Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39.003
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731799

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disorder. Dopamine (DA) neurons in the substantia nigra pars compacta, which have axonal projections to the dorsal striatum (dSTR), degenerate in PD. In contrast, DA neurons in the ventral tegmental area, with axonal projections to the ventral striatum, including the nucleus accumbens (NAcc) shell, are largely spared. This study aims to uncover the relative contributions of glycolysis and oxidative phosphorylation (OxPhos) to DA release in the striatum. We measured evoked DA release in mouse striatal brain slices using fast-scan cyclic voltammetry applied every two minutes. Blocking OxPhos resulted in a greater reduction in evoked DA release in the dSTR when compared to the NAcc shell, while blocking glycolysis caused a more significant decrease in evoked DA release in the NAcc shell than in the dSTR. Furthermore, when glycolysis was bypassed in favor of direct OxPhos, evoked DA release in the NAcc shell decreased by approximately 50% over 40 min, whereas evoked DA release in the dSTR was largely unaffected. These results demonstrate that the dSTR relies primarily on OxPhos for energy production to maintain evoked DA release, whereas the NAcc shell depends more on glycolysis. Consistently, two-photon imaging revealed higher oxidation levels of DA terminals in the dSTR than in the NAcc shell. Together, these findings partly explain the selective vulnerability of DA terminals in the dSTR to degeneration in PD.


Assuntos
Corpo Estriado , Dopamina , Glicólise , Fosforilação Oxidativa , Animais , Dopamina/metabolismo , Camundongos , Corpo Estriado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Neurônios Dopaminérgicos/metabolismo , Núcleo Accumbens/metabolismo
2.
Elife ; 122024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747563

RESUMO

Midbrain dopamine neurons impact neural processing in the prefrontal cortex (PFC) through mesocortical projections. However, the signals conveyed by dopamine projections to the PFC remain unclear, particularly at the single-axon level. Here, we investigated dopaminergic axonal activity in the medial PFC (mPFC) during reward and aversive processing. By optimizing microprism-mediated two-photon calcium imaging of dopamine axon terminals, we found diverse activity in dopamine axons responsive to both reward and aversive stimuli. Some axons exhibited a preference for reward, while others favored aversive stimuli, and there was a strong bias for the latter at the population level. Long-term longitudinal imaging revealed that the preference was maintained in reward- and aversive-preferring axons throughout classical conditioning in which rewarding and aversive stimuli were paired with preceding auditory cues. However, as mice learned to discriminate reward or aversive cues, a cue activity preference gradually developed only in aversive-preferring axons. We inferred the trial-by-trial cue discrimination based on machine learning using anticipatory licking or facial expressions, and found that successful discrimination was accompanied by sharper selectivity for the aversive cue in aversive-preferring axons. Our findings indicate that a group of mesocortical dopamine axons encodes aversive-related signals, which are modulated by both classical conditioning across days and trial-by-trial discrimination within a day.


Assuntos
Axônios , Condicionamento Clássico , Neurônios Dopaminérgicos , Córtex Pré-Frontal , Animais , Córtex Pré-Frontal/fisiologia , Camundongos , Axônios/fisiologia , Condicionamento Clássico/fisiologia , Neurônios Dopaminérgicos/fisiologia , Masculino , Recompensa , Dopamina/metabolismo , Camundongos Endogâmicos C57BL , Sinais (Psicologia)
3.
Elife ; 132024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748470

RESUMO

Acetylcholine is widely believed to modulate the release of dopamine in the striatum of mammals. Experiments in brain slices clearly show that synchronous activation of striatal cholinergic interneurons is sufficient to drive dopamine release via axo-axonal stimulation of nicotinic acetylcholine receptors. However, evidence for this mechanism in vivo has been less forthcoming. Mohebi, Collins and Berke recently reported that, in awake behaving rats, optogenetic activation of striatal cholinergic interneurons with blue light readily evokes dopamine release measured with the red fluorescent sensor RdLight1 (Mohebi et al., 2023). Here, we show that blue light alone alters the fluorescent properties of RdLight1 in a manner that may be misconstrued as phasic dopamine release, and that this artefactual photoactivation can account for the effects attributed to cholinergic interneurons. Our findings indicate that measurements of dopamine using the red-shifted fluorescent sensor RdLight1 should be interpreted with caution when combined with optogenetics. In light of this and other publications that did not observe large acetylcholine-evoked dopamine transients in vivo, the conditions under which such release occurs in behaving animals remain unknown.


Assuntos
Neurônios Colinérgicos , Dopamina , Interneurônios , Optogenética , Dopamina/metabolismo , Animais , Interneurônios/metabolismo , Interneurônios/fisiologia , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/fisiologia , Ratos , Optogenética/métodos , Motivação , Núcleo Accumbens/metabolismo , Núcleo Accumbens/fisiologia , Acetilcolina/metabolismo
4.
Sci Rep ; 14(1): 10835, 2024 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-38736022

RESUMO

Research on the relationships between oligoelements (OE) and the development of cancer or its prevention is a field that is gaining increasing relevance. The aim was to evaluate OE and their interactions with oncology treatments (cytarabine or etoposide) to determine the effects of this combination on biogenic amines and oxidative stress biomarkers in the brain regions of young Wistar rats. Dopamine (DA), 5-Hydroxyindoleacetic acid (5-Hiaa), Glutathione (Gsh), Tiobarbituric acid reactive substances (TBARS) and Ca+2, Mg+2 ATPase enzyme activity were measured in brain regions tissues using spectrophometric and fluorometric methods previously validated. The combination of oligoelements and cytarabine increased dopamine in the striatum but decreased it in cerebellum/medulla-oblongata, whereas the combination of oligoelements and etoposide reduced lipid peroxidation. These results suggest that supplementation with oligoelements modifies the effects of cytarabine and etoposide by redox pathways, and may become promising therapeutic targets in patients with cancer.


Assuntos
Encéfalo , Citarabina , Dopamina , Etoposídeo , Estresse Oxidativo , Ratos Wistar , Animais , Etoposídeo/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Citarabina/farmacologia , Dopamina/metabolismo , Ratos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Masculino , Peroxidação de Lipídeos/efeitos dos fármacos , Suplementos Nutricionais , Glutationa/metabolismo
5.
Proc Natl Acad Sci U S A ; 121(20): e2316658121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38717856

RESUMO

Individual survival and evolutionary selection require biological organisms to maximize reward. Economic choice theories define the necessary and sufficient conditions, and neuronal signals of decision variables provide mechanistic explanations. Reinforcement learning (RL) formalisms use predictions, actions, and policies to maximize reward. Midbrain dopamine neurons code reward prediction errors (RPE) of subjective reward value suitable for RL. Electrical and optogenetic self-stimulation experiments demonstrate that monkeys and rodents repeat behaviors that result in dopamine excitation. Dopamine excitations reflect positive RPEs that increase reward predictions via RL; against increasing predictions, obtaining similar dopamine RPE signals again requires better rewards than before. The positive RPEs drive predictions higher again and thus advance a recursive reward-RPE-prediction iteration toward better and better rewards. Agents also avoid dopamine inhibitions that lower reward prediction via RL, which allows smaller rewards than before to elicit positive dopamine RPE signals and resume the iteration toward better rewards. In this way, dopamine RPE signals serve a causal mechanism that attracts agents via RL to the best rewards. The mechanism improves daily life and benefits evolutionary selection but may also induce restlessness and greed.


Assuntos
Dopamina , Neurônios Dopaminérgicos , Recompensa , Animais , Dopamina/metabolismo , Neurônios Dopaminérgicos/fisiologia , Neurônios Dopaminérgicos/metabolismo , Humanos , Reforço Psicológico
6.
Cell Host Microbe ; 32(5): 623-624, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38723597

RESUMO

Common nutrients in our diet often affect our health through unexpected mechanisms. In a recent issue of Nature, Scott et al. show gut microbes convert dietary tryptophan into metabolites activating intestinal dopamine receptors, which can block attachment of bacterial pathogens to host cells.


Assuntos
Dopamina , Microbioma Gastrointestinal , Microbioma Gastrointestinal/fisiologia , Dopamina/metabolismo , Humanos , Receptores Dopaminérgicos/metabolismo , Animais , Triptofano/metabolismo , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/metabolismo , Bactérias/metabolismo , Interações Hospedeiro-Patógeno , Aderência Bacteriana
7.
Cell Mol Life Sci ; 81(1): 202, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691171

RESUMO

Glial cells constitute nearly half of the mammalian nervous system's cellular composition. The glia in C. elegans perform majority of tasks comparable to those conducted by their mammalian equivalents. The cephalic sheath (CEPsh) glia, which are known to be the counterparts of mammalian astrocytes, are enriched with two nuclear hormone receptors (NHRs)-NHR-210 and NHR-231. This unique enrichment makes the CEPsh glia and these NHRs intriguing subjects of study concerning neuronal health. We endeavored to assess the role of these NHRs in neurodegenerative diseases and related functional processes, using transgenic C. elegans expressing human alpha-synuclein. We employed RNAi-mediated silencing, followed by behavioural, functional, and metabolic profiling in relation to suppression of NHR-210 and 231. Our findings revealed that depleting nhr-210 changes dopamine-associated behaviour and mitochondrial function in human alpha synuclein-expressing strains NL5901 and UA44, through a putative target, pgp-9, a transmembrane transporter. Considering the alteration in mitochondrial function and the involvement of a transmembrane transporter, we performed metabolomics study via HR-MAS NMR spectroscopy. Remarkably, substantial modifications in ATP, betaine, lactate, and glycine levels were seen upon the absence of nhr-210. We also detected considerable changes in metabolic pathways such as phenylalanine, tyrosine, and tryptophan biosynthesis metabolism; glycine, serine, and threonine metabolism; as well as glyoxalate and dicarboxylate metabolism. In conclusion, the deficiency of the nuclear hormone receptor nhr-210 in alpha-synuclein expressing strain of C. elegans, results in altered mitochondrial function, coupled with alterations in vital metabolite levels. These findings underline the functional and physiological importance of nhr-210 enrichment in CEPsh glia.


Assuntos
Caenorhabditis elegans , Modelos Animais de Doenças , Mitocôndrias , Neuroglia , Doença de Parkinson , alfa-Sinucleína , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Mitocôndrias/metabolismo , Neuroglia/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/genética , Humanos , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Animais Geneticamente Modificados , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Dopamina/metabolismo , Metabolômica , Interferência de RNA
8.
J Psychiatry Neurosci ; 49(3): E157-E171, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38692693

RESUMO

BACKGROUND: Critical adolescent neural refinement is controlled by the DCC (deleted in colorectal cancer) protein, a receptor for the netrin-1 guidance cue. We sought to describe the effects of reduced DCC on neuroanatomy in the adolescent and adult mouse brain. METHODS: We examined neuronal connectivity, structural covariance, and molecular processes in a DCC-haploinsufficient mouse model, compared with wild-type mice, using new, custom analytical tools designed to leverage publicly available databases from the Allen Institute. RESULTS: We included 11 DCC-haploinsufficient mice and 16 wild-type littermates. Neuroanatomical effects of DCC haploinsufficiency were more severe in adolescence than adulthood and were largely restricted to the mesocorticolimbic dopamine system. The latter finding was consistent whether we identified the regions of the mesocorticolimbic dopamine system a priori or used connectivity data from the Allen Brain Atlas to determine de novo where these dopamine axons terminated. Covariance analyses found that DCC haploinsufficiency disrupted the coordinated development of the brain regions that make up the mesocorticolimbic dopamine system. Gene expression maps pointed to molecular processes involving the expression of DCC, UNC5C (encoding DCC's co-receptor), and NTN1 (encoding its ligand, netrin-1) as underlying our structural findings. LIMITATIONS: Our study involved a single sex (males) at only 2 ages. CONCLUSION: The neuroanatomical phenotype of DCC haploinsufficiency described in mice parallels that observed in DCC-haploinsufficient humans. It is critical to understand the DCC-haploinsufficient mouse as a clinically relevant model system.


Assuntos
Encéfalo , Receptor DCC , Dopamina , Haploinsuficiência , Animais , Receptor DCC/genética , Encéfalo/metabolismo , Encéfalo/crescimento & desenvolvimento , Encéfalo/anatomia & histologia , Dopamina/metabolismo , Camundongos , Masculino , Expressão Gênica , Vias Neurais , Fatores Etários , Feminino , Camundongos Endogâmicos C57BL , Envelhecimento/genética , Envelhecimento/fisiologia
9.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731862

RESUMO

There are currently no disease-modifying therapies for Parkinson's disease (PD), a progressive neurodegenerative disorder associated with dopaminergic neuronal loss. There is increasing evidence that endogenous dopamine (DA) can be a pathological factor in neurodegeneration in PD. Tyrosine hydroxylase (TH) is the key rate-limiting enzyme for DA generation. Drugs that inhibit TH, such as alpha-methyltyrosine (α-MT), have recently been shown to protect against neurodegeneration in various PD models. DA receptor agonists can activate post-synaptic DA receptors to alleviate DA-deficiency-induced PD symptoms. However, DA receptor agonists have no therapeutic effects against neurodegeneration. Thus, a combination therapy with DA receptor agonists plus TH inhibitors may be an attractive therapeutic approach. TH inhibitors can protect and promote the survival of remaining dopaminergic neurons in PD patients' brains, whereas DA receptor agonists activate post-synaptic DA receptors to alleviate PD symptoms. Additionally, other PD drugs, such as N-acetylcysteine (NAC) and anticholinergic drugs, may be used as adjunctive medications to improve therapeutic effects. This multi-drug cocktail may represent a novel strategy to protect against progressive dopaminergic neurodegeneration and alleviate PD disease progression.


Assuntos
Agonistas de Dopamina , Doença de Parkinson , Tirosina 3-Mono-Oxigenase , Animais , Humanos , Dopamina/metabolismo , Agonistas de Dopamina/uso terapêutico , Agonistas de Dopamina/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Quimioterapia Combinada , Inibidores Enzimáticos/uso terapêutico , Inibidores Enzimáticos/farmacologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Tirosina 3-Mono-Oxigenase/antagonistas & inibidores , Tirosina 3-Mono-Oxigenase/metabolismo
10.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38673988

RESUMO

In Parkinson's disease (PD), along with typical motor dysfunction, abnormal breathing is present; the cause of which is not well understood. The study aimed to analyze the effects of stimulation of the serotonergic system with 5-HT1A and 5-HT2A agonists in a model of PD induced by injection of 6-hydroxydopamine (6-OHDA). To model PD, bilateral injection of 6-OHDA into both striata was performed in male Wistar rats. Respiratory disturbances in response to 7% hypercapnia (CO2 in O2) in the plethysmographic chamber before and after stimulation of the serotonergic system and the incidence of apnea were studied in awake rats 5 weeks after 6-OHDA or vehicle injection. Administration of 6-OHDA reduced the concentration of serotonin (5-HT), dopamine (DA) and norepinephrine (NA) in the striatum and the level of 5-HT in the brainstem of treated rats, which have been associated with decreased basal ventilation, impaired respiratory response to 7% CO2 and increased incidence of apnea compared to Sham-operated rats. Intraperitoneal (i.p.) injection of the 5-HT1AR agonist 8-OH-DPAT and 5-HT2AR agonist NBOH-2C-CN increased breathing during normocapnia and hypercapnia in both groups of rats. However, it restored reactivity to hypercapnia in 6-OHDA group to the level present in Sham rats. Another 5-HT2AR agonist TCB-2 was only effective in increasing normocapnic ventilation in 6-OHDA rats. Both the serotonergic agonists 8-OH-DPAT and NBOH-2C-CN had stronger stimulatory effects on respiration in PD rats, compensating for deficits in basal ventilation and hypercapnic respiration. We conclude that serotonergic stimulation may have a positive effect on respiratory impairments that occur in PD.


Assuntos
Hipercapnia , Doença de Parkinson , Receptor 5-HT1A de Serotonina , Receptor 5-HT2A de Serotonina , Animais , Masculino , Ratos , Modelos Animais de Doenças , Dopamina/metabolismo , Hipercapnia/metabolismo , Hipercapnia/fisiopatologia , Norepinefrina/metabolismo , Norepinefrina/farmacologia , Oxidopamina/farmacologia , Doença de Parkinson/metabolismo , Ratos Wistar , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT2A de Serotonina/metabolismo , Respiração/efeitos dos fármacos , Serotonina/metabolismo , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia
11.
Proc Natl Acad Sci U S A ; 121(19): e2307156121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38683996

RESUMO

Tourette disorder (TD) is poorly understood, despite affecting 1/160 children. A lack of animal models possessing construct, face, and predictive validity hinders progress in the field. We used CRISPR/Cas9 genome editing to generate mice with mutations orthologous to human de novo variants in two high-confidence Tourette genes, CELSR3 and WWC1. Mice with human mutations in Celsr3 and Wwc1 exhibit cognitive and/or sensorimotor behavioral phenotypes consistent with TD. Sensorimotor gating deficits, as measured by acoustic prepulse inhibition, occur in both male and female Celsr3 TD models. Wwc1 mice show reduced prepulse inhibition only in females. Repetitive motor behaviors, common to Celsr3 mice and more pronounced in females, include vertical rearing and grooming. Sensorimotor gating deficits and rearing are attenuated by aripiprazole, a partial agonist at dopamine type II receptors. Unsupervised machine learning reveals numerous changes to spontaneous motor behavior and less predictable patterns of movement. Continuous fixed-ratio reinforcement shows that Celsr3 TD mice have enhanced motor responding and reward learning. Electrically evoked striatal dopamine release, tested in one model, is greater. Brain development is otherwise grossly normal without signs of striatal interneuron loss. Altogether, mice expressing human mutations in high-confidence TD genes exhibit face and predictive validity. Reduced prepulse inhibition and repetitive motor behaviors are core behavioral phenotypes and are responsive to aripiprazole. Enhanced reward learning and motor responding occur alongside greater evoked dopamine release. Phenotypes can also vary by sex and show stronger affection in females, an unexpected finding considering males are more frequently affected in TD.


Assuntos
Dopamina , Mutação , Síndrome de Tourette , Animais , Síndrome de Tourette/genética , Síndrome de Tourette/fisiopatologia , Síndrome de Tourette/metabolismo , Camundongos , Feminino , Masculino , Humanos , Dopamina/metabolismo , Recompensa , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Aprendizagem/fisiologia , Comportamento Animal , Inibição Pré-Pulso/genética , Filtro Sensorial/genética
12.
Brain Res ; 1834: 148904, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561086

RESUMO

1-(Phenylselanyl)-2-(p-tolyl)indolizine (MeSeI) is a selenoindolizine with an antidepressant-like effect in mice by regulation of the serotonergic system. This study investigated the involvement of dopaminergic and noradrenergic systems in the antidepressant-like action of MeSeI. For this purpose, Swiss male mice were pretreated with different antagonists, after 15 min, the MeSeI was administrated by intragastric (i.g.) via; after 30 min, the mouse behavior was assessed in the forced swimming test (FST). The action of MeSeI on the activity of monoamine oxidase (MAO) was determined. The pretreatment of mice with haloperidol (0.05 mg/kg, intraperitoneally, i.p.; non-selective dopamine receptor antagonist), sulpiride (50 mg/kg, i.p.; D2 receptor antagonist), yohimbine (1 mg/kg, i.p.; α2 receptor antagonist), and propranolol (2 mg/kg, i.p.; non-selective ß receptor antagonist), inhibited the anti-immobility action of MeSeI (50 mg/kg, i.g.) in the FST. This blocking effect was not observed when SCH23390 (0.01 mg/kg, i.p.; D1 receptor antagonist), and prazosin (1 mg/kg, i.p.; α1 receptor antagonist) were administered. The coadministration of subeffective doses of bupropion (3 mg/kg. i.g.; dopamine and noradrenaline reuptake inhibitor) and MeSeI (0.5 mg/kg. i.g.) reduced the immobility time in the FST. Furthermore, MeSeI inhibited MAO-A and B activities in vitro and ex vivo tests. These results suggest that MeSeI exerts its antidepressant-like effect via regulation of the D2, α2, and ß1 receptors and the inhibition of MAO-A and B activities. Molecular docking investigations corroborated these results. This study provides comprehensive insights into the antidepressant-like mechanism of MeSeI in mice, suggesting its potential as a novel antidepressant candidate.


Assuntos
Antidepressivos , Dopamina , Monoaminoxidase , Compostos Organosselênicos , Animais , Masculino , Camundongos , Antidepressivos/farmacologia , Compostos Organosselênicos/farmacologia , Monoaminoxidase/metabolismo , Monoaminoxidase/efeitos dos fármacos , Dopamina/metabolismo , Antagonistas de Dopamina/farmacologia , Natação , Norepinefrina/metabolismo , Receptores Dopaminérgicos/metabolismo , Receptores Dopaminérgicos/efeitos dos fármacos , Depressão/tratamento farmacológico , Depressão/metabolismo , Atividade Motora/efeitos dos fármacos
13.
J Inorg Biochem ; 256: 112548, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38593610

RESUMO

Neuromelanin (NM) plays a well-established role in neurological disorders pathogenesis; the mechanism of action is still discussed and the investigations in this field are limited by NM's complex and heterogeneous composition, insolubility, and low availability from human brains. An alternative can be offered by synthetic NM obtained from dopamine (DA) oxidative polymerization; however, a deep knowledge of the influence of both physicochemical parameters (T, pH, ionic strength) and other compounds in the reaction media (buffer, metal ions, other catecholamines) on DA oxidation process and, consequently, on synthetic NM features is mandatory to develop reliable NM preparation methodologies. To partially fulfill this aim, the present work focuses on defining the role of temperature, buffer and metal ions on both DA oxidation rate and DA oligomer size. DA oxidation in the specific conditions is monitored by UV-Vis spectroscopy and Principal Component Analysis (PCA) is run either on the raw spectra to model the background absorption increase, related to small DA oligomers formation, or on their first derivative to rationalize DA consumption. After having studied three case studies, 3-Way PCA is applied to directly evaluate the effect of temperature and buffer type on DA oxidation in the presence of different metal ions. Despite the proof-of-concept nature of the work and the number of compounds still to be included in the investigation, the preliminary results and the possibility to further expand the chemometric approach represent an interesting contribution to the field of in vitro simulation of NM synthesis.


Assuntos
Dopamina , Melaninas , Oxirredução , Polimerização , Análise de Componente Principal , Dopamina/metabolismo , Dopamina/química , Melaninas/química , Melaninas/metabolismo , Melaninas/biossíntese , Temperatura , Humanos , Soluções Tampão , Metais/química , Concentração de Íons de Hidrogênio
14.
Neurosci Biobehav Rev ; 161: 105675, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38608828

RESUMO

Social behaviour is essential for animal survival, and the hypothalamic neuropeptide oxytocin (OXT) critically impacts bonding, parenting, and decision-making. Dopamine (DA), is released by ventral tegmental area (VTA) dopaminergic neurons, regulating social cues in the mesolimbic system. Despite extensive exploration of OXT and DA roles in social behaviour independently, limited studies investigate their interplay. This narrative review integrates insights from human and animal studies, particularly rodents, emphasising recent research on pharmacological manipulations of OXT or DA systems in social behaviour. Additionally, we review studies correlating social behaviour with blood/cerebral OXT and DA levels. Behavioural facets include sociability, cooperation, pair bonding and parental care. In addition, we provide insights into OXT-DA interplay in animal models of social stress, autism, and schizophrenia. Emphasis is placed on the complex relationship between the OXT and DA systems and their collective influence on social behaviour across physiological and pathological conditions. Understanding OXT and DA imbalance is fundamental for unravelling the neurobiological underpinnings of social interaction and reward processing deficits observed in psychiatric conditions.


Assuntos
Dopamina , Ocitocina , Interação Social , Ocitocina/metabolismo , Ocitocina/fisiologia , Humanos , Animais , Dopamina/metabolismo , Comportamento Social , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/fisiologia , Transdução de Sinais/fisiologia , Encéfalo/metabolismo , Encéfalo/fisiologia
15.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(2): 254-259, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38686723

RESUMO

Dopamine,a neurotransmitter ubiquitous in the body fluids,blood,and urine of mammals and humans,is responsible for regulating their functions and metabolism.The dopamine system is involved in the neurobiological mechanisms of narcolepsy in animals and humans.However,researchers have drawn different or even opposite conclusions when measuring the dopamine level in the cerebrospinal fluid of narcolepsy patients.Studies have confirmed that the occurrence of narcolepsy is related to the irreversible loss of orexins.The autoimmune reaction caused by the interactions of environmental factors with genetic factors destroys the hypothalamic orexin neurons and reduces orexin secretion,thereby lowering the level of arousal.We introduce the research progress and current status of dopamine and clinical characterization of narcolepsy by reviewing more than 40 articles published from 1982 to 2023,aiming to provide a reference for studying the relationship between the dopamine level and clinical characterization of narcolepsy and searching for the biomarkers of type 2 narcolepsy.


Assuntos
Dopamina , Narcolepsia , Orexinas , Humanos , Narcolepsia/metabolismo , Narcolepsia/diagnóstico , Dopamina/metabolismo , Orexinas/metabolismo , Orexinas/líquido cefalorraquidiano , Animais , Neuropeptídeos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
16.
ACS Chem Neurosci ; 15(10): 2006-2017, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38683969

RESUMO

Potently affecting human and animal brain and behavior, hallucinogenic drugs have recently emerged as potentially promising agents in psychopharmacotherapy. Complementing laboratory rodents, the zebrafish (Danio rerio) is a powerful model organism for screening neuroactive drugs, including hallucinogens. Here, we tested four novel N-benzyl-2-phenylethylamine (NBPEA) derivatives with 2,4- and 3,4-dimethoxy substitutions in the phenethylamine moiety and the -F, -Cl, and -OCF3 substitutions in the ortho position of the phenyl ring of the N-benzyl moiety (34H-NBF, 34H-NBCl, 24H-NBOMe(F), and 34H-NBOMe(F)), assessing their behavioral and neurochemical effects following chronic 14 day treatment in adult zebrafish. While the novel tank test behavioral data indicate anxiolytic-like effects of 24H-NBOMe(F) and 34H-NBOMe(F), neurochemical analyses reveal reduced brain norepinephrine by all four drugs, and (except 34H-NBCl) - reduced dopamine and serotonin levels. We also found reduced turnover rates for all three brain monoamines but unaltered levels of their respective metabolites. Collectively, these findings further our understanding of complex central behavioral and neurochemical effects of chronically administered novel NBPEAs and highlight the potential of zebrafish as a model for preclinical screening of small psychoactive molecules.


Assuntos
Comportamento Animal , Fenetilaminas , Peixe-Zebra , Animais , Fenetilaminas/farmacologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Masculino , Alucinógenos/farmacologia , Psicotrópicos/farmacologia , Serotonina/metabolismo , Dopamina/metabolismo
17.
Exp Neurol ; 376: 114771, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38580154

RESUMO

Parkinson's disease (PD) rodent models provide insight into the relationship between nigrostriatal dopamine (DA) signaling and locomotor function. Although toxin-based rat models produce frank nigrostriatal neuron loss and eventual motor decline characteristic of PD, the rapid nature of neuronal loss may not adequately translate premotor traits, such as cognitive decline. Unfortunately, rodent genetic PD models, like the Pink1 knockout (KO) rat, often fail to replicate the differential severity of striatal DA and tyrosine hydroxylase (TH) loss, and a bradykinetic phenotype, reminiscent of human PD. To elucidate this inconsistency, we evaluated aging as a progression factor in the timing of motor and non-motor cognitive impairments. Male PINK1 KO and age-matched wild type (WT) rats were evaluated in a longitudinal study from 3 to 16 months old in one cohort, and in a cross-sectional study of young adult (6-7 months) and aged (18-19 months) in another cohort. Young adult PINK1 KO rats exhibited hyperkinetic behavior associated with elevated DA and TH in the substantia nigra (SN), which decreased therein, but not striatum, in the aged KO rats. Additionally, norepinephrine levels decreased in aged KO rats in the prefrontal cortex (PFC), paired with a higher DA levels in young and aged KO. Although a younger age of onset characterizes familial forms of PD, our results underscore the critical need to consider age-related factors. Moreover, the results indicate that compensatory mechanisms may exist to preserve locomotor function, evidenced by increased DA in the SN early in the lifespan, in response to deficient PINK1 function, which declines with aging and the onset of motor decline.


Assuntos
Envelhecimento , Corpo Estriado , Dopamina , Proteínas Quinases , Substância Negra , Tirosina 3-Mono-Oxigenase , Animais , Tirosina 3-Mono-Oxigenase/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/deficiência , Proteínas Quinases/metabolismo , Substância Negra/metabolismo , Envelhecimento/genética , Masculino , Ratos , Dopamina/metabolismo , Corpo Estriado/metabolismo , Atividade Motora/fisiologia , Atividade Motora/genética , Ratos Transgênicos
18.
PLoS Comput Biol ; 20(4): e1011516, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38626219

RESUMO

When facing an unfamiliar environment, animals need to explore to gain new knowledge about which actions provide reward, but also put the newly acquired knowledge to use as quickly as possible. Optimal reinforcement learning strategies should therefore assess the uncertainties of these action-reward associations and utilise them to inform decision making. We propose a novel model whereby direct and indirect striatal pathways act together to estimate both the mean and variance of reward distributions, and mesolimbic dopaminergic neurons provide transient novelty signals, facilitating effective uncertainty-driven exploration. We utilised electrophysiological recording data to verify our model of the basal ganglia, and we fitted exploration strategies derived from the neural model to data from behavioural experiments. We also compared the performance of directed exploration strategies inspired by our basal ganglia model with other exploration algorithms including classic variants of upper confidence bound (UCB) strategy in simulation. The exploration strategies inspired by the basal ganglia model can achieve overall superior performance in simulation, and we found qualitatively similar results in fitting model to behavioural data compared with the fitting of more idealised normative models with less implementation level detail. Overall, our results suggest that transient dopamine levels in the basal ganglia that encode novelty could contribute to an uncertainty representation which efficiently drives exploration in reinforcement learning.


Assuntos
Gânglios da Base , Dopamina , Modelos Neurológicos , Recompensa , Dopamina/metabolismo , Dopamina/fisiologia , Incerteza , Animais , Gânglios da Base/fisiologia , Comportamento Exploratório/fisiologia , Reforço Psicológico , Neurônios Dopaminérgicos/fisiologia , Biologia Computacional , Simulação por Computador , Masculino , Algoritmos , Tomada de Decisões/fisiologia , Comportamento Animal/fisiologia , Ratos
19.
PLoS One ; 19(4): e0302102, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625964

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disease in the world. Neurodegeneration of the substantia nigra (SN) and diminished release of dopamine are prominent causes of this progressive disease. The current study aims to evaluate the protective potential of ethanolic extract of Mentha piperita (EthMP) against rotenone-mediated PD features, dopaminergic neuronal degeneration, oxidative stress and neuronal survival in a mouse model. Swiss albino male mice were assigned to five groups: control (2.5% DMSO vehicle), PD (rotenone 2.5 mg/kg), EthMP and rotenone (200mg/kg and 2.5mg/kg, respectively), EthMP (200 mg/kg), and Sinemet, reference treatment containing levodopa and carbidopa (20 mg/kg and rotenone 2.5mg/kg). Behavioral tests for motor functional deficit analysis were performed. Anti-oxidant capacity was estimated using standard antioxidant markers. Histopathology of the mid-brain for neurodegeneration estimation was performed. HPLC based dopamine level analysis and modulation of gene expression using quantitative real-time polymerase chain reaction was performed for the selected genes. EthMP administration significantly prevented the rotenone-mediated motor dysfunctions compared to PD group as assessed through open field, beam walk, pole climb down, stepping, tail suspension, and stride length tests. EthMP administration modulated the lipid peroxidation (LPO), reduced glutathione (GSH), and superoxide dismutase (SOD) levels, as well as glutathione-s-transferase (GST) and catalase (CAT) activities in mouse brain. EthMP extract prevented neurodegeneration in the SN of mice and partially maintained dopamine levels. The expression of genes related to dopamine, anti-oxidant potential and synapses were modulated in M. piperita (MP) extract treated mice brains. Current data suggest therapeutic capacities of MP extract and neuroprotective capacities, possibly through antioxidant capacities. Therefore, it may have potential clinical applications for PD management.


Assuntos
Doenças Neurodegenerativas , Fármacos Neuroprotetores , Doença de Parkinson , Animais , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/prevenção & controle , Doença de Parkinson/metabolismo , Antioxidantes/metabolismo , Mentha piperita/metabolismo , Rotenona/farmacologia , Dopamina/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo , Modelos Animais de Doenças
20.
J Biomed Sci ; 31(1): 38, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38627765

RESUMO

BACKGROUND: Mitochondria are essential organelles involved in cellular energy production. Changes in mitochondrial function can lead to dysfunction and cell death in aging and age-related disorders. Recent research suggests that mitochondrial dysfunction is closely linked to neurodegenerative diseases. Glucagon-like peptide-1 receptor (GLP-1R) agonist has gained interest as a potential treatment for Parkinson's disease (PD). However, the exact mechanisms responsible for the therapeutic effects of GLP-1R-related agonists are not yet fully understood. METHODS: In this study, we explores the effects of early treatment with PT320, a sustained release formulation of the GLP-1R agonist Exenatide, on mitochondrial functions and morphology in a progressive PD mouse model, the MitoPark (MP) mouse. RESULTS: Our findings demonstrate that administration of a clinically translatable dose of PT320 ameliorates the reduction in tyrosine hydroxylase expression, lowers reactive oxygen species (ROS) levels, and inhibits mitochondrial cytochrome c release during nigrostriatal dopaminergic denervation in MP mice. PT320 treatment significantly preserved mitochondrial function and morphology but did not influence the reduction in mitochondria numbers during PD progression in MP mice. Genetic analysis indicated that the cytoprotective effect of PT320 is attributed to a reduction in the expression of mitochondrial fission protein 1 (Fis1) and an increase in the expression of optic atrophy type 1 (Opa1), which is known to play a role in maintaining mitochondrial homeostasis and decreasing cytochrome c release through remodeling of the cristae. CONCLUSION: Our findings suggest that the early administration of PT320 shows potential as a neuroprotective treatment for PD, as it can preserve mitochondrial function. Through enhancing mitochondrial health by regulating Opa1 and Fis1, PT320 presents a new neuroprotective therapy in PD.


Assuntos
Doenças Mitocondriais , Doença de Parkinson , Camundongos , Animais , Dopamina/metabolismo , Citocromos c/metabolismo , Citocromos c/farmacologia , Citocromos c/uso terapêutico , Doença de Parkinson/genética , Mitocôndrias , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/metabolismo , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA