Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 358
Filtrar
1.
Methods Mol Biol ; 2822: 77-86, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38907913

RESUMO

Foodborne viruses remain the largest cause of human gastroenteritis and one of the largest contributors to foodborne illnesses worldwide. Currently, quantitative reverse transcription PCR (qRT-PCR) or real-time qPCR are the detection methods commonly used for quantification of foodborne viruses, but those methods have several disadvantages, such as relying on standard curves for quantification and the background noise from a bulk reaction. ddPCR uses an oil-water emulsion to form multiple droplets that partition small amounts of viral genetic material (DNA or RNA) into each of the droplets. These droplets then undergo amplification cycles and are analyzed using Poisson distributions. This allows for absolute quantification without the need for a standard curve, which makes ddPCR a precise tool in surveillance of foodborne viruses. Herein, we describe the process of detecting foodborne viruses using RNA isolated from various matrices. Up to 96 samples including the positive and negative controls can be analyzed on a single plate by ddPCR.


Assuntos
Doenças Transmitidas por Alimentos , Vírus de RNA , RNA Viral , Reação em Cadeia da Polimerase Via Transcriptase Reversa , RNA Viral/genética , Humanos , Doenças Transmitidas por Alimentos/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Vírus de RNA/genética , Vírus de RNA/isolamento & purificação , Microbiologia de Alimentos/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos
2.
Molecules ; 29(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38792166

RESUMO

Food-borne transmission is a recognized route for many viruses associated with gastrointestinal, hepatic, or neurological diseases. Therefore, it is essential to identify new bioactive compounds with broad-spectrum antiviral activity to exploit innovative solutions against these hazards. Recently, antimicrobial peptides (AMPs) have been recognized as promising antiviral agents. Indeed, while the antibacterial and antifungal effects of these molecules have been widely reported, their use as potential antiviral agents has not yet been fully investigated. Herein, the antiviral activity of previously identified or newly designed AMPs was evaluated against the non-enveloped RNA viruses, hepatitis A virus (HAV) and murine norovirus (MNV), a surrogate for human norovirus. Moreover, specific assays were performed to recognize at which stage of the viral infection cycle the peptides could function. The results showed that almost all peptides displayed virucidal effects, with about 90% of infectivity reduction in HAV or MNV. However, the decapeptide RiLK1 demonstrated, together with its antibacterial and antifungal properties, a notable reduction in viral infection for both HAV and MNV, possibly through direct interaction with viral particles causing their damage or hindering the recognition of cellular receptors. Hence, RiLK1 could represent a versatile antimicrobial agent effective against various foodborne pathogens including viruses, bacteria, and fungi.


Assuntos
Antivirais , Doenças Transmitidas por Alimentos , Norovirus , Antivirais/farmacologia , Antivirais/química , Animais , Doenças Transmitidas por Alimentos/prevenção & controle , Doenças Transmitidas por Alimentos/tratamento farmacológico , Doenças Transmitidas por Alimentos/virologia , Norovirus/efeitos dos fármacos , Humanos , Camundongos , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Vírus da Hepatite A/efeitos dos fármacos , Viroses/tratamento farmacológico , Testes de Sensibilidade Microbiana
3.
Food Environ Virol ; 16(2): 225-240, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38687458

RESUMO

Accurate detection, identification, and subsequent confirmation of pathogens causing foodborne illness are essential for the prevention and investigation of foodborne outbreaks. This is particularly true when the causative agent is an enteric virus that has a very low infectious dose and is likely to be present at or near the limit of detection. In this study, whole-genome sequencing (WGS) was combined with either of two non-targeted pre-amplification methods (SPIA and SISPA) to investigate their utility as a confirmatory method for RT-qPCR positive results of foods contaminated with enteric viruses. Frozen berries (raspberries, strawberries, and blackberries) were chosen as the food matrix of interest due to their association with numerous outbreaks of foodborne illness. The hepatitis A virus (HAV) and human norovirus (HuNoV) were used as the contaminating agents. The non-targeted WGS strategy employed in this study could detect and confirm HuNoV and HAV at genomic copy numbers in the single digit range, and in a few cases, identified viruses present in samples that had been found negative by RT-qPCR analyses. However, some RT-qPCR-positive samples could not be confirmed using the WGS method, and in cases with very high Ct values, only a few viral reads and short sequences were recovered from the samples. WGS techniques show great potential for confirmation and identification of virally contaminated food items. The approaches described here should be further optimized for routine application to confirm the viral contamination in berries.


Assuntos
Contaminação de Alimentos , Doenças Transmitidas por Alimentos , Fragaria , Frutas , Reação em Cadeia da Polimerase em Tempo Real , Rubus , Sequenciamento Completo do Genoma , Frutas/virologia , Sequenciamento Completo do Genoma/métodos , Contaminação de Alimentos/análise , Reação em Cadeia da Polimerase em Tempo Real/métodos , Fragaria/virologia , Humanos , Rubus/virologia , Doenças Transmitidas por Alimentos/virologia , Genoma Viral/genética , Vírus da Hepatite A/genética , Vírus da Hepatite A/isolamento & purificação , Vírus da Hepatite A/classificação , Alimentos Congelados/virologia , Norovirus/genética , Norovirus/isolamento & purificação , Norovirus/classificação
4.
Food Environ Virol ; 16(2): 180-187, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38466479

RESUMO

In March 2019, the Finnish Institute for Health and Welfare and Finnish Food Authority started an outbreak investigation after a notification of food business operators' recall of frozen bilberries due to a norovirus finding. A retrospective search was conducted in the food and waterborne outbreak notification system to identify the notifications linked to norovirus and consumption of bilberries in January-March 2019. Five outbreaks were found in which norovirus GII or GII.17 had been detected in patient samples. A pooled retrospective cohort study was performed for those four in which a questionnaire study had been done. A case was defined as a person with diarrhoea or vomiting within 2 days after consuming a meal studied at one of the outbreak locations. Of 79 participants, 45 (57%) cases were identified. Persons that had consumed foods containing unheated bilberries were three times more likely to get ill than those who had not consumed them (RR 3.1, CI 95% 1.2-8.1, p = 0.02). Norovirus GII.17 was found in 16/17 patient samples sent for further typing. Identical norovirus GII.17 was detected in frozen Finnish bilberries and patient samples. At the berry packaging premises, signs of norovirus GII contamination were found in packaging lines. A new procedure for extracting viral nucleic acid from food and environmental samples was used during the outbreak investigation. Consumption of industrially packed frozen berries as heated would be one of the means to prevent norovirus infections.


Assuntos
Infecções por Caliciviridae , Surtos de Doenças , Contaminação de Alimentos , Gastroenterite , Norovirus , Norovirus/genética , Norovirus/isolamento & purificação , Norovirus/classificação , Humanos , Finlândia/epidemiologia , Infecções por Caliciviridae/virologia , Infecções por Caliciviridae/epidemiologia , Feminino , Adulto , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Contaminação de Alimentos/análise , Gastroenterite/virologia , Gastroenterite/epidemiologia , Frutas/virologia , Idoso , Adulto Jovem , Alimentos Congelados/virologia , Prunus armeniaca/virologia , Doenças Transmitidas por Alimentos/virologia , Doenças Transmitidas por Alimentos/epidemiologia , Adolescente , Genótipo
5.
Annu Rev Food Sci Technol ; 15(1): 455-472, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38277693

RESUMO

Viruses are the leading cause of foodborne illness globally. Concentration of viruses from samples is important for detection because viral contamination of foods often occurs at low levels. In general, virus concentration methods can be classified as either nonspecific, exploiting the relatively homogeneous physicochemical properties of the virus to separate/concentrate it from the sample matrix, or specific, relying on recognition elements such as antibodies to specifically capture and separate viruses from foods. Numerous nonspecific and specific techniques for virus concentration have been reported, each with its own advantages and limitations. Factors to consider can include reagent and equipment costs, time-to-result, ease of use, and potential to eliminate matrix-associated inhibitors. The purpose of this review is to survey the different foodborne virus concentration techniques and their efficacy in various food and environmental matrices as well as discuss some emerging techniques for purification and concentration of viral pathogens from food samples.


Assuntos
Microbiologia de Alimentos , Vírus , Vírus/isolamento & purificação , Contaminação de Alimentos/análise , Doenças Transmitidas por Alimentos/virologia , Humanos
6.
Braz. j. biol ; 82: 1-7, 2022. tab, ilus, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1468581

RESUMO

In this research, some plant seeds powder was evaluated to find their potential effect to rule diseases of food poisoning. Antimicrobial effect of five plant seeds was examined contra Bacillus cereus, Staphylococcus aureus, Escherichia coli, Klebsiella. pneumonia and Candida albicans by using well diffusion method. Antimicrobial activity studies revealed high potential activity of plant seeds powder of Nigella sativa L., cucurbita pepo, Sesamum radiatum, Trigonella foenum-graecum, Linum usitatissimum with variable efficiency contra tested microbial strains with concentration of 100 mg/ml, except Sesamum radiatum scored no effect. The T. foenum and N. sativa seed powder showed the largest inhibition zone (24-20 mm) contra K. pneumonia, followed by S. aureus (20-18 mm) and C. albicans (15mm) respectively. The five plant seeds powder exhibited bacteriostatic and bactericidal effects with MIC's 20 and MBC 40 mg/ml against K. pneumonia, and MIC's 40 and MBC 60 mg/ml against S. aureus. The results of this study indicated that plants seeds powder have promising antimicrobial activities and their potential applications in food process. It could be utilized as a natural medicinal alternative instead of chemical substance.


Nesta pesquisa, o pó de sementes de plantas foi avaliado para encontrar seu efeito potencial no controle de doenças de intoxicação alimentar. O efeito antimicrobiano de cinco sementes de plantas foi examinado contra Bacillus cereus, Staphylococcus aureus, Escherichia coli, Klebsiella pneumonia e Candida albicans usando o método de difusão bem. Estudos de atividade antimicrobiana revelaram alto potencial de atividade de sementes de plantas em pó de Nigella sativa L., Cucurbita pepo, Sesamum radiatum, Trigonella foenum-graecum, Linum usitatissimum com eficiência variável contra cepas microbianas testadas com concentração de 100 mg / ml, exceto Sesamum radiatum com pontuação não efeito. O pó de sementes de T. foenum e N. sativa apresentou a maior zona de inibição (24-20 mm) contra K. pneumonia, seguido por S. aureus (20-18 mm) e C. albicans (15 mm), respectivamente. O pó de cinco sementes de plantas exibiu efeitos bacteriostáticos e bactericidas com MIC's 20 e MBC 40 mg / ml contra K. pneumonia, enquanto MIC's 40 e MBC 60 mg / ml contra S. aureus. Os resultados deste estudo indicaram que os pós de sementes de plantas apresentam promissoras atividades antimicrobianas e suas potenciais aplicações em processos alimentícios. Ele poderia ser utilizado como alternativa medicinal natural em vez de substância química.


Assuntos
Cucurbita pepo , Doenças Transmitidas por Alimentos/parasitologia , Doenças Transmitidas por Alimentos/tratamento farmacológico , Doenças Transmitidas por Alimentos/virologia , Sesamum , Técnicas In Vitro
7.
Viruses ; 13(12)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34960617

RESUMO

The global increase in multidrug-resistant infections caused by various pathogens has raised concerns in human and veterinary medicine. This has renewed interest in the development of alternative methods to antibiotics, including the use of bacteriophages for controlling bacterial infections. The aim of this review is to present potential uses of bacteriophages as an alternative to antibiotics in the control of bacterial infections caused by multidrug-resistant bacteria posing a risk to humans, with particular emphasis on foodborne and zoonotic pathogens. A varied therapeutic and immunomodulatory (activation or suppression) effect of bacteriophages on humoral and cellular immune response mechanisms has been demonstrated. The antibiotic resistance crisis caused by global antimicrobial resistance among bacteria creates a compelling need for alternative safe and selectively effective antibacterial agents. Bacteriophages have many properties indicating their potential suitability as therapeutic and/or prophylactic agents. In many cases, bacteriophages can also be used in food quality control against microorganisms such as Salmonella, Escherichia coli, Listeria, Campylobacter and others. Future research will provide potential alternative solutions using bacteriophages to treat infections caused by multidrug-resistant bacteria.


Assuntos
Zoonoses Bacterianas , Bacteriófagos/fisiologia , Doenças Transmitidas por Alimentos , Animais , Zoonoses Bacterianas/terapia , Zoonoses Bacterianas/virologia , Doenças Transmitidas por Alimentos/terapia , Doenças Transmitidas por Alimentos/virologia
8.
Viruses ; 13(7)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34372557

RESUMO

Human coronaviruses, including SARS-CoV-2, are known to spread mainly via close contact and respiratory droplets. However, other potential means of transmission may be present. Fomite-mediated transmission occurs when viruses are deposited onto a surface and then transfer to a subsequent individual. Surfaces can become contaminated directly from respiratory droplets or from a contaminated hand. Due to mask mandates in many countries around the world, the former is less likely. Hands can become contaminated if respiratory droplets are deposited on them (i.e., coughing or sneezing) or through contact with fecal material where human coronaviruses (HCoVs) can be shed. The focus of this paper is on whether human coronaviruses can transfer efficiently from contaminated hands to food or food contact surfaces. The surfaces chosen were: stainless steel, plastic, cucumber and apple. Transfer was first tested with cellular maintenance media and three viruses: two human coronaviruses, 229E and OC43, and murine norovirus-1, as a surrogate for human norovirus. There was no transfer for either of the human coronaviruses to any of the surfaces. Murine norovirus-1 did transfer to stainless steel, cucumber and apple, with transfer efficiencies of 9.19%, 5.95% and 0.329%, respectively. Human coronavirus OC43 transfer was then tested in the presence of fecal material, and transfer was observed for stainless steel (0.52%), cucumber (19.82%) and apple (15.51%) but not plastic. This study indicates that human coronaviruses do not transfer effectively from contaminated hands to contact surfaces without the presence of fecal material.


Assuntos
COVID-19/transmissão , Infecções por Coronavirus/transmissão , Microbiologia de Alimentos , SARS-CoV-2/fisiologia , COVID-19/virologia , Linhagem Celular , Resfriado Comum/transmissão , Coronavirus/isolamento & purificação , Coronavirus Humano 229E/isolamento & purificação , Coronavirus Humano OC43/isolamento & purificação , Contaminação de Equipamentos , Fezes/virologia , Fômites , Doenças Transmitidas por Alimentos/virologia , Humanos , Norovirus/isolamento & purificação , Aço Inoxidável
9.
Appl Environ Microbiol ; 87(16): e0045621, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34047634

RESUMO

Human bocavirus (HBoV) has been recognized as an important pathogen that causes respiratory infection and acute gastroenteritis in young children worldwide. HBoV is most likely transmitted by the respiratory route and by fecal-oral transmission. Recently, HBoV has been detected in several types of environmental water and in bivalve shellfish. However, study of the existence of HBoV in oysters is still undocumented in Thailand. In this study, 144 oyster samples collected from different markets in Chiang Mai, Thailand, in 2017 and 2018 were investigated for the presence of HBoV by nested PCR and sequencing. HBoV was detected in 11 out of 144 samples (7.6%). Nine HBoV-positive samples (81.8%) were identified as genotype 1 (HBoV1) and two (18.2%) as HBoV2. A monthly investigation of HBoV in oyster samples from July 2017 to June 2018 showed that HBoV was sporadically detected in particular months spanning the rainy and colder season, with a peak in January. This study demonstrates the presence and genotype diversity of HBoV in oyster samples in Thailand. The findings contribute to evaluating the risk of foodborne transmission of HBoV and to monitoring outbreaks of HBoV in Thailand and in other countries. IMPORTANCE Human bocavirus is recognized as an important cause of respiratory infection and of acute gastroenteritis in children worldwide. Human bocavirus has been widely detected in many clinical specimens, as well as in several types of environmental samples. Most previous studies describe the incidence of bocavirus infection in humans, whereas few data are available for the occurrence of human bocavirus in food materials, particularly that in bivalve shellfish. Our findings provide evidence for the existence and prevalence of human bocavirus in oysters, suggesting that further monitoring of the potential risk of food- and waterborne transmission of this virus to humans should be undertaken.


Assuntos
Bocavirus Humano/isolamento & purificação , Infecções por Parvoviridae/virologia , Animais , Contaminação de Alimentos/análise , Doenças Transmitidas por Alimentos/epidemiologia , Doenças Transmitidas por Alimentos/virologia , Gastroenterite/epidemiologia , Gastroenterite/virologia , Genótipo , Bocavirus Humano/classificação , Bocavirus Humano/genética , Humanos , Ostreidae/virologia , Infecções por Parvoviridae/epidemiologia , Filogenia , Estações do Ano , Tailândia/epidemiologia
10.
Int J Food Microbiol ; 348: 109151, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-33940535

RESUMO

Foodborne outbreaks associated with transmission of norovirus are increasingly becoming a public health concern. Foods can be contaminated with faecal material at the point of production or during food preparation, in both the home and in commercial premises. Transmission of norovirus occurs through the faecal-oral route, either via person-to-person contact or through faecal-contamination of food, water, or environmental surfaces. Understanding the role and pathways of norovirus transmission - either via food handlers' hands, contaminated foods or the environment - remains a key public health priority to reduce the burden of norovirus-associated gastroenteritis. However the proportion of norovirus that is typically transferred remains unknown. Understanding this is necessary to estimate the risk of infection and the burden of gastroenteritis caused by norovirus. In this paper we present a novel method of capture, concentration and molecular detection of norovirus from a wider range of complex food matrices than those demonstrated in existing published methods. We demonstrate that this method can be used as a tool to detect and quantify norovirus from naturally contaminated food, and for monitoring norovirus transfer between food handlers' gloved hands, food or the environment. We measure the effect of introducing contamination at different food production process stages, to the final food product, to determine whether this could cause infection and disease. Between 5.9 and 6.3 Log10 cDNA copies/µl of norovirus GII were inoculated onto food handlers' gloved hands, food or the environment and 1.1-7.4% of norovirus contamination was recovered from all samples tested. When interpreted quantitatively, this percentage equates to levels predicted to be sufficient to cause infection and disease through consumption of the final food product, demonstrating a public health risk. Overall detection and quantification of norovirus from foods, food handlers' gloved hands and the environment, when suspected to be implicated in foodborne transmissions, is paramount for appropriate outbreak investigation.


Assuntos
Infecções por Caliciviridae/transmissão , Manipulação de Alimentos/métodos , Doenças Transmitidas por Alimentos/virologia , Gastroenterite/virologia , Norovirus/genética , Infecções por Caliciviridae/virologia , Surtos de Doenças , Fezes/virologia , Contaminação de Alimentos/análise , Humanos
11.
Food Environ Virol ; 13(2): 127-145, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33738770

RESUMO

Globally, Hepatitis E virus (HEV) causes over 20 million cases worldwide. HEV is an emerging and endemic pathogen within economically developed countries, chiefly resulting from infections with genotype 3 (G3) HEV. G3 HEV is known to be a zoonotic pathogen, with a broad host range. The primary source of HEV within more economically developed countries is considered to be pigs, and consumption of pork products is a significant risk factor and known transmission route for the virus to humans. However, other foods have also been implicated in the transmission of HEV to humans. This review consolidates the information available regarding transmission of HEV and looks to identify gaps where further research is required to better understand how HEV is transmitted to humans through food.


Assuntos
Doenças Transmitidas por Alimentos/virologia , Vírus da Hepatite E/fisiologia , Hepatite E/transmissão , Hepatite E/veterinária , Zoonoses/transmissão , Animais , Contaminação de Alimentos/análise , Hepatite E/virologia , Vírus da Hepatite E/genética , Vírus da Hepatite E/isolamento & purificação , Humanos , Carne/virologia , Suínos , Doenças dos Suínos/virologia , Zoonoses/virologia
12.
Food Environ Virol ; 13(1): 107-116, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33501613

RESUMO

Enteric viruses, such as human norovirus (NoV) and hepatitis A virus (HAV), are the major causes of foodborne illnesses worldwide. These viruses have low infectious dose, and may remain infectious for weeks in the environment and food. Limited information is available regarding viral survival and transmission in low-moisture foods (LMF). LMFs are generally considered as ready-to-eat products, which undergo no or minimal pathogen reduction steps. However, numerous foodborne viral outbreaks associated with LMFs have been reported in recent years. The objective of this study was to examine the survival of foodborne viruses in LMFs during 4-week storage at ambient temperature and to evaluate the efficacy of advanced oxidative process (AOP) treatment in the inactivation of these viruses. For this purpose, select LMFs such as pistachios, chocolate, and cereal were inoculated with HAV and the norovirus surrogates, murine norovirus (MNV) and feline calicivirus (FCV), then viral survival on these food matrices was measured over a four-week incubation at ambient temperature, by both plaque assay and droplet-digital RT-PCR (ddRT-PCR) using the modified ISO-15216 method as well as the magnetic bead assay for viral recovery. We observed an approximately 0.5 log reduction in viral genome copies, and 1 log reduction in viral infectivity for all three tested viruses following storage of select inoculated LMFs for 4 weeks. Therefore, the present study shows that the examined foodborne viruses can persist for a long time in LMFs. Next, we examined the inactivation efficacy of AOP treatment, which combines UV-C, ozone, and hydrogen peroxide vapor, and observed that while approximately 100% (4 log) inactivation can be achieved for FCV, and MNV in chocolate, the inactivation efficiency diminishes to approximately 90% (1 log) in pistachios and 70% (< 1 log) in cereal. AOP treatment could therefore be a good candidate for risk reduction of foodborne viruses from certain LMFs depending on the food matrix and surface of treatment.


Assuntos
Chocolate/virologia , Grão Comestível/virologia , Conservação de Alimentos/métodos , Doenças Transmitidas por Alimentos/virologia , Vírus da Hepatite A/crescimento & desenvolvimento , Norovirus/crescimento & desenvolvimento , Pistacia/virologia , Inativação de Vírus/efeitos dos fármacos , Água/análise , Animais , Calicivirus Felino/efeitos dos fármacos , Calicivirus Felino/genética , Calicivirus Felino/crescimento & desenvolvimento , Calicivirus Felino/fisiologia , Chocolate/análise , Grão Comestível/química , Contaminação de Alimentos/análise , Conservação de Alimentos/instrumentação , Conservantes de Alimentos/química , Conservantes de Alimentos/farmacologia , Armazenamento de Alimentos , Vírus da Hepatite A/efeitos dos fármacos , Vírus da Hepatite A/genética , Vírus da Hepatite A/fisiologia , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/farmacologia , Camundongos , Norovirus/efeitos dos fármacos , Norovirus/genética , Norovirus/fisiologia , Oxirredução , Ozônio/química , Ozônio/farmacologia , Pistacia/química
13.
Food Microbiol ; 95: 103709, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33397626

RESUMO

The ongoing pandemic involving severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has raised the question whether this virus, which is known to be spread primarily though respiratory droplets, could be spread through the fecal-oral route or via contaminated food. In this article, we present a critical review of the literature exploring the potential foodborne transmission of several respiratory viruses including human coronaviruses, avian influenza virus (AVI), parainfluenza viruses, human respiratory syncytial virus, adenoviruses, rhinoviruses, and Nipah virus. Multiple lines of evidence, including documented expression of receptor proteins on gastrointestinal epithelial cells, in vivo viral replication in gastrointestinal epithelial cell lines, extended fecal shedding of respiratory viruses, and the ability to remain infectious in food environments for extended periods of time raises the theoretical ability of some human respiratory viruses, particularly human coronaviruses and AVI, to spread via food. However, to date, neither epidemiological data nor case reports of clear foodborne transmission of either viruses exist. Thus, foodborne transmission of human respiratory viruses remains only a theoretical possibility.


Assuntos
Doenças Transmitidas por Alimentos/virologia , Infecções Respiratórias/transmissão , Infecções Respiratórias/virologia , Animais , Aves , COVID-19/transmissão , COVID-19/virologia , Fezes/virologia , Humanos , SARS-CoV-2/isolamento & purificação
14.
Viruses ; 13(1)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33418922

RESUMO

Human noroviruses (HuNoVs) are one of the leading causes of foodborne illnesses globally. The viral genome is the most essential information for viral source tracing and viral transmission pattern monitoring. However, whole genome sequencing of HuNoVs is still challenging due to the sequence heterogeneity among different genotypes and low titer in samples. To address this need, in this study, the Transposase assisted RNA/DNA hybrid Co-tagmentation (TRACE-seq) method was established for next generation sequencing library preparation of HuNoVs. Our data demonstrated that almost the whole HuNoVs genome (>7 kb) could be obtained from all of the 11 clinical samples tested. Twelve genotypes including GI.3, GI.4, GI.5, GI.8, GII.2, GII.3, GII.4, GII.6, GII.12, GII.13, GII.14, and GII.21 were involved. Compared with the traditional method for viral metagenomics library preparation, optimized TRACE-seq greatly reduced the interference from the host's and bacterial RNAs. In addition, viral genome sequences can be assembled by using less raw data with sufficient depth along the whole genome. Therefore, for the high versatility and reliability, this method is promising for whole viral genome attainment. It is particularly applicable for the viruses with a low titer that are mixed with a complicated host background and are unable to be cultured in vitro, like the HuNoVs utilized in this study.


Assuntos
Biblioteca Gênica , Genoma Viral , Norovirus/genética , Norovirus/isolamento & purificação , Transposases/genética , Infecções por Caliciviridae/virologia , Doenças Transmitidas por Alimentos/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Metagenômica , Hibridização de Ácido Nucleico/métodos , Filogenia , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA/métodos
15.
Int J Food Microbiol ; 338: 108995, 2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-33316593

RESUMO

Infectious human diseases acquired from bivalve shellfish consumption constitute a public health threat. These health threats are largely related to the filter-feeding phenomenon, by which bivalve organisms retain and concentrate pathogenic bacteria from their surrounding waters. Even after depuration, bivalve shellfish are still involved in outbreaks caused by pathogenic bacteria, which increases the demand for new and efficient strategies to control transmission of shellfish infection. Bacteriophage (or phage) therapy represents a promising, tailor-made approach to control human pathogens in bivalves, but its success depends on a deep understanding of several factors that include the bacterial communities present in the harvesting waters, the appropriate selection of phage particles, the multiplicity of infection that produces the best bacterial inactivation, chemical and physical factors, the emergence of phage-resistant bacterial mutants and the life cycle of bivalves. This review discusses the need to advance phage therapy research for bivalve decontamination, highlighting their efficiency as an antimicrobial strategy and identifying critical aspects to successfully apply this therapy to control human pathogens associated with bivalve consumption.


Assuntos
Bactérias/virologia , Bacteriófagos/fisiologia , Microbiologia de Alimentos/métodos , Doenças Transmitidas por Alimentos/prevenção & controle , Frutos do Mar/microbiologia , Animais , Doenças Transmitidas por Alimentos/microbiologia , Doenças Transmitidas por Alimentos/virologia , Humanos
16.
Foodborne Pathog Dis ; 18(1): 24-30, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32716659

RESUMO

Norovirus is a major cause of foodborne disease and nonbacterial gastroenteritis globally. This study evaluated the antiviral effects of Magnolia officinalis extract and its honokiol and magnolol constituents against human norovirus surrogates, murine norovirus (MNV) and feline calicivirus (FCV) in vitro, and in model food systems. Pretreatment or cotreatment of M. officinalis extract at 1 mg/mL reduced MNV and FCV titers by 0.6-1.8 log. Honokiol and magnolol, which are the major polyphenols in the extract, showed significant antiviral effects against MNV and FCV. The virus-infected cells that were treated with M. officinalis extract exhibited significantly increased glutathione levels (p < 0.05). The extract, honokiol, and magnolol revealed ferric ion-reducing and 2,2-diphenyl-1-picrylhydrazyl radical scavenging activities in a dose-dependent manner. Furthermore, MNV and FCV titers were reduced by >1.6 log or to undetectable levels in apple, orange, and plum juices and by 0.9 and 1.6 log in milk, respectively, when they were treated with the extract at 5 mg/mL. Therefore, the present study suggests that M. officinalis extract can be used as an antiviral food material to control norovirus foodborne diseases.


Assuntos
Antivirais/farmacologia , Infecções por Caliciviridae/prevenção & controle , Magnolia , Norovirus/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Compostos de Bifenilo/farmacologia , Infecções por Caliciviridae/veterinária , Infecções por Caliciviridae/virologia , Calicivirus Felino/efeitos dos fármacos , Gatos , Doenças Transmitidas por Alimentos/veterinária , Doenças Transmitidas por Alimentos/virologia , Humanos , Lignanas/farmacologia , Camundongos
17.
Euro Surveill ; 25(37)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32945256

RESUMO

Following outbreaks linked to frozen strawberries in Sweden and Austria in 2018, 65 cases linked to the same hepatitis A virus strain were detected in Germany between October 2018 and January 2020, presenting in two waves. Two case-control studies and a comparison of cases' consumption frequencies with purchase data from a large consumer panel provided strong evidence for frozen strawberry cake as the main vehicle of transmission. Of 46 cases interviewed, 27 reported consuming frozen strawberry cake and 25 of these identified cake(s) from brand A spontaneously or in product picture-assisted recall. Trace back investigations revealed that the Polish producer involved in the previous outbreaks in Sweden and Austria had received frozen strawberries from Egypt via a wholesaler that also delivered frozen strawberries to manufacturer of brand A. Phylogenetic analyses linked the outbreak strain to similar strains formerly isolated from sewage, stool and strawberries in Egypt. Complete trace back and timely recall of products with strong evidence of contamination is important to control an outbreak and prevent later resurgence, particularly for food items with a long shelf life. Continued molecular surveillance of hepatitis A is needed to identify outbreaks and monitor the success of food safety interventions.


Assuntos
Surtos de Doenças , Contaminação de Alimentos , Doenças Transmitidas por Alimentos/virologia , Fragaria/virologia , Vírus da Hepatite A/isolamento & purificação , Hepatite A/epidemiologia , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Egito , Fezes , Feminino , Doenças Transmitidas por Alimentos/epidemiologia , Frutas/virologia , Genótipo , Alemanha/epidemiologia , Hepatite A/diagnóstico , Hepatite A/virologia , Vírus da Hepatite A/genética , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Filogenia , RNA Viral/genética , Adulto Jovem
18.
Food Environ Virol ; 12(4): 295-309, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32885354

RESUMO

The leading causes of foodborne viral disease outbreaks are human norovirus and hepatitis A virus (HAV). Their environmental persistence enables contamination of kitchen surfaces and crops often consumed raw, such as berries. Many decontamination procedures are inefficient and unsuitable for surfaces of industrial kitchen environments and soft fruits. In this study, we investigated the efficiency of a novel surface decontamination technology, combining steam and ultrasound (steam-ultrasound). Plastic, steel or raspberry surfaces were spiked with the norovirus surrogate, murine norovirus (MNV), and HAV, and steam-ultrasound treated at 85, 90 and 95 °C for 0-5 s. Post treatment viruses were titrated for survival by plaque assay and for genome stability by real-time quantitative PCR (RT-qPCR) of nucleic acid extracts. Survival of viruses were estimated in a log-linear model and the treatment time requirements for each decimal reduction (D value) in viral survival were calculated. The estimated D values of MNV or HAV were 0.4-0.2 or 1.1-0.8 s on plastic, 0.9-0.7 or 1.4-0.8 s on steel and 1.6-1.7 or 3.2-4.7 s on raspberries. No clear trend of genome reduction was observed with tested treatment parameters. Raspberries treated up to 4 s retained its natural texture and visual appeal similar to untreated controls whilst monitored for 7 days. In conclusion, steam-ultrasound treatment can within seconds reduce the titre of foodborne viruses on surfaces of plastic, steel and raspberries. This may particularly benefit industrial scale production of soft fruits for raw consumption and for swift non-hazardous decontamination of industrial kitchen surfaces.


Assuntos
Descontaminação/métodos , Doenças Transmitidas por Alimentos/virologia , Vírus da Hepatite A/efeitos da radiação , Norovirus/efeitos da radiação , Plásticos/análise , Rubus/virologia , Aço/análise , Ultrassom/métodos , Animais , Contaminação de Alimentos/análise , Contaminação de Alimentos/prevenção & controle , Manipulação de Alimentos/instrumentação , Frutas/virologia , Vírus da Hepatite A/genética , Vírus da Hepatite A/fisiologia , Humanos , Camundongos , Norovirus/genética , Norovirus/fisiologia , Vapor/análise , Inativação de Vírus/efeitos da radiação
19.
Int J Food Microbiol ; 334: 108809, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-32799118

RESUMO

The current popularity of minimally processed foods is an opportunity for natural antimicrobial agents to be combined with mild heat treatments to act synergistically in reducing viral foodborne pathogens. Viral inactivation by heat-treatments (at 25, 40, 50 and 63 °C for 30 min) combined with aged green tea extract (aged-GTE) was initially evaluated in phosphate buffered saline (PBS) against murine norovirus (MNV-1) and hepatitis A virus (HAV) by cell culture, and against human norovirus by in situ capture RT-qPCR. The combination of aged-GTE and heat treatment at 50 °C for 30 min exerted strong antiviral activity, reducing by more than 5 log MNV-1 infectivity in PBS. Heating at 40 °C for 30 min reduced the binding of norovirus to porcine gastric mucine (PGM) to 41.5% and the addition of aged-GTE further decreased the binding to 4.7%. Additionally, the reduction of MNV-1 and HAV infectivity was investigated in two different types of juices exposed to mild heat treatments alone, and combined with aged-GTE. The addition of aged-GTE increased to more than 4 log the inactivation of MNV-1 in juices exposed to 50 °C for 30 min. However, this synergistic effect of aged-GTE combined with heat treatments was not observed for HAV in any of the juices. Aged-GTE, then, could be considered as an additional control measure to improve the food safety of mild heat pasteurized juices.


Assuntos
Sucos de Frutas e Vegetais/virologia , Temperatura Alta , Pasteurização/métodos , Chá/química , Inativação de Vírus , Animais , Antivirais/farmacologia , Linhagem Celular , Doenças Transmitidas por Alimentos/prevenção & controle , Doenças Transmitidas por Alimentos/virologia , Vírus da Hepatite A/fisiologia , Humanos , Camundongos , Norovirus/fisiologia , Extratos Vegetais/farmacologia , Especificidade da Espécie , Suínos , Inativação de Vírus/efeitos dos fármacos
20.
Int J Food Microbiol ; 333: 108787, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-32702583

RESUMO

Human noroviruses (HuNoVs) are the primary non-bacterial pathogens causing acute gastroenteritis worldwide. Here we reported a co-infection of HuNoVs with different genotypes during an outbreak of gastroenteritis in travelers. The aim was to trace the source and transmission patterns of the infections using next-generation sequencing (NGS). An investigation was conducted on a cross-border travel group who came back to China from Thailand for symptoms of gastroenteritis. Anal swabs were collected from 23 people and samples were analyzed using RT-qPCR. A total of 11 samples tested positive for HuNoVs. All samples tested negative for bacterial pathogens in the surveillance list. Positive samples for HuNoVs were further analyzed using NGS. Seven out of 11 positive samples were sequenced and 16 viral genome sequences for 10 different strains of HuNoVs were obtained. We demonstrated that the outbreak was associated with co-infection of multiple genotypes of HuNoVs and the source of infections was probably contaminated water or food. Besides, four different HuNoVs genotypes (GI.5[P12], GIX.1[GII·P15], GI.7[P7] and GII.8[P8]) were identified in one patient. Co-infection with both genogroup GI and GII, and co-infection with two different P types ([P10] and [P13]) of genotype GI.3 were identified in different patients. Findings from this study show that individuals can be simultaneously infected with multiple strains of HuNoVs and NGS can help investigating these issues. Further, this study shows that food and water are potential vehicles for transmission of multiple foodborne viruses.


Assuntos
Infecções por Caliciviridae/diagnóstico , Doenças Transmitidas por Alimentos/virologia , Gastroenterite/diagnóstico , Norovirus/genética , Norovirus/isolamento & purificação , Adolescente , Adulto , Sequência de Bases , Infecções por Caliciviridae/virologia , Criança , China/epidemiologia , Surtos de Doenças , Feminino , Gastroenterite/virologia , Genoma Viral/genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Metagenômica , Pessoa de Meia-Idade , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Tailândia , Viagem , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA