medical professionals must maintain an in-depth understanding of the gene mutations and molecular mechanisms underlying mitochondrial disorders. Continued diagnostic advances and comprehensive management of patients with mitochondrial disorders are essential to achieve robust clinical impacts from comprehensive genomic testing. This is especially true when supported by non-genetic tests such as biochemical analysis, histochemical stains, and imaging studies. Such a multi-pronged investigation should improve the management of mitochondrial disorders by providing accurate and timely diagnoses to reduce disease burden and improve the lives of patients and their families.


Assuntos
Doenças Mitocondriais , Humanos , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Doenças Mitocondriais/patologia , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mutação , Genes Mitocondriais
20.
Mitochondrion ; 76: 101870, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38471579

RESUMO

Mitochondrial disorders are a heterogeneous group of disorders caused by mutations in the mitochondrial DNA or in nuclear genes encoding the mitochondrial proteins and subunits. Polymerase Gamma (POLG) is a nuclear gene and mutation in the POLG gene are one of the major causes of inherited mitochondrial disorders. In this study, 15 pediatric patients, with a wide spectrum of clinical phenotypes were screened using blood samples (n = 15) and muscle samples (n = 4). Respiratory chain enzyme analysis in the muscle samples revealed multi-complex deficiencies with Complex I deficiency present in (1/4) patients, Complex II (2/4), Complex III (3/4) and Complex IV (2/4) patients. Multiple large deletions were observed in 4/15 patients using LR-PCR. Whole exome sequencing (WES) revealed a compound heterozygous mutation consisting of a POLG1 novel variant (NP_002684.1:p.Trp261X) and a missense variant (NP_002684.1:p. Leu304Arg) in one patient and another patient harboring a novel homozygous POLG1 variant (NP_002684.1:p. Phe750Val). These variants (NP_002684.1:p. Leu304Arg) and (NP_002684.1:p. Phe750Val) and their interactions with DNA were modelled using molecular docking and molecular dynamics (MD) simulation studies. The protein conformation was analyzed as root mean square deviation (RMSD), root mean square fluctuation (RMSF) which showed local fluctuations in the mutants compared to the wildtype. However, Solvent Accessible Surface Area (SASA) significantly increased for NP_002684.1:p.Leu304Arg and decreased in NP_002684.1:p.Phe750Val mutants. Further, Contact Order analysis indicated that the Aromatic-sulfur interactions were destabilizing in the mutants. Overall, these in-silico analysis has revealed a destabilizing mutations suggesting pathogenic variants in POLG1 gene.


Assuntos
DNA Polimerase gama , Doenças Mitocondriais , Simulação de Dinâmica Molecular , Humanos , DNA Polimerase gama/genética , Doenças Mitocondriais/genética , Criança , Masculino , Pré-Escolar , Feminino , Índia , Lactente , Heterogeneidade Genética , Transporte de Elétrons/genética , Adolescente , Mutação , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA