Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
Sci Rep ; 14(1): 11119, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750247

RESUMO

G-protein-coupled receptors (GPCRs) transduce diverse signals into the cell by coupling to one or several Gα subtypes. Of the 16 Gα subtypes in human cells, Gα12 and Gα13 belong to the G12 subfamily and are reported to be functionally different. Notably, certain GPCRs display selective coupling to either Gα12 or Gα13, highlighting their significance in various cellular contexts. However, the structural basis underlying this selectivity remains unclear. Here, using a Gα12-coupled designer receptor exclusively activated by designer drugs (DREADD; G12D) as a model system, we identified residues in the α5 helix and the receptor that collaboratively determine Gα12-vs-Gα13 selectivity. Residue-swapping experiments showed that G12D distinguishes differences between Gα12 and Gα13 in the positions G.H5.09 and G.H5.23 in the α5 helix. Molecular dynamics simulations observed that I378G.H5.23 in Gα12 interacts with N1032.39, S1693.53 and Y17634.53 in G12D, while H364G.H5.09 in Gα12 interact with Q2645.71 in G12D. Screening of mutations at these positions in G12D identified G12D mutants that enhanced coupling with Gα12 and to an even greater extent with Gα13. Combined mutations, most notably the dual Y17634.53H and Q2645.71R mutant, further enhanced Gα12/13 coupling, thereby serving as a potential Gα12/13-DREADD. Such novel Gα12/13-DREADD may be useful in future efforts to develop drugs that target Gα12/13 signaling as well as to identify their therapeutic indications.


Assuntos
Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP , Simulação de Dinâmica Molecular , Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/química , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Células HEK293 , Drogas Desenhadas/química , Drogas Desenhadas/metabolismo , Ligação Proteica
2.
J Pharm Biomed Anal ; 242: 116020, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359493

RESUMO

The types and quantities of new psychoactive substances synthesized based on structural modifications have increased rapidly in recent years and pose a great challenge to clinical and forensic laboratories. N-benzyl derivatives of phenethylamines, 25B-NBOH, 25E-NBOH, 25H-NBOH, and 25iP-NBOMe have begun to flow into the black market and have caused several poisoning cases and even fatal cases. The aim of this study was to avoid false negative results by detecting the parent drug and its metabolites to extend the detection window in biological matrices and provide basic data for the simultaneous determination of illegal drugs and metabolites in forensic and emergency cases. To facilitate the comparison of metabolic characteristics, we divided the four compounds into two groups of types, 25X-NBOH and 25X-NBOMe. The in vitro phase I and phase II metabolism of these four compounds was investigated by incubating 10 mg mL-1 pooled human liver microsomes with co-substrates for 180 min at 37 â„ƒ, and then analyzing the reaction mixture using ultrahigh-performance liquid chromatography-quadrupole/electrostatic field orbitrap mass spectrometry. In total, 70 metabolites were obtained for the four compounds. The major biotransformations were O-demethylation, hydroxylation, dehydrogenation, N-dehydroxybenzyl, N-demethoxybenzyl, oxidate transformation to ketone and carboxylate, glucuronidation, and their combination reactions. We recommended the major metabolites with high peak area ratio as biomarkers, B2-1 (56.61%), B2-2 (17.43%) and B6 (17.78%) for 25B-NBOH, E2-1 (42.81%), E2-2 (34.90%) and E8-2 (10.18%) for 25E-NBOH, H5 (49.28%), H2-1 (21.54%), and H1 (18.37%) for 25H-NBOH, P3-1 (10.94%), P3-2 (33.18%), P3-3 (14.85%) and P12-2 (23.00%) for 25iP-NBOMe. This is a study to evaluate their metabolic characteristics in detail. Comparative analysis of the N-benzyl derivatives of phenethylamines provided basic data for elucidating their pharmacology and toxicity. Timely analysis of the metabolic profiles of compounds with abuse potential will facilitate the early development of regulatory measures.


Assuntos
Drogas Desenhadas , Alucinógenos , Humanos , Fenetilaminas/análise , Cromatografia Líquida de Alta Pressão , Microssomos Hepáticos/metabolismo , Drogas Desenhadas/metabolismo
3.
Am J Forensic Med Pathol ; 43(4): 372-375, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36281064

RESUMO

ABSTRACT: Clonazolam is a derivative of the Xanax active ingredient, alprazolam. Classified as a designer benzodiazepine, clonazolam availability has been rising because of its circulation on illegal internet drug markets and marginal cost in comparison to its parent analogs. Clonazolam's accessibility encourages abuse prevalence and use of designer benzodiazepines. In our case, a 14-year-old male was found unresponsive the morning after ingesting multiple tablets believed to be Xanax. Toxicology testing indicated 140 ng/mL of 8-aminoclonazolam, a clonazolam metabolite, in the decedent's system. Alprazolam was not identified. Pathological analysis determined cerebral and respiratory depression to be the mechanism of death, resulting from acute clonazolam intoxication. This case presents the first death induced by clonazolam alone. Current literature identifies a gap in designer benzodiazepine confirmatory testing and a lack of awareness within the forensic and medical communities. Knowledge of designer benzodiazepines is needed to better understand their potency and to help prevent future intoxications. We present this case to aid in the recognition of novel benzodiazepines by medical examiners and coroners, to encourage their consideration in suspected Xanax and other substance related investigations, and to be aware of the capabilities of toxicological testing to improve novel benzodiazepine identification and subsequent interpretation.


Assuntos
Alprazolam , Drogas Desenhadas , Masculino , Humanos , Adolescente , Detecção do Abuso de Substâncias , Drogas Desenhadas/metabolismo , Benzodiazepinas
4.
Sci Rep ; 12(1): 6595, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35449195

RESUMO

Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) have become a premier neuroscience research tool for enabling reversible manipulations of cellular activity following experimenter-controlled delivery of a DREADD-specific ligand. However, several DREADD ligands, e.g., clozapine-N-oxide (CNO), have metabolic and off-target effects that may confound experimental findings. New DREADD ligands aim to reduce metabolic and potential off-target effects while maintaining strong efficacy for the designer receptors. Recently a novel DREADD ligand, deschloroclozapine (DCZ), was shown to induce chemogenetic-mediated cellular and behavioral effects in mice and monkeys without detectable side effects. The goal of the present study was to examine the effectiveness of systemic DCZ for DREADD-based chemogenetic manipulations in behavioral and slice electrophysiological applications in rats. We demonstrate that a relatively low dose of DCZ (0.1 mg/kg) supports excitatory DREADD-mediated cFos induction, DREADD-mediated inhibition of a central amygdala-dependent behavior, and DREADD-mediated inhibition of neuronal activity in a slice electrophysiology preparation. In addition, we show that this dose of DCZ does not alter gross locomotor activity or induce a place preference/aversion in control rats without DREADD expression. Together, our findings support the use of systemic DCZ for DREADD-based manipulaations in rats, and provide evidence that DCZ is a superior alternative to CNO.


Assuntos
Drogas Desenhadas , Animais , Comportamento Animal , Drogas Desenhadas/metabolismo , Drogas Desenhadas/farmacologia , Ligantes , Locomoção , Camundongos , Neurônios/metabolismo , Ratos
5.
Artigo em Inglês | MEDLINE | ID: mdl-34678705

RESUMO

We have investigated the metabolic profile of N-ethyl heptedrone, a new designer synthetic stimulant drug, by using data independent acquisition mass spectrometry. Phase I and phase II metabolism was studied by in vitro models, followed by liquid-chromatography coupled to mass spectrometry, to characterize and pre-select the most diagnostic markers of intake. N-ethyl heptedrone was incubated in the presence of pooled human liver microsomes. The contribution of individual enzymatic isoforms in the formation of the phase I and phase II metabolites was further investigated by using human recombinant cDNA-expressed cytochrome P450 enzymesand uridine 5'-diphospho glucuronosyltransferases. The analytical workflow consisted of liquid-liquid extraction with tert-butyl-methyl-ether at alkaline pH, performed before (to investigate the phase I metabolic profile) and after (to investigate the glucuronidation profile) enzymatic hydrolysis. The separation, identification, and determination of the compounds formed in the in vitro experiments were carried out by using liquid chromatography coupled to either high- or low-resolution mass spectrometry. Data independent acquisition method, namely sequential window acquisition of all theoretical fragment-ion spectra (SWATH®) and product ion scan were selected for high-resolution mass spectrometry, whereas multiple reaction monitoring was used for low-resolution mass spectrometry. Thirteen phase-I metabolites were isolated, formed from reactions being catalyzed mainly by CYP1A2, CYP2C9, CYP2C19 and CYP2D6 and, to a lesser degree, by CYP3A4 and CYP3A5. The phase I biotransformation pathways included hydroxylation in different positions, reduction of the ketone group, carbonylation, N-dealkylation, and combinations of the above. Most of the hydroxylated metabolites underwent conjugation reactions to form the corresponding glucurono-conjugated metabolites. Based on our in vitro observation, the metabolic products resulting from reduction of the keto group, N-dealkylation and hydroxylation of the aliphatic chain appear to be the most diagnostic target analytes to be selected as markers of exposure to N-ethyl heptedrone.


Assuntos
Cromatografia Líquida/métodos , Cetonas/química , Cetonas/urina , Espectrometria de Massas/métodos , Biotransformação , Citocromo P-450 CYP3A/metabolismo , Drogas Desenhadas/análise , Drogas Desenhadas/metabolismo , Feminino , Humanos , Hidroxilação , Masculino , Metaboloma , Metabolômica , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Psicotrópicos/química , Psicotrópicos/urina , Quinazolinas/química , Quinazolinas/metabolismo
6.
STAR Protoc ; 2(2): 100418, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33899009

RESUMO

Behavioral analyses using mice chemogenetically manipulated by designer receptors exclusively activated by designer drugs (DREADDs) are powerful tools to elucidate neural functions. Here, we describe the detailed protocols for stereotaxic surgery, adeno-associated virus (AAV)-mediated introduction to Gq-DREADDs in mice, and for behavioral testing and analyses related to anxiety, risk assessment, and burying behaviors. A series of these tests are useful in evaluating animal anxiety and their defensive response patterns to potential threats. For complete details on the use and execution of this protocol, please refer to Horii-Hayashi et al. (2021).


Assuntos
Escala de Avaliação Comportamental , Comportamento Animal , Drogas Desenhadas , Camundongos Transgênicos , Receptores de Droga , Animais , Ansiedade/classificação , Comportamento Animal/classificação , Comportamento Animal/efeitos dos fármacos , Dependovirus/genética , Drogas Desenhadas/metabolismo , Drogas Desenhadas/farmacologia , Feminino , Masculino , Camundongos , Camundongos Transgênicos/genética , Camundongos Transgênicos/fisiologia , Receptores de Droga/genética , Receptores de Droga/metabolismo
7.
Drug Test Anal ; 13(8): 1516-1526, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33835674

RESUMO

The emerging market of new psychoactive substances (NPSs) is a global-scale phenomenon, and their identification in biological samples is challenging because of the lack of information about their metabolism and pharmacokinetic. In this study, we performed in silico metabolic pathway prediction and in vivo metabolism experiments, in order to identify the main metabolites of mephtetramine (MTTA), an NPS found in seizures since 2013. MetaSite™ software was used for in silico metabolism predictions and subsequently the presence of metabolites in the blood, urine, and hair of mice after MTTA administration was verified. The biological samples were analyzed by liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS) using a benchtop Orbitrap instrument. This confirmed the concordance between software prediction and experimental results in biological samples. The metabolites were identified by their accurate masses and fragmentation patterns. LC-HRMS analysis identified the dehydrogenated and demethylated-dehydrogenated metabolites, together with unmodified MTTA in the blood samples. Besides unmodified MTTA, 10 main metabolites were detected in urine. In hair samples, only demethyl MTTA was detected along with MTTA. The combination of Metasite™ prediction and in vivo experiment was a powerful tool for studying MTTA metabolism. This approach enabled the development of the analytical method for the detection of MTTA and its main metabolites in biological samples. The development of analytical methods for the identification of new drugs and their main metabolites is extremely useful for the detection of NPS in biological specimens. Indeed, high throughput methods are precious to uncover the actual extent of use of NPS and their toxicity.


Assuntos
Drogas Desenhadas/metabolismo , Drogas Desenhadas/toxicidade , Naftalenos/metabolismo , Naftalenos/toxicidade , Psicotrópicos/metabolismo , Psicotrópicos/toxicidade , Animais , Biotransformação , Cromatografia Líquida de Alta Pressão , Simulação por Computador , Drogas Desenhadas/química , Cabelo/química , Hidrogenação , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos ICR , Naftalenos/química , Psicotrópicos/química , Software , Espectrometria de Massas em Tandem
8.
J Neurochem ; 158(3): 603-620, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33540469

RESUMO

DREADDs (Designer Receptors Exclusively Activated by a Designer Drug) are designer G protein-coupled receptors (GPCRs) that are widely used in the neuroscience field to modulate neuronal activity. In this review, we will focus on DREADD studies carried out with genetically engineered mice aimed at elucidating signaling pathways important for maintaining proper glucose and energy homeostasis. The availability of muscarinic receptor-based DREADDs endowed with selectivity for one of the four major classes of heterotrimeric G proteins (Gs , Gi , Gq , and G12 ) has been instrumental in dissecting the physiological and pathophysiological roles of distinct G protein signaling pathways in metabolically important cell types. The novel insights gained from this work should inform the development of novel classes of drugs useful for the treatment of several metabolic disorders including type 2 diabetes and obesity.


Assuntos
Drogas Desenhadas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Drogas Desenhadas/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
Drug Test Anal ; 12(9): 1320-1335, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32476242

RESUMO

Among the increasing number of new psychoactive substances, 3',4'-methylenedioxy-α-pyrrolidinohexanophenone (MDPHP) belongs to the group of synthetic cathinones, which are the derivatives of the naturally occurring compound cathinone, the main psychoactive ingredient in the khat plant. Currently, only limited data are available for MDPHP, and no information is available on its human metabolism. We describe the toxicological investigation of nine cases associated with the use of MDPHP during the period February-June 2019. Serum MDPHP concentrations showed a high variability ranging from 3.3 to 140 ng/mL (mean 30.3 ng/mL and median 16 ng/mL). Intoxication symptoms of the described cases could not be explained by the abuse of MDPHP alone because in all cases the co-consumption of other psychotropic drugs with frequent occurrence of opiates and benzodiazepines could be verified. Therefore, the patients showed different clinical symptoms, including aggressive behaviour, delayed physical response, loss of consciousness and coma. Liquid chromatography-high-resolution mass spectrometry was successfully used to investigate the human in vivo metabolism of MDPHP using authentic human urine samples. The metabolism data for MDPHP were further substantiated by the analysis of human urine using gas chromatography-mass spectrometry (GC-MS, a widely used systematic toxicological analysis method appropriate for the toxicological detection of MDPHP intake), which revealed the presence of seven phase I metabolites and three phase II metabolites as glucuronides. GC-MS spectral data for MDPHP and metabolites are provided. The identified metabolite pattern corroborates the principal metabolic pathways of α-pyrrolidinophenones in humans.


Assuntos
Cromatografia Líquida/métodos , Drogas Desenhadas/intoxicação , Espectrometria de Massas/métodos , Detecção do Abuso de Substâncias/métodos , Adulto , Drogas Desenhadas/análise , Drogas Desenhadas/metabolismo , Feminino , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Psicotrópicos/análise , Psicotrópicos/metabolismo , Psicotrópicos/intoxicação
10.
J Anal Toxicol ; 44(8): 905-914, 2020 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-32369173

RESUMO

The use of designer benzodiazepines appears to be increasing in many countries, but data concerning blood concentrations are scarce, making interpretation of concentrations difficult. The aim of this study was to report blood concentrations of clonazolam, diclazepam, etizolam, flualprazolam, flubromazepam, flubromazolam and phenazepam and to investigate the relationship between blood concentrations and impairment. The concentration data are from blood samples collected from living cases (apprehended drivers and other drug offences) and medico-legal autopsies. The blood samples were analysed for the seven designer benzodiazepines mentioned above by ultra high performance liquid chromatography-tandem mass spectrometry. Positive cases from between 1 June 2016 and 30 September 2019 were included. Blood concentrations and the conclusion from a clinical test of impairment (when available) are reported. The presented seven benzodiazepines were detected in a total of 575 cases, where 554 of these cases concerned apprehended drivers or other criminal offenders. The number of findings and the median (range) concentrations were as follows: clonazolam, n = 22, 0.0041 mg/L (0.0017-0.053 mg/L); diclazepam, n = 334, 0.0096 mg/L (0.0016-0.25 mg/L); etizolam, n = 40, 0.054 mg/L (0.015-0.30 mg/L); flualprazolam, n = 10, 0.0080 mg/L (0.0033-0.056 mg/L); flubromazepam, n = 5, 0.037 mg/L (0.0070-0.70 mg/L); flubromazolam, n = 20, 0.0056 mg/L (0.0004-0.036 mg/L); and phenazepam, n = 138, 0.022 mg/L (0.0018-0.85 mg/L). A designer benzodiazepine was the only drug detected with relevance for impairment in 25 of the 554 living cases. The physician concluded with impairment in 19 of the 25 cases. Most of the concentrations in these cases were relatively similar to or higher than the median reported concentrations. The most frequent other drugs detected were amphetamine, tetrahydrocannabinol, clonazepam and methamphetamine. The presented blood concentrations can be helpful with the interpretation of cases involving one or more of these seven benzodiazepines. The results indicate that concentrations commonly observed in forensic cases are associated with impairment.


Assuntos
Benzodiazepinas/sangue , Drogas Desenhadas/metabolismo , Detecção do Abuso de Substâncias/métodos , Diazepam/análogos & derivados , Feminino , Medicina Legal , Humanos , Masculino
11.
J Anal Toxicol ; 44(5): 461-469, 2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32020169

RESUMO

5-Methoxy-N,N-Diisopropyltryptamine (5-MeO-DIPT) is a designer hallucinogen derived from tryptamine and its use has been banned by many countries. In this study, a qualitative and quantitative method was developed for determining 5-MeO-DIPT in urine by gas chromatography high-resolution mass spectrometry. 5-hydroxy-N,N-diisopropyltryptamine (5-OH-DIPT) and 5-methoxy-N-isopropyltryptamine (5-MeO-IPT) were identified as 5-MeO-DIPT metabolites in abusers' urine. 5-MeO-DIPT was extracted from urine by liquid-liquid extraction with ethyl acetate under alkaline conditions. The extract was analyzed by GC-Orbitrap-MS in full scan mode with a resolution of 60,000 full width at half maxima (FWHM). The linear range of this method was 2-300 ng/mL with r > 0.99, and the limit of detection was 1 ng/mL. The accuracy and precision were 93-108.7% and 3.1-10.3%, respectively. This method is simple and sensitive. It has been successfully used to detect 5-MeO-DIPT in drug abusers' urine, which showed that the concentrations of 5-MeO-DIPT were between 1 and 2.8 ng/mL. 5-OH-DIPT and 5-MeO-IPT, two urinary major metabolites of 5-MeO-DIPT, were identified in urine samples from 5-MeO-DIPT users. Furthermore, the stability of 5-MeO-DIPT in human urine was investigated. It was discovered that the concentration of 5-MeO-DIPT in urine decreased by 22.8, 33.2 and 38.2% after samples were stored for 24 h at 25°C, 5 days at 4°C and 7 days at 4°C, respectively. And 5-MeO-DIPT in urine were stable after they were stored for 30 days at -20°C. Therefore, it is recommended that urine should be stored under freezing conditions before performing 5-MeO-DIPT analysis.


Assuntos
5-Metoxitriptamina/análogos & derivados , Detecção do Abuso de Substâncias/métodos , 5-Metoxitriptamina/urina , Drogas Desenhadas/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Espectrometria de Massas , Serotonina/análogos & derivados
12.
Biochem Pharmacol ; 175: 113871, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32088263

RESUMO

Synthetic cannabinoid receptor agonists (SCRAs) represent the most rapidly proliferating class of "designer drugs" or "new psychoactive substances". SCRAs offer unregulated alternatives to cannabis that evade routine drug tests, but their use is increasingly associated with severe toxicity and death worldwide. Little is currently known about SCRA molecular pharmacology, or the mechanisms underpinning their toxicity, although the effects are believed to be primarily mediated by the type 1 cannabinoid receptor (CB1). In this study, we aimed to characterise the signalling profiles of a structurally diverse panel of novel SCRAs at CB1. We compare SCRAs to traditional reference cannabinoids CP55,940, WIN55,212-2, and THC. The activity of the SCRAs was assessed in key receptor signalling and regulatory pathways, including cAMP production, translocation of ß-arrestin 1 and 2, and receptor internalisation. The activity profiles of the ligands were also evaluated using operational analysis to identify ligand bias. Results revealed that SCRAs activities were relatively balanced in the pathways evaluated (compared to WIN55,212-2), although 5F-CUMYL-P7AICA and XLR-11 possessed partial efficacy in cAMP stimulation and ß-arrestin translocation. Notably, the SCRAs showed distinct potency and efficacy profiles compared to THC. In particular, while the majority of SCRAs demonstrated robust ß-arrestin translocation, cAMP stimulation, and internalisation, THC failed to elicit high efficacy responses in any of these assays. Further study is required to delineate if these pathways could contribute to SCRA toxicity in humans.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , Drogas Desenhadas/farmacologia , Indóis/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Agonistas de Receptores de Canabinoides/química , Agonistas de Receptores de Canabinoides/metabolismo , Canabinoides/química , Canabinoides/metabolismo , AMP Cíclico , Drogas Desenhadas/química , Drogas Desenhadas/metabolismo , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Indóis/química , Indóis/metabolismo , Ligantes , Transporte Proteico , Receptor CB1 de Canabinoide/genética , Receptor CB2 de Canabinoide/genética , Transdução de Sinais , Transfecção , beta-Arrestinas/metabolismo
13.
Drug Test Anal ; 12(6): 752-762, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31950580

RESUMO

Hemapolin (2α,3α-epithio-17α-methyl-5α-androstan-17ß-ol) is a designer steroid that is an ingredient in several "dietary" and "nutritional" supplements available online. As an unusual chemical modification to the steroid A-ring could allow this compound to pass through antidoping screens undetected, the metabolism of hemapolin was investigated by an in vivo equine drug administration study coupled with GC-MS analysis. Following administration of synthetically prepared hemapolin to a thoroughbred horse, madol (17α-methyl-5α-androst-2-en-17ß-ol), reduced and dihydroxylated madol (17α-methyl-5α-androstane-2ß,3α,17ß-triol), and the isomeric enone metabolites 17ß-hydroxy-17α-methyl-5α-androst-3-en-2-one and 17ß-hydroxy-17α-methyl-5α-androst-2-en-4-one, were detected and confirmed in equine urine extracts by comparison with a library of synthetically derived reference materials. A number of additional madol derivatives derived from hydroxylation, dihydroxylation, and trihydroxylation were also detected but not fully identified by this approach. A yeast cell-based androgen receptor bioassay of available reference materials showed that hemapolin and many of the metabolites identified by this study were potent activators of the equine androgen receptor. This study reveals the metabolites resulting from the equine administration of the androgen hemapolin that can be incorporated into routine GC-MS antidoping screening and confirmation protocols to detect the illicit use of this agent in equine sports.


Assuntos
Drogas Desenhadas/metabolismo , Dopagem Esportivo/métodos , Cavalos/metabolismo , Esteroides/metabolismo , Detecção do Abuso de Substâncias/métodos , Congêneres da Testosterona/metabolismo , Animais , Biotransformação , Cromatografia Gasosa-Espectrometria de Massas , Receptores Androgênicos/metabolismo , Padrões de Referência , Esteroides/urina , Congêneres da Testosterona/urina
14.
J Anal Toxicol ; 44(2): 156-162, 2020 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-31355413

RESUMO

The distribution of so-called new psychoactive substances (NPS) as substitute for common drug of abuse was steadily increasing in the last years, but knowledge about their toxicodynamic and toxicokinetic properties is lacking. However, a comprehensive knowledge of their toxicokinetics, particularly their metabolism, is crucial for developing reliable screening procedures and to verify their intake, e.g., in case of intoxications. The aim of this study was therefore to tentatively identify the metabolites of the methylphenidate-derived NPS isopropylphenidate (isopropyl 2-phenyl-2-(2-piperidyl) acetate, IPH), 4-fluoromethylphenidate (methyl 2-(4-fluorophenyl)-2-(piperidin-2-yl) acetate, 4-FMPH) and 3,4-dichloromethylphenidate (methyl 2-(3,4-dichlorophenyl)-2-(piperidin-2-yl) acetate, 3,4-CTMP) using different in vivo and in vitro techniques and ultra-high performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS/MS). Urine samples of male rats were analyzed, and the transfer to human metabolism was done by using pooled human S9 fraction (pS9), which contains the microsomal fraction of liver homogenisate as well as its cytosol. UHPLC-HRMS/MS analysis of rat urine revealed 17 metabolites for IPH (14 phase I and 3 phase II metabolites), 13 metabolites were found for 4-FMPH (12 phase I metabolites and 1 phase II metabolite) and 7 phase I metabolites and no phase II metabolites were found for 3,4-CTMP. pS9 incubations additionally indicated that all investigated substances were primarily hydrolyzed, resulting in the corresponding carboxy metabolites. Finally, these carboxy metabolites should be used as additional analytical targets besides the parent compounds for comprehensive mass spectrometry-based screening procedures.


Assuntos
Metilfenidato/metabolismo , Psicotrópicos/metabolismo , Animais , Cromatografia Líquida , Drogas Desenhadas/metabolismo , Humanos , Masculino , Ratos , Detecção do Abuso de Substâncias , Espectrometria de Massas em Tandem , Toxicocinética
15.
Rapid Commun Mass Spectrom ; 34 Suppl 1: e8579, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31502287

RESUMO

RATIONALE: The presence of α-pyrrolidinovalerophenone (α-PVP) and its metabolites in urine is evidence of the administration of α-PVP. A toxicological challenge is that the metabolites of α-PVP exhibit amphoteric properties, which make them unsuitable for detection using gas chromatography-mass spectrometry (GC/MS). In the study reported, proper derivatization and sample extraction were essential for improving the sensitivity for GC/MS analysis. METHODS: An automated solid-phase extraction (SPE) method has been developed and optimized. The derivatization efficiency was tested using longer reaction time and the addition of polar pyridine into a mixture of N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) with 1% trimethylchlorosilane. Method validation, including linearity, limit of detection, precision, accuracy, and recovery, was evaluated using automatic SPE and GC/MS. RESULTS: The results suggested that adding pyridine to BSTFA (1:1, v/v) significantly improved derivatization efficiency and precision. After optimization, the linear range was from 25 to 1000 ng mL-1 with R2 > 0.9950. The limit of detection was 5 ng mL-1 for α-PVP and 25 ng mL-1 for OH-α-PVP. The recovery for SPE was over 88%. The inter-day and intra-day precisions were less than 15%. A forensic sample has been found containing α-PVP (67.3 ng mL-1 ) and OH-α-PVP (560.2 ng mL-1 ). CONCLUSIONS: This study is the first to validate an auto-SPE-GC/MS method for the quantification and qualification of α-PVP and OH-α-PVP in urine. We have successfully improved the derivatization efficiency and developed a sensitive and semi-automatic approach. This approach is desirable for the detection of synthetic cathinone at trace levels in biological samples.


Assuntos
Alcaloides/urina , Cromatografia Gasosa-Espectrometria de Massas/métodos , Pirrolidinas/urina , Alcaloides/metabolismo , Drogas Desenhadas/metabolismo , Drogas Desenhadas/farmacocinética , Humanos , Limite de Detecção , Pirrolidinas/metabolismo , Extração em Fase Sólida/métodos , Detecção do Abuso de Substâncias/métodos
16.
Drug Test Anal ; 12(1): 127-135, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31461219

RESUMO

According to the European Monitoring Center for Drugs and Drug Addiction (EMCDDA), there were 179 different synthetic cannabinoids reported as of 2017. In the USA, 5F-MDMB-PINACA, or 5F-ADB, accounted for 28% of cannabinoid seizures 2016-2018. The synthetic cannabinoid, 5F-MDMB-PICA, is structurally similar to 5F-MDMB-PINACA with an indole group replacing the indazole. Limited data exist from in vivo or in vitro metabolic studies of these synthetic cannabinoids, so potential metabolites to identify use may be missed. The goals of this study were to (a) investigate 5F-MDMB-PICA and 5F-MDMB-PINACA in vitro metabolism utilizing human hepatocytes; (b) to verify in vitro metabolites by analyzing authentic case specimens; and (c) to identify the potency and efficacy of 5F-MDMB-PICA and 5F-MDMB-PINACA by examining activity at the CB1 receptor. Biotransformations found in this study included phase I transformations and phase II transformations. A total of 22 5F-MDMB-PICA metabolites (A1 to A22) were identified. From hepatocyte incubations and urine samples, 21 metabolites (B1 to B21) were identified with 3 compounds unique to urine specimens for 5F-MDMB-PINACA. Phase II glucuronides were identified in 5F-MDMB-PICA (n = 3) and 5F-MDMB-PINACA (n = 5). For both compounds, ester hydrolysis and ester hydrolysis in combination with oxidative defluorination were the most prevalent metabolites produced in vitro. Additionally, the conversion of ester hydrolysis with oxidative defluorination to pentanoic acid for the first time was identified for 5F-MDMB-PICA. Therefore, these metabolites would be potentially good biomarkers for screening urine of suspected intoxication of 5F-MDMB-PICA or 5F-MDMB-PINACA. Both 5F-MDMB-PICA and 5F-MDMB-PINACA were acting as full agonists at the CB1 receptor with higher efficacy and similar potency as JWH-018.


Assuntos
Canabinoides/metabolismo , Drogas Desenhadas/metabolismo , Hepatócitos/metabolismo , Receptor CB1 de Canabinoide/agonistas , Canabinoides/farmacologia , Linhagem Celular , Drogas Desenhadas/farmacologia , Halogenação , Hepatócitos/efeitos dos fármacos , Humanos , Hidrólise , Indazóis/metabolismo , Indazóis/farmacologia , Masculino , Pessoa de Meia-Idade , Oxirredução , Psicotrópicos/metabolismo , Psicotrópicos/farmacologia , Receptor CB1 de Canabinoide/metabolismo
17.
J Anal Toxicol ; 44(1): 92-102, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31436798

RESUMO

The production and consumption of new psychoactive substances (NPSs) has been raising a major concern worldwide. Due to easy access and available information, many NPSs continue to be synthesized with an alarming increase of those available to purchase, despite all the control efforts created. A new analytical method was developed and validated to determine a group of phenethylamines and synthetic cathinones: cathinone, flephedrone, buphedrone, 4-MTA, α-PVP, methylone, 2C-P, ethylone, pentylone, MDPV and bromo-dragonFLY in whole blood. A mixed-mode solid phase extraction was applied to 250 µL of sample, and the extracts were derivatized with fast microwave technique before being analyzed by gas chromatography-mass spectrometry (GC-MS). The validation procedure followed the Scientific Working Group for Forensic Toxicology (SWGTOX) guidelines with parameters that included selectivity, linearity, limits of detection and quantification, intra- and inter-day precision and accuracy, recoveries and stability. The method presented linearity between 5 and 500 ng/mL for cathinone, buphedrone, 4-MTA, methylone, 2C-P and bromo-dragonFLY, 10-500 ng/mL for flephedrone, ethylone, pentylone and MDPV, and 40-500 ng/mL for α-PVP, with determination coefficients above 0.99 for all analytes. Recoveries ranged between 70.3% and 116.6%, and regarding intra- and inter-day precision, the relative mean errors were typically lower than 8.6%. The method was successfully applied to over 100 authentic samples from the Laboratory of Chemistry and Forensic Toxicology, Centre Branch, of the National Institute of Legal Medicine and Forensic Sciences, Portugal.


Assuntos
Drogas Desenhadas/metabolismo , Toxicologia Forense , Micro-Ondas , Psicotrópicos/sangue , Detecção do Abuso de Substâncias/métodos , Acetona/análogos & derivados , Acetona/análise , Acetona/sangue , Alcaloides/análise , Alcaloides/sangue , Anfetaminas/análise , Anfetaminas/sangue , Drogas Desenhadas/análise , Etilaminas/análise , Etilaminas/sangue , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Limite de Detecção , Metanfetamina/análogos & derivados , Metanfetamina/análise , Metanfetamina/sangue , Pentanonas/análise , Pentanonas/sangue , Fenetilaminas/análise , Fenetilaminas/sangue , Pirrolidinas/análise , Pirrolidinas/sangue
18.
Drug Test Anal ; 12(1): 145-151, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31667988

RESUMO

The aim of this study was to characterize the in vitro and in vivo metabolism of 2-aminoindane (2,3-dihydro-1H-inden-2-amine, 2-AI), and N-methyl-2-aminoindane (N-methyl-2,3-dihydro-1H-inden-2-amine, NM-2-AI) after incubations using pooled human liver microsomes (pHLMs), pooled human liver S9 fraction (pS9), and rat urine after oral administration. After analysis using liquid chromatography coupled to high-resolution mass spectrometry, pHLM incubations revealed that 2-AI was left unmetabolized, while NM-2-AI formed a hydroxylamine and diastereomers of a metabolite formed after hydroxylation in beta position. Incubations using pS9 led to the formation of an acetyl conjugation in the case of 2-AI and merely a hydroxylamine for NM-2-AI. Investigations on rat urine showed that 2-AI was hydroxylated also forming diasteromers as described for NM-2-AI or acetylated similar to incubations using pS9. All hydroxylated metabolites of NM-2-AI except the hydroxylamine were found in rat urine as additional sulfates. Assuming similar patterns in humans, urine screening procedures might be focused on the parent compounds but should also include their metabolites. An activity screening using human recombinant N-acetyl transferase (NAT) isoforms 1 and 2 revealed that 2-AI was acetylated exclusively by NAT2, which is polymorphically expressed.


Assuntos
Drogas Desenhadas/metabolismo , Indanos/metabolismo , Microssomos Hepáticos/metabolismo , Psicotrópicos/metabolismo , Animais , Drogas Desenhadas/farmacocinética , Humanos , Indanos/urina , Espectrometria de Massas , Redes e Vias Metabólicas , Metilação , Psicotrópicos/urina , Ratos , Detecção do Abuso de Substâncias
19.
Drug Test Anal ; 11(10): 1572-1580, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31424163

RESUMO

Due to the risk of new synthetic opioids (NSOs) for human health, the knowledge of their toxicokinetic characteristics is important for clinical and forensic toxicology. U-48800 is an NSO structurally non-related to classical opioids such as morphine or fentanyl and offered for abuse. As toxicokinetic data of U-48800 is not currently available, the aims of this study were to identify the in vitro metabolites of U-48800 in pooled human liver S9 fraction (pS9), to map the isozymes involved in the initial metabolic steps, and to determine further toxicokinetic data such as metabolic stability, including the in vitro half-life (t1/2 ), and the intrinsic (CLint ) and hepatic clearance (CLh ). Furthermore, drug detectability studies in rat urine should be done using hyphenated mass spectrometry. In total, 13 phase I metabolites and one phase II metabolite were identified. N-Dealkylation, hydroxylation, and their combinations were the predominant metabolic reactions. The isozymes CYP2C19 and CYP3A4 were mainly involved in these initial steps. CYP2C19 poor metabolizers may suffer from an increased U-48800 toxicity. The in vitro t1/2 and CLint could be rated as moderate, compared to structural related compounds. After administration of an assumed consumer dose to rats, the unchanged parent compound was found only in very low abundance but three metabolites were detected additionally. Due to species differences, metabolites found in rats might be different from those in humans. However, phase I metabolites found in rat urine, the parent compound, and additionally the N-demethyl metabolite should be used as main targets in toxicological urine screening approaches.


Assuntos
Analgésicos Opioides/metabolismo , Drogas Desenhadas/metabolismo , Microssomos Hepáticos/metabolismo , Analgésicos Opioides/sangue , Analgésicos Opioides/toxicidade , Analgésicos Opioides/urina , Animais , Proteínas Sanguíneas/metabolismo , Citocromo P-450 CYP2C19/metabolismo , Citocromo P-450 CYP3A/metabolismo , Drogas Desenhadas/farmacocinética , Drogas Desenhadas/toxicidade , Humanos , Isoenzimas/metabolismo , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Ligação Proteica , Ratos Wistar , Detecção do Abuso de Substâncias , Espectrometria de Massas em Tandem , Toxicocinética
20.
Drug Test Anal ; 11(10): 1507-1521, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31299701

RESUMO

Psychoactive substances of the 2C-series are phenethylamine-based designer drugs that can induce psychostimulant and hallucinogenic effects. The so-called 2C-FLY series contains rigidified methoxy groups integrated in a 2,3,6,7-tetrahydrobenzo[1,2-b:4,5-b']difuran core. The aim of the presented work was to investigate the in vivo and in vitro metabolic fate including isoenzyme activities and toxicological detectability of the three new psychoactive substances (NPS) 2C-E-FLY, 2C-EF-FLY, and 2C-T-7-FLY to allow clinical and forensic toxicologists the identification of these novel compounds. Rat urine, after oral administration, and pooled human liver S9 fraction (pS9) incubations were analyzed by liquid chromatography-high-resolution tandem mass spectrometry (LC-HRMS/MS). By performing activity screenings, the human isoenzymes involved were identified and toxicological detectability in rat urine investigated using standard urine screening approaches (SUSAs) based on gas chromatography (GC)-MS, LC-MSn , and LC-HRMS/MS. In total, 32 metabolites were tentatively identified. Main metabolic steps consisted of hydroxylation and N-acetylation. Phase I metabolic reactions were catalyzed by CYP2D6, 3A4, and FMO3 and N-acetylation by NAT1 and NAT2. Methoxyamine was used as a trapping agent for detection of the deaminated metabolite formed by MAO-A and B. Interindividual differences in the metabolism of the 2C-FLY drugs could be caused by polymorphisms of enzymes involved or drug-drug interactions. All three SUSAs were shown to be suitable to detect an intake of these NPS but common metabolites of 2C-E-FLY and 2C-EF-FLY have to be considered during interpretation of analytical findings.


Assuntos
Fenetilaminas/metabolismo , Fenetilaminas/urina , Psicotrópicos/metabolismo , Psicotrópicos/urina , Animais , Cromatografia Líquida , Drogas Desenhadas/química , Drogas Desenhadas/metabolismo , Drogas Desenhadas/farmacocinética , Humanos , Masculino , Microssomos Hepáticos/metabolismo , Fenetilaminas/química , Psicotrópicos/química , Ratos Wistar , Detecção do Abuso de Substâncias , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA