Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.682
Filtrar
1.
J Clin Invest ; 134(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690736

RESUMO

Pain and inflammation are biologically intertwined responses that warn the body of potential danger. In this issue of the JCI, Defaye, Bradaia, and colleagues identified a functional link between inflammation and pain, demonstrating that inflammation-induced activation of stimulator of IFN genes (STING) in dorsal root ganglia nociceptors reduced pain-like behaviors in a rodent model of inflammatory pain. Utilizing mice with a gain-of-function STING mutation, Defaye, Bradaia, and colleagues identified type I IFN regulation of voltage-gated potassium channels as the mechanism of this pain relief. Further investigation into mechanisms by which proinflammatory pathways can reduce pain may reveal druggable targets and insights into new approaches for treating persistent pain.


Assuntos
Gânglios Espinais , Proteínas de Membrana , Dor , Animais , Camundongos , Gânglios Espinais/metabolismo , Dor/genética , Dor/metabolismo , Dor/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Humanos , Nociceptores/metabolismo , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/imunologia , Interferon Tipo I/metabolismo , Interferon Tipo I/genética , Interferon Tipo I/imunologia
2.
J Clin Invest ; 134(9)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38690737

RESUMO

Inflammation and pain are intertwined responses to injury, infection, or chronic diseases. While acute inflammation is essential in determining pain resolution and opioid analgesia, maladaptive processes occurring during resolution can lead to the transition to chronic pain. Here we found that inflammation activates the cytosolic DNA-sensing protein stimulator of IFN genes (STING) in dorsal root ganglion nociceptors. Neuronal activation of STING promotes signaling through TANK-binding kinase 1 (TBK1) and triggers an IFN-ß response that mediates pain resolution. Notably, we found that mice expressing a nociceptor-specific gain-of-function mutation in STING exhibited an IFN gene signature that reduced nociceptor excitability and inflammatory hyperalgesia through a KChIP1-Kv4.3 regulation. Our findings reveal a role of IFN-regulated genes and KChIP1 downstream of STING in the resolution of inflammatory pain.


Assuntos
Proteínas de Membrana , Nociceptores , Animais , Camundongos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Nociceptores/metabolismo , Gânglios Espinais/metabolismo , Interferon beta/genética , Interferon beta/metabolismo , Inflamação/genética , Inflamação/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Dor/metabolismo , Dor/genética , Transdução de Sinais , Masculino
3.
Wiley Interdiscip Rev RNA ; 15(2): e1843, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576117

RESUMO

RNAs are meticulously controlled by proteins. Through direct and indirect associations, every facet in the brief life of an mRNA is subject to regulation. RNA-binding proteins (RBPs) permeate biology. Here, we focus on their roles in pain. Chronic pain is among the largest challenges facing medicine and requires new strategies. Mounting pharmacologic and genetic evidence obtained in pre-clinical models suggests fundamental roles for a broad array of RBPs. We describe their diverse roles that span RNA modification, splicing, stability, translation, and decay. Finally, we highlight opportunities to expand our understanding of regulatory interactions that contribute to pain signaling. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Regulation RNA in Disease and Development > RNA in Disease.


Assuntos
Splicing de RNA , Proteínas de Ligação a RNA , Humanos , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Dor/genética
4.
Zhen Ci Yan Jiu ; 49(4): 331-340, 2024 Apr 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38649200

RESUMO

OBJECTIVES: To observe whether acupuncture up-regulates chemokine CXC ligand 1 (CXCL1) in the brain to play an analgesic role through CXCL1/chemokine CXC receptor 2 (CXCR2) signaling in adjuvant induced arthritis (AIA) rats, so as to reveal its neuro-immunological mechanism underlying improvement of AIA. METHODS: BALB/c mice with relatively stable thermal pain reaction were subjected to planta injection of complete Freund adjuvant (CFA) for establishing AIA model, followed by dividing the AIA mice into simple AF750 (fluorochrome) and AF750+CXCL1 groups (n=2 in each group). AF750 labeled CXCL1 recombinant protein was then injected into the mouse's tail vein to induce elevation of CXCL1 level in blood for simulating the effect of acupuncture stimulation which has been demonstrated by our past study. In vivo small animal imaging technology was used to observe the AF750 and AF750+CXCL1-labelled target regions. After thermal pain screening, the Wistar rats with stable pain reaction were subjected to AIA modeling by injecting CFA into the rat's right planta, then were randomized into model and manual acupuncture groups (n=12 in each group). Other 12 rats that received planta injection of saline were used as the control group. Manual acupuncture (uniform reinforcing and reducing manipulations) was applied to bilateral "Zusanli" (ST36) for 4×2 min, with an interval of 5 min between every 2 min, once daily for 7 days. The thermal pain threshold was assessed by detecting the paw withdrawal latency (PWL) using a thermal pain detector. The contents of CXCL1 in the primary somatosensory cortex (S1), medial prefrontal cortex, nucleus accumbens, amygdala, periaqueductal gray and rostroventromedial medulla regions were assayed by using ELISA, and the expression levels of CXCL1, CXCR2 and mu-opioid receptor (MOR) mRNA in the S1 region were detected using real time-quantitative polymerase chain reaction. The immune-fluorescence positive cellular rate of CXCL1 and CXCR2 in S1 region was observed after immunofluorescence stain. The immunofluorescence double-stain of CXCR2 and astrocyte marker glial fibrillary acidic protein (GFAP) or neuron marker NeuN or MOR was used to determine whether there is a co-expression between them. RESULTS: In AIA mice, results of in vivo experiments showed no obvious enrichment signal of AF750 or AF750+CXCL1 in any organ of the body, while in vitro experiments showed that there was a stronger fluorescence signal of CXCL1 recombinant protein in the brain. In rats, compared with the control group, the PWL from day 0 to day 7 was significantly decreased (P<0.01) and the expression of CXCR2 mRNA in the S1 region significantly increased in the model group (P<0.05), while in comparison with the model group, the PWL from day 2 to day 7, CXCL1 content, CXCR2 mRNA expression and CXCR2 content, and MOR mRNA expression in the S1 region were significantly increased in the manual acupuncture group (P<0.05, P<0.01). Immunofluorescence stain showed that CXCR2 co-stained with NeuN and MOR in the S1 region, indicating that CXCR2 exists in neurons and MOR-positive neurons but not in GFAP positive astrocytes. CONCLUSIONS: Acupuncture can increase the content of CXCL1 in S1 region, up-regulate CXCR2 on neurons in the S1 region and improve MOR expression in S1 region of AIA rats, which may contribute to its effect in alleviating inflammatory pain.


Assuntos
Terapia por Acupuntura , Artrite Experimental , Quimiocina CXCL1 , Receptores de Interleucina-8B , Córtex Somatossensorial , Animais , Humanos , Masculino , Camundongos , Ratos , Pontos de Acupuntura , Artrite Experimental/terapia , Artrite Experimental/metabolismo , Artrite Experimental/genética , Quimiocina CXCL1/metabolismo , Quimiocina CXCL1/genética , Inflamação/terapia , Inflamação/metabolismo , Inflamação/genética , Camundongos Endogâmicos BALB C , Dor/metabolismo , Dor/genética , Manejo da Dor , Ratos Wistar , Receptores de Interleucina-8B/metabolismo , Receptores de Interleucina-8B/genética , Transdução de Sinais , Córtex Somatossensorial/metabolismo
5.
Psychiatry Clin Neurosci ; 78(5): 300-308, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38403942

RESUMO

AIM: Pain is reconstructed by brain activities and its subjectivity comes from an interplay of multiple factors. The current study aims to understand the contribution of genetic factors to the neural processing of pain. Focusing on the single-nucleotide polymorphism (SNP) of opioid receptor mu 1 (OPRM1) A118G (rs1799971) and catechol-O-methyltransferase (COMT) val158met (rs4680), we investigated how the two pain genes affect pain processing. METHOD: We integrated a genetic approach with functional neuroimaging. We extracted genomic DNA information from saliva samples to genotype the SNP of OPRM1 and COMT. We used a percept-related model, in which two different levels of perceived pain intensities ("low pain: mildly painful" vs "high pain: severely painful") were employed as experimental stimuli. RESULTS: Low pain involves a broader network relative to high pain. The distinct effects of pain genes were observed depending on the perceived pain intensity. The effects of low pain were found in supramarginal gyrus, angular gyrus, and anterior cingulate cortex (ACC) for OPRM1 and in middle temporal gyrus for COMT. For high pain, OPRM1 affected the insula and cerebellum, while COMT affected the middle occipital gyrus and ACC. CONCLUSION: OPRM1 primarily affects sensory and cognitive components of pain processing, while COMT mainly influences emotional aspects of pain processing. The interaction of the two pain genes was associated with neural patterns coding for high pain and neural activation in the ACC in response to pain. The proteins encoded by the OPRM1 and COMT may contribute to the firing of pain-related neurons in the human ACC, a critical center for subjective pain experience.


Assuntos
Catecol O-Metiltransferase , Dor , Polimorfismo de Nucleotídeo Único , Receptores Opioides mu , Humanos , Catecol O-Metiltransferase/genética , Receptores Opioides mu/genética , Masculino , Adulto , Feminino , Adulto Jovem , Dor/genética , Dor/fisiopatologia , Imageamento por Ressonância Magnética , Percepção da Dor/fisiologia , Encéfalo/fisiopatologia , Neuroimagem Funcional
6.
Biomed Res ; 45(1): 45-55, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38325845

RESUMO

T-type Ca2+ channels and TRPA1 expressed in sensory neurons are involved in pain. We previously demonstrated a functional interaction of these channels under physiological conditions. Here we investigated the possible involvement of these channels in inflammatory pain condition. We also evaluated the relationship of these channels endogenously expressed in RIN-14B, a rat pancreatic islet tumor cell line. In dorsal root ganglion (DRG) neurons innervated inflammatory side, [Ca2+]i increases induced by 15 mM KCl (15K) were enhanced in neurons responded to AITC. This enhancement was not observed in genetically TRPA1-deficient neurons. The T-type and AITC-induced currents were larger in neurons of the inflammatory side than in those of the control one. In DRGs of the inflammatory side, the protein expression of Cav3.2, but not TRPA1, was increased. In RIN-14B, 15K-induced [Ca2+]i increases were decreased by blockers of T-type Ca2+ channel and TRPA1, and by TRPA1-silencing. Immunoprecipitation suggested the coexistent of these channels in sensory neurons and RIN-14B. In mice with inflammation, mechanical hypersensitivity was suppressed by blockers of both channels. These data suggest that the interaction of Cav3.2 with TRPA1 in sensory neurons is enhanced via the augmentation of the activities of both channels under inflammatory conditions, indicating that both channels are therapeutic targets for inflammatory pain.


Assuntos
Cálcio , Isotiocianatos , Nociceptividade , Animais , Camundongos , Ratos , Cálcio/metabolismo , Gânglios Espinais/metabolismo , Dor/genética , Dor/metabolismo , Células Receptoras Sensoriais/metabolismo , Canal de Cátion TRPA1/genética
7.
Physiol Genomics ; 56(4): 343-359, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38189117

RESUMO

The hypothalamic molecular processes participate in the regulation of the neuro-immune-endocrine system, including hormone, metabolite, chemokine circulation, and corresponding physiological and behavioral responses. RNA-sequencing profiles were analyzed to understand the effect of juvenile immune and metabolic distress 100 days after virally elicited maternal immune activation during gestation in pigs. Over 1,300 genes exhibited significant additive or interacting effects of gestational immune activation, juvenile distress, and sex. One-third of these genes presented multiple effects, emphasizing the complex interplay of these factors. Key functional categories enriched among affected genes included sensory perception of pain, steroidogenesis, prolactin, neuropeptide, and inflammatory signaling. These categories underscore the intricate relationship between gestational immune activation during gestation, distress, and the response of hypothalamic pathways to insults. These effects were sex-dependent for many genes, such as Prdm12, Oprd1, Isg20, Prl, Oxt, and Vip. The prevalence of differentially expressed genes annotated to proinflammatory and cell cycle processes suggests potential implications for synaptic plasticity and neuronal survival. The gene profiles affected by immune activation, distress, and sex pointed to the action of transcription factors SHOX2, STAT1, and REST. These findings underscore the importance of considering sex and postnatal challenges when studying causes of neurodevelopmental disorders and highlight the complexity of the "two-hit" hypothesis in understanding their etiology. Our study furthers the understanding of the intricate molecular responses in the hypothalamus to gestational immune activation and subsequent distress, shedding light on the sex-specific effects and the potential long-lasting consequences on pain perception, neuroendocrine regulation, and inflammatory processes.NEW & NOTEWORTHY The interaction of infection during gestation and insults later in life influences the molecular mechanisms in the hypothalamus that participate in pain sensation. The response of the hypothalamic transcriptome varies between sexes and can also affect synapses and immune signals. The findings from this study assist in the identification of agonists or antagonists that can guide pretranslational studies to ameliorate the effects of gestational insults interacting with postnatal challenges on physiological or behavioral disorders.


Assuntos
Hormônios , Hipotálamo , Masculino , Feminino , Animais , Suínos , Hipotálamo/metabolismo , Hormônios/metabolismo , Percepção da Dor , Dor/genética , Dor/metabolismo , Sensação
8.
JCI Insight ; 9(4)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38261410

RESUMO

Genetic modifications leading to pain insensitivity phenotypes, while rare, provide invaluable insights into the molecular biology of pain and reveal targets for analgesic drugs. Pain insensitivity typically results from Mendelian loss-of-function mutations in genes expressed in nociceptive (pain-sensing) dorsal root ganglion (DRG) neurons that connect the body to the spinal cord. We document a pain insensitivity mechanism arising from gene overexpression in individuals with the rare 7q11.23 duplication syndrome (Dup7), who have 3 copies of the approximately 1.5-megabase Williams syndrome (WS) critical region. Based on parental accounts and pain ratings, people with Dup7, mainly children in this study, are pain insensitive following serious injury to skin, bones, teeth, or viscera. In contrast, diploid siblings (2 copies of the WS critical region) and individuals with WS (1 copy) show standard reactions to painful events. A converging series of human assessments and cross-species cell biological and transcriptomic studies identified 1 likely candidate in the WS critical region, STX1A, as underlying the pain insensitivity phenotype. STX1A codes for the synaptic vesicle fusion protein syntaxin1A. Excess syntaxin1A was demonstrated to compromise neuropeptide exocytosis from nociceptive DRG neurons. Taken together, these data indicate a mechanism for producing "genetic analgesia" in Dup7 and offer previously untargeted routes to pain control.


Assuntos
Síndrome de Williams , Criança , Humanos , Gânglios Espinais , Neurônios , Dor/genética , Transmissão Sináptica , Síndrome de Williams/genética
9.
Cell Rep ; 43(2): 113683, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38261512

RESUMO

Microglia are implicated as primarily detrimental in pain models; however, they exist across a continuum of states that contribute to homeostasis or pathology depending on timing and context. To clarify the specific contribution of microglia to pain progression, we take advantage of a temporally controlled transgenic approach to transiently deplete microglia. Unexpectedly, we observe complete resolution of pain coinciding with microglial repopulation rather than depletion. We find that repopulated mouse spinal cord microglia are morphologically distinct from control microglia and exhibit a unique transcriptome. Repopulated microglia from males and females express overlapping networks of genes related to phagocytosis and response to stress. We intersect the identified mouse genes with a single-nuclei microglial dataset from human spinal cord to identify human-relevant genes that may ultimately promote pain resolution after injury. This work presents a comprehensive approach to gene discovery in pain and provides datasets for the development of future microglial-targeted therapeutics.


Assuntos
Microglia , Transcriptoma , Masculino , Feminino , Camundongos , Humanos , Animais , Transcriptoma/genética , Dor/genética , Dor/patologia , Medula Espinal/patologia , Fagocitose/genética
10.
Pediatr Dermatol ; 41(1): 80-83, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37345838

RESUMO

Congenital insensitivity to pain (CIP) is a rare phenotype characterized by the inability to perceive pain stimuli with subsequent self-injuries, whereas CIP associated with anhidrosis (CIPA) is an overlapping phenotype mainly characterized by insensitivity to noxious stimuli and anhidrosis. CIP is primarily associated with pathogenetic variants in the SCN9A gene while CIPA is associated with pathogenetic variants in NGF and NRTK genes. However, in recent years, a significant overlap between these two disorders has been observed highlighting the presence of anhidrosis in SCN9A variants. We report the cases of two siblings (age 4 and 6 years) born from consanguineous parents presenting with a previously undescribed phenotype due to a novel pathogenic variant in SCN9A clinically characterized by congenital insensitivity to pain, anhidrosis, and mild cognitive impairment.


Assuntos
Canalopatias , Disfunção Cognitiva , Neuropatias Hereditárias Sensoriais e Autônomas , Hipo-Hidrose , Indóis , Insensibilidade Congênita à Dor , Propionatos , Humanos , Pré-Escolar , Criança , Insensibilidade Congênita à Dor/genética , Hipo-Hidrose/genética , Mutação , Receptor trkA/genética , Dor/genética , Disfunção Cognitiva/genética , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Canal de Sódio Disparado por Voltagem NAV1.7/genética
11.
Hum Mol Genet ; 33(2): 103-109, 2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-37721535

RESUMO

Erythromelalgia (EM), is a familial pain syndrome characterized by episodic 'burning' pain, warmth, and erythema. EM is caused by monoallelic variants in SCN9A, which encodes the voltage-gated sodium channel (NaV) NaV1.7. Over 25 different SCN9A mutations attributed to EM have been described to date, all identified in the SCN9A transcript utilizing exon 6N. Here we report a novel SCN9A missense variant identified in seven related individuals with stereotypic episodes of bilateral lower limb pain presenting in childhood. The variant, XM_011511617.3:c.659G>C;p.(Arg220Pro), resides in the exon 6A of SCN9A, an exon previously shown to be selectively incorporated by developmentally regulated alternative splicing. The mutation is located in the voltage-sensing S4 segment of domain I, which is important for regulating channel activation. Functional analysis showed the p.Arg220Pro mutation altered voltage-dependent activation and delayed channel inactivation, consistent with a NaV1.7 gain-of-function molecular phenotype. These results demonstrate that alternatively spliced isoforms of SCN9A should be included in all genomic testing of EM.


Assuntos
Eritromelalgia , Humanos , Eritromelalgia/genética , Mutação de Sentido Incorreto/genética , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Dor/genética , Mutação , Éxons/genética
12.
Mol Med Rep ; 29(1)2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37947174

RESUMO

The heat shock cognate 71 kDa protein (Hsc70) is a stress­inducible ATPase that can protect cells against harmful stimuli. Transient receptor potential vanilloid 1 (TRPV1) is a well­documented nociceptor. Notably, Hsc70 can inhibit TRPV1 expression and function, suggesting that Hsc70 may have pain regulation potential. However, the role of Hsc70 in stress­induced hyperalgesia remains unclear. In the present study, the participation of Hsc70 and its regulator microRNA (miR)­3120 were investigated in forced swim (FS) stress­induced mechanical hyperalgesia in rats in an inflammatory state. Complete Freund's adjuvant (CFA) hind paw injection was performed to induce inflammatory pain in rats (CFA rats). Furthermore, in FS + CFA rats, FS stress was performed for 3 days before CFA injection. The levels of Hsc70, miR­3120 and their downstream molecule TRPV1 were measured in the dorsal root ganglion (DRG) with western blotting, immunofluorescence, reverse transcription­quantitative polymerase chain reaction and fluorescence in situ hybridization. The results revealed that FS stress significantly exacerbated CFA­induced mechanical pain. Furthermore, CFA upregulated Hsc70 and TRPV1 expression, which was partially inhibited or further enhanced by FS stress, respectively. In FS + CFA rats, intrathecal injection of a lentiviral vector overexpressing Hsc70 (LV­Hsc70) could decrease TRPV1 expression and improve the mechanical pain. Additionally, the expression levels of miR­3120, a regulator of Hsc70, were markedly upregulated on day 3 following FS stress. Finally, miR­3120 was identified to be colocalized with Hsc70 and expressed in all sizes of DRG neurons. In CFA rats, DRG injection of miR­3120 agomir to induce overexpression of miR­3120 resulted in similar TRPV1 expression and behavioral changes as those caused by FS stress, which were abolished in the presence of LV­Hsc70. These findings suggested that miR­3120/Hsc70 may participate in FS stress­induced mechanical hyperalgesia in rats in an inflammatory state, possibly via disinhibiting TRPV1 expression in the DRG neurons.


Assuntos
Hiperalgesia , MicroRNAs , Animais , Ratos , Adjuvante de Freund/efeitos adversos , Gânglios Espinais/metabolismo , Hiperalgesia/genética , Hiperalgesia/induzido quimicamente , Hibridização in Situ Fluorescente , Inflamação/induzido quimicamente , MicroRNAs/genética , MicroRNAs/metabolismo , Dor/genética , Dor/metabolismo , Ratos Sprague-Dawley , Canais de Cátion TRPV/metabolismo
13.
Gene ; 893: 147920, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37890601

RESUMO

Pain is the prime symptom of osteoarthritis (OA) that directly affects the quality of life. Protein kinase Cδ (PKCδ/Prkcd) plays a critical role in OA pathogenesis; however, its significance in OA-related pain is not entirely understood. The present study investigated the functional role of PKCδ in OA pain sensation. OA was surgically induced in control (Prkcdfl/fl), global- (Prkcdfl/fl; ROSACreERT2), and sensory neuron-specific conditional knockout (cKO) mice (Prkcdfl/fl; NaV1.8/Scn10aCreERT2) followed by comprehensive analysis of longitudinal behavioral pain, histopathology and immunofluorescence studies. GlobalPrkcd cKO mice prevented cartilage deterioration by inhibiting matrix metalloproteinase-13 (MMP13) in joint tissues but significantly increased OA pain. Sensory neuron-specificdeletion of Prkcd in mice did not protect cartilage from degeneration but worsened OA-associated pain. Exacerbated pain sensitivity observed in global- and sensory neuron-specific cKO of Prkcd was corroborated with markedly increased specific pain mediators in knee synovium and dorsal root ganglia (DRG). These specific pain markers include nerve growth factor (NGF) and vascular endothelial growth factor (VEGF), and their cognate receptors, including tropomyosin receptor kinase A (TrkA) and vascular endothelial growth factor receptor-1 (VEGFR1). The increased levels of NGF/TrkA and VEGF/VEGFR1 were comparable in both global- and sensory neuron-specific cKO groups. These data suggest that the absence of Prkcd gene expression in the sensory neurons is strongly associated with OA hyperalgesia independent of cartilage protection. Thus, inhibition of PKCδ may be beneficial for cartilage homeostasis but could aggravate OA-related pain symptoms.


Assuntos
Hiperalgesia , Osteoartrite , Animais , Camundongos , Modelos Animais de Doenças , Hiperalgesia/genética , Fator de Crescimento Neural/genética , Fator de Crescimento Neural/metabolismo , Osteoartrite/metabolismo , Dor/complicações , Dor/genética , Qualidade de Vida , Fator A de Crescimento do Endotélio Vascular/genética
14.
Genes (Basel) ; 14(11)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-38002974

RESUMO

Pain is a problem affecting women with breast cancer (HR+BrCa) receiving aromatase inhibitor (AI) therapy. We investigated the relationship between single-nucleotide polymorphisms (SNPs) in DNA repair and oxidative stress genes and perceived worst pain after 6 months of AI therapy. We explored 39 SNPs in genes involved in DNA repair (ERCC2, ERCC3, ERCC5, and PARP1) and oxidative stress (CAT, GPX1, SEPP1, SOD1, and SOD2) in women with HR+BrCa receiving adjuvant therapy (AI ± chemotherapy; n = 138). Pain was assessed via the Brief Pain Inventory. Hurdle regression was used to evaluate the relationship between each associated allele and (1) the probability of pain and (2) the severity of worst pain. ERCC2rs50872 and ERCC5rs11069498 were associated with the probability of pain and had a significant genetic risk score (GRS) model (p = 0.003). ERCC2rs50872, ERCC5rs11069498, ERCC5rs4771436, ERCC5rs4150360, PARP1rs3219058, and SEPP1rs230819 were associated with the severity of worst pain, with a significant GRS model (conditional mean estimate = 0.45; 95% CI = 0.29, 0.60; p < 0.001). These results suggest DNA repair and oxidative stress pathways may play a role in the probability of pain and the severity of worst pain. As healthcare delivery moves towards the model of precision healthcare, nurses may, in the future, be able to use these results to tailor patient care based on GRS.


Assuntos
Neoplasias da Mama , Sobreviventes de Câncer , Humanos , Feminino , Inibidores da Aromatase/efeitos adversos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Reparo do DNA/genética , Estresse Oxidativo/genética , Dor/genética , Proteína Grupo D do Xeroderma Pigmentoso/genética
15.
Biochem Biophys Res Commun ; 683: 149114, 2023 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-37857164

RESUMO

Long noncoding RNA (lncRNA) is implicated in both cancer development and pain process. However, the role of lncRNA in the development of cancer-induced bone pain (CIBP) is unclear. LncRNA NONRATT014888.2 is highly expressed in tibia related dorsal root ganglions (DRGs) in CIBP rats which function is unknown. CIBP was induced by injection of Walker 256 mammary gland tumor cells into the tibia canal of female SD rats. Paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) of rats were measured. Down-regulation of NONRATT014888.2 by siRNA in CIBP rats markedly attenuated hind-paw mechanical pain hypersensitivity. LncRNA-predicted target mRNAs analysis and mRNA sequencing results cued Socs3, Npr3 were related with NONRATT014888.2. Intrathecal injection of NONRATT014888.2-siR206 upregulated Npr3 both in mRNA and protein level. Npr3 was co-expressed in NONRATT014888.2-positive DRGs neurons and mainly located in cytoplasm, but not in Glial fibrillary acidic protein (GFAP)-positive cells. Intrathecal injection of ADV-Npr3 upregulated Npr3 expression and enhanced the PWT of CIBP rats. Our results suggest that upregulated lncRNA NONRATT014888.2 contributed to hyperalgesia in CIBP rats, and the mechanism may through downregulation of Npr3.


Assuntos
Neoplasias Ósseas , Dor do Câncer , Neoplasias , RNA Longo não Codificante , Ratos , Feminino , Animais , RNA Longo não Codificante/genética , Regulação para Baixo , Ratos Sprague-Dawley , Dor/genética , Dor/metabolismo , Dor do Câncer/genética , Dor do Câncer/patologia , Hiperalgesia/genética , RNA Mensageiro/metabolismo , Peptídeos Natriuréticos/metabolismo , Neoplasias Ósseas/complicações , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo
16.
Commun Biol ; 6(1): 958, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816865

RESUMO

The Nav1.7 voltage-gated sodium channel plays a key role in nociception. Three functional variants in the SCN9A gene (encoding M932L, V991L, and D1908G in Nav1.7), have recently been identified as stemming from Neanderthal introgression and to associate with pain symptomatology in UK BioBank data. In 1000 genomes data, these variants are absent in Europeans but common in Latin Americans. Analysing high-density genotype data from 7594 Latin Americans, we characterized Neanderthal introgression in SCN9A. We find that tracts of introgression occur on a Native American genomic background, have an average length of ~123 kb and overlap the M932L, V991L, and D1908G coding positions. Furthermore, we measured experimentally six pain thresholds in 1623 healthy Colombians. We found that Neanderthal ancestry in SCN9A is significantly associated with a lower mechanical pain threshold after sensitization with mustard oil and evidence of additivity of effects across Nav1.7 variants. Our findings support the reported association of Neanderthal Nav1.7 variants with clinical pain, define a specific sensory modality affected by archaic introgression in SCN9A and are consistent with independent effects of the Neanderthal variants on Nav1.7 function.


Assuntos
Homem de Neandertal , Limiar da Dor , Humanos , Animais , Homem de Neandertal/genética , Dor/genética , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Nociceptividade
17.
J Gen Physiol ; 155(12)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37903281

RESUMO

Voltage-gated sodium channels in peripheral nerves conduct nociceptive signals from nerve endings to the spinal cord. Mutations in voltage-gated sodium channel NaV1.7 are responsible for a number of severe inherited pain syndromes, including inherited erythromelalgia (IEM). Here, we describe the negative shifts in the voltage dependence of activation in the bacterial sodium channel NaVAb as a result of the incorporation of four different IEM mutations in the voltage sensor, which recapitulate the gain-of-function effects observed with these mutations in human NaV1.7. Crystal structures of NaVAb with these IEM mutations revealed that a mutation in the S1 segment of the voltage sensor facilitated the outward movement of S4 gating charges by widening the pathway for gating charge translocation. In contrast, mutations in the S4 segments modified hydrophobic interactions with surrounding amino acid side chains or membrane phospholipids that would enhance the outward movement of the gating charges. These results provide key structural insights into the mechanisms by which these IEM mutations in the voltage sensors can facilitate outward movements of the gating charges in the S4 segment and cause hyperexcitability and severe pain in IEM. Our work gives new insights into IEM pathogenesis at the near-atomic level and provides a molecular model for mutation-specific therapy of this debilitating disease.


Assuntos
Eritromelalgia , Canal de Sódio Disparado por Voltagem NAV1.7 , Humanos , Eritromelalgia/genética , Eritromelalgia/metabolismo , Eritromelalgia/patologia , Modelos Moleculares , Mutação , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Canal de Sódio Disparado por Voltagem NAV1.7/química , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Dor/genética , Dor/metabolismo , Dor/patologia
18.
EMBO Rep ; 24(11): e56958, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37721527

RESUMO

Impaired branched-chain amino acid (BCAA) catabolism has recently been implicated in the development of mechanical pain, but the underlying molecular mechanisms are unclear. Here, we report that defective BCAA catabolism in dorsal root ganglion (DRG) neurons sensitizes mice to mechanical pain by increasing lactate production and expression of the mechanotransduction channel Piezo2. In high-fat diet-fed obese mice, we observed the downregulation of PP2Cm, a key regulator of the BCAA catabolic pathway, in DRG neurons. Mice with conditional knockout of PP2Cm in DRG neurons exhibit mechanical allodynia under normal or SNI-induced neuropathic injury conditions. Furthermore, the VAS scores in the plasma of patients with peripheral neuropathic pain are positively correlated with BCAA contents. Mechanistically, defective BCAA catabolism in DRG neurons promotes lactate production through glycolysis, which increases H3K18la modification and drives Piezo2 expression. Inhibition of lactate production or Piezo2 silencing attenuates the pain phenotype of knockout mice in response to mechanical stimuli. Therefore, our study demonstrates a causal role of defective BCAA catabolism in mechanical pain by enhancing metabolite-mediated epigenetic regulation.


Assuntos
Gânglios Espinais , Mecanotransdução Celular , Humanos , Camundongos , Animais , Gânglios Espinais/metabolismo , Epigênese Genética , Aminoácidos de Cadeia Ramificada/metabolismo , Camundongos Knockout , Dor/genética , Lactatos/metabolismo
19.
Orphanet J Rare Dis ; 18(1): 269, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667351

RESUMO

BACKGROUND: A recurrent de novo variant (c.892C>T) in NACC1 causes a neurodevelopmental disorder with epilepsy, cataracts, feeding difficulties, and delayed brain myelination (NECFM). An unusual and consistently reported feature is episodic extreme irritability and inconsolability. We now characterize these episodes, their impact on the family, and ascertain treatments that may be effective. Parents of 14 affected individuals provided narratives describing the irritability episodes, including triggers, behavioral and physiological changes, and treatments. Simultaneously, parents of 15 children completed the Non-communicating Children's Pain Checklist-Revised (NCCPC-R), a measure to assess pain in non-verbal children. RESULTS: The episodes of extreme irritability include a prodromal, peak, and resolving phase, with normal periods in between. The children were rated to have extreme pain-related behaviors on the NCCPC-R scale, although it is unknown whether the physiologic changes described by parents are caused by pain. Attempted treatments included various classes of medications, with psychotropic and sedative medications being most effective (7/15). Nearly all families (13/14) describe how the episodes have a profound impact on their lives. CONCLUSIONS: NECFM caused by the recurrent variant c.892C>T is associated with a universal feature of incapacitating episodic irritability of unclear etiology. Further understanding of the pathophysiology can lead to more effective therapeutic strategies.


Assuntos
Encéfalo , Catarata , Criança , Humanos , Hipnóticos e Sedativos , Dor/genética , Pais , Doenças Raras , Proteínas de Neoplasias , Proteínas Repressoras
20.
Channels (Austin) ; 17(1): 2237306, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37523628

RESUMO

TMEM120A (TACAN) is an enigmatic protein with several seemingly unconnected functions. It was proposed to be an ion channel involved in sensing mechanical stimuli, and knockdown/knockout experiments have implicated that TMEM120A may be necessary for sensing mechanical pain. TMEM120A's ion channel function has subsequently been challenged, as attempts to replicate electrophysiological experiments have largely been unsuccessful. Several cryo-EM structures revealed TMEM120A is structurally homologous to a lipid modifying enzyme called Elongation of Very Long Chain Fatty Acids 7 (ELOVL7). Although TMEM120A's channel function is debated, it still seems to affect mechanosensation by inhibiting PIEZO2 channels and by modifying tactile pain responses in animal models. TMEM120A was also shown to inhibit polycystin-2 (PKD2) channels through direct physical interaction. Additionally, TMEM120A has been implicated in adipocyte regulation and in innate immune response against Zika virus. The way TMEM120A is proposed to alter each of these processes ranges from regulating gene expression, acting as a lipid modifying enzyme, and controlling subcellular localization of other proteins through direct binding. Here, we examine TMEM120A's structure and proposed functions in diverse physiological contexts.


Assuntos
Infecção por Zika virus , Zika virus , Animais , Metabolismo dos Lipídeos , Canais Iônicos/metabolismo , Dor/genética , Tato/genética , Lipídeos , Zika virus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA