RESUMO
BACKGROUND: The purpose of the present study is to evaluate the mechanisms underlying tongue-referred pain associated with tooth pulp inflammation. METHOD: Using mechanical and temperature stimulation following dental surgery, we have demonstrated that dental inflammation and hyperalgesia correlates with increased immunohistochemical staining of neurons for TLR4 and HSP70. RESULTS: Mechanical or heat hyperalgesia significantly enhanced in the ipsilateral tongue at 1 to 9 days after complete Freund's adjuvant (CFA) application to the left lower molar tooth pulp compared with that of sham-treated or vehicle-applied rats. The number of fluorogold (FG)-labeled TLR4-immunoreactive (IR) cells was significantly larger in CFA-applied rats compared with sham-treated or vehicle-applied rats to the molar tooth. The number of heat shock protein (Hsp) 70-IR neurons in trigeminal ganglion (TG) was significantly increased on day 3 after CFA application compared with sham-treated or vehicle-applied rats to the molar tooth. About 9.2% of TG neurons were labeled with DiI applied to the molar tooth and FG injected into the tongue, and 15.4% of TG neurons were labeled with FG injected into the tongue and Alexa-labeled Hsp70-IR applied to the tooth. Three days after Hsp70 or lipopolysaccharide (LPS) application to the tooth in naive rats, mechanical or heat hyperalgesia was significantly enhanced compared with that of saline-applied rats. Following successive LPS-RS, an antagonist of TLR4, administration to the TG for 3 days, the enhanced mechanical or heat hyperalgesia was significantly reversed compared with that of saline-injected rats. Noxious mechanical responses of TG neurons innervating the tongue were significantly higher in CFA-applied rats compare with sham rats to the tooth. Hsp70 mRNA levels of the tooth pulp and TG were not different between CFA-applied rats and sham rats. CONCLUSIONS: The present findings indicate that Hsp70 transported from the tooth pulp to TG neurons or expressed in TG neurons is released from TG neurons innervating inflamed tooth pulp, and is taken by TG neurons innervating the tongue, suggesting that the Hsp70-TLR4 signaling in TG plays a pivotal role in tongue-referred pain associated with tooth pulp inflammation.
Assuntos
Polpa Dentária/patologia , Neurônios/metabolismo , Dor Referida/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Gânglio Trigeminal/metabolismo , Animais , Proteínas de Choque Térmico HSP72/metabolismo , Hiperalgesia/metabolismo , Imuno-Histoquímica , Inflamação/complicações , Inflamação/metabolismo , Inflamação/patologia , Masculino , Dor Referida/etiologia , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/fisiologia , Língua/fisiologiaRESUMO
Ectopic pain in other orofacial regions develops with local inflammation in separated orofacial structures. However, the basis for the spreading of pain to adjacent orofacial areas after local inflammation is still unknown. In the present study, we determined if the P2X(3) receptor (P2X(3)R) was associated with altered mechanical sensitivity of the whisker pad skin following complete Freund's adjuvant (CFA) injection into the lower lip. Mice with local inflammation induced by CFA injection into the lower lip demonstrated significant mechanical allodynia of whisker pad skin. The mechanical allodynia was reversed by P2X(3)R antagonist, A-317491 administration into whisker pad skin. The number of P2X(3)R and calcitonin gene-related peptide (CGRP) positive trigeminal ganglion (TG) neurons that innervates the whisker pad skin and lower lip was increased after CFA injection into the lower lip. CGRP protein expression in TG ipsilateral to CFA injection was also significantly greater than that of the saline-injected mice. The present findings suggest that induced CGRP by local inflammation in the lower lip increases P2X(3)R in TG neurons, the increased P2X(3)Rs are involved in the sensitization of primary afferent neurons in the whisker pad skin. This P2X(3)R overexpression may underlie ectopic mechanical allodynia in the whisker pad skin after CFA injection into the lower lip.
Assuntos
Queilite/metabolismo , Hiperalgesia/metabolismo , Dor Referida/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Queilite/induzido quimicamente , Adjuvante de Freund/toxicidade , Imuno-Histoquímica , Inflamação/induzido quimicamente , Inflamação/metabolismo , Lábio , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dor Referida/induzido quimicamente , Pele/inervação , Vibrissas/inervaçãoRESUMO
Recent study from our laboratory has indicated that microinjection of glutamate into the nucleus tractus solitarius (NTS) facilitates the cardiac-somatic reflex induced by pericardial capsaicin. Further, N-methyl-d-aspartate (NMDA) receptors and metabotropic glutamate receptors (mGluRs) mediate this function. However, the roles of the individual receptor subtypes or subunits in modulating cardiac nociception are unknown. Among the three groups of mGluRs, group III mGluRs are the primary mGluR subtype expressed in visceral afferent neurons in the NTS. The present study examined the roles of group III mGluRs and their subtype 7 and 8 receptors (mGluR7 and mGluR8) in modulating the cardiac-somatic reflex induced by pericardial capsaicin, which was monitored by recording electromyogram (EMG) activity from the spinotrapezius muscle in anesthetized rats. Intra-NTS microinjection of a group III mGluR agonist, l-(+)-2-Amino-4-phosphonobutyric acid (l-AP4, at 1, 10, and 20 nmol) or a selective mGluR7 agonist, N,N'-diphenylmethyl-1,2-ethanediamine dihydrochloride (AMN082, at 1, 2, and 4 nmol) both decreased the EMG response in a dose-dependent manner. This decrease was inhibited by the group III mGluR antagonist (RS)-α-Methylserine-O-phosphate (MSOP, at 20 nmol). In contrast, intra-NTS microinjection of a selective mGluR8 agonist, (S)-3, 4-dicarboxyphenylglycine (DCPG, at 6 and 8 nmol), significantly increased the EMG response above control levels. This effect was eliminated by intra-NTS MSOP and by vagal deafferentation. These data suggest that group III mGluRs and mGluR7 in the NTS display an inhibitory effect, while mGluR8 displays a facilitatory effect in modulating cardiac nociception, and this facilitatory effect is dependent on vagal afferents.
Assuntos
Coração/inervação , Nociceptividade/fisiologia , Dor Referida/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Núcleo Solitário/metabolismo , Vias Aferentes/fisiologia , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Tórax , Nervo Vago/fisiologiaRESUMO
This study evaluated the contribution of endothelins to changes in sensitivity to mechanical stimulation of the lower abdomen and hind paw associated with 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis. The frequency of withdrawal responses to 10 consecutive applications of von Frey probes to the lower abdomen (0.07 g) or hind paw (0.4 g) was assessed in male BALB/c mice before and after intracolonic TNBS injection (0.5 mg in 100 microL of 35% ethanol). TNBS (0.5 mg) induced referred mechanical hyperalgesia in the abdomen (response frequencies at 24 h: saline 11.0% +/- 3.1%, TNBS 48.0% +/- 6.9%) and hind paw (frequencies at 24 h: saline 12.5% +/- 4.7%, TNBS 47.1% +/- 7.1%) lasting up to 72 and 48 h, respectively. Mice receiving 1.0 or 1.5 mg TNBS assumed hunch-backed postures and became immobile during abdominal mechanical stimulation, suggestive of excessive ongoing pain. Atrasentan (ETA receptor antagonist; 10 and 30 mg/kg, i.v.) given 24 h after TNBS abolished hind paw and abdominal mechanical hyperalgesia for 2-3 h. A-192621 (ETB receptor antagonist; 20 mg/kg, i.v.) attenuated abdominal mechanical hyperalgesia at the 3 h time point only. Thus, endothelins contribute importantly to abdominal and hind paw referred mechanical hyperalgesia during TNBS-induced colitis mainly through ETA receptor-signaled mechanisms.