Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.631
Filtrar
1.
BMC Ecol Evol ; 24(1): 60, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734594

RESUMO

BACKGROUND: Foraging behavior in insects is optimised for locating scattered resources in a complex environment. This behavior can be exploited for use in pest control. Inhibition of feeding can protect crops whereas stimulation can increase the uptake of insecticides. For example, the success of a bait spray, depends on either contact or ingestion, and thus on the insect finding it. METHODS: To develop an effective bait spray against the invasive pest, Drosophila suzukii, we investigated aspects of foraging behavior that influence the likelihood that the pest interacts with the baits, in summer and winter morphotypes. We video-recorded the flies' approach behavior towards four stimuli in a two-choice experiment on strawberry leaflets. To determine the most effective bait positioning, we also assessed where on plants the pest naturally forages, using a potted raspberry plant under natural environmental conditions. We also studied starvation resistance at 20 °C and 12 °C for both morphs. RESULTS: We found that summer morph flies spent similar time on all baits (agar, combi-protec, yeast) whereas winter morphs spent more time on yeast than the other baits. Both morphs showed a preference to feed at the top of our plant's canopy. Colder temperatures enhanced survival under starvation conditions in both morphs, and mortality was reduced by food treatment. CONCLUSIONS: These findings on feeding behavior support informed decisions on the type and placement of a bait to increase pest control.


Assuntos
Drosophila , Comportamento Alimentar , Controle de Insetos , Animais , Drosophila/fisiologia , Controle de Insetos/métodos , Comportamento Alimentar/fisiologia , Inseticidas/farmacologia , Inseticidas/administração & dosagem , Rubus , Fragaria , Feminino , Estações do Ano
2.
Proc Natl Acad Sci U S A ; 121(21): e2316799121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38753511

RESUMO

The mammalian brain implements sophisticated sensory processing algorithms along multilayered ("deep") neural networks. Strategies that insects use to meet similar computational demands, while relying on smaller nervous systems with shallow architectures, remain elusive. Using Drosophila as a model, we uncover the algorithmic role of odor preprocessing by a shallow network of compartmentalized olfactory receptor neurons. Each compartment operates as a ratiometric unit for specific odor-mixtures. This computation arises from a simple mechanism: electrical coupling between two differently sized neurons. We demonstrate that downstream synaptic connectivity is shaped to optimally leverage amplification of a hedonic value signal in the periphery. Furthermore, peripheral preprocessing is shown to markedly improve novel odor classification in a higher brain center. Together, our work highlights a far-reaching functional role of the sensory periphery for downstream processing. By elucidating the implementation of powerful computations by a shallow network, we provide insights into general principles of efficient sensory processing algorithms.


Assuntos
Odorantes , Neurônios Receptores Olfatórios , Olfato , Animais , Odorantes/análise , Neurônios Receptores Olfatórios/fisiologia , Olfato/fisiologia , Drosophila melanogaster/fisiologia , Algoritmos , Drosophila/fisiologia , Condutos Olfatórios/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia
4.
Environ Microbiol ; 26(4): e16609, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38558489

RESUMO

The susceptibility of insects to rising temperatures has largely been measured by their ability to survive thermal extremes. However, the capacity for maternally inherited endosymbionts to influence insect heat tolerance has been overlooked. Further, while some studies have addressed the impact of heat on traits like fertility, which can decline at temperatures below lethal thermal limits, none have considered the impact of endosymbionts. Here, we assess the impact of three Wolbachia strains (wRi, wAu and wNo) on the survival and fertility of Drosophila simulans exposed to heat stress during development or as adults. The effect of Wolbachia infection on heat tolerance was generally small and trait/strain specific. Only the wNo infection significantly reduced the survival of adult males after a heat shock. When exposed to fluctuating heat stress during development, the wRi and wAu strains reduced egg-to-adult survival but only the wNo infection reduced male fertility. Wolbachia densities of all three strains decreased under developmental heat stress, but reductions occurred at temperatures above those that reduced host fertility. These findings emphasize the necessity to account for endosymbionts and their effect on both survival and fertility when investigating insect responses to heat stress.


Assuntos
Termotolerância , Wolbachia , Animais , Masculino , Drosophila/fisiologia , Drosophila simulans/genética , Wolbachia/genética , Fertilidade
5.
PLoS Comput Biol ; 20(4): e1012029, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38648221

RESUMO

The circadian clock is an evolutionarily-conserved molecular oscillator that enables species to anticipate rhythmic changes in their environment. At a molecular level, the core clock genes induce circadian oscillations in thousands of genes in a tissue-specific manner, orchestrating myriad biological processes. While previous studies have investigated how the core clock circuit responds to environmental perturbations such as temperature, the downstream effects of such perturbations on circadian regulation remain poorly understood. By analyzing bulk-RNA sequencing of Drosophila fat bodies harvested from flies subjected to different environmental conditions, we demonstrate a highly condition-specific circadian transcriptome: genes are cycling in a temperature-specific manner, and the distributions of their phases also differ between the two conditions. Further employing a reference-based gene regulatory network (Reactome), we find evidence of increased gene-gene coordination at low temperatures and synchronization of rhythmic genes that are network neighbors. We report that the phase differences between cycling genes increase as a function of geodesic distance in the low temperature condition, suggesting increased coordination of cycling on the gene regulatory network. Our results suggest a potential mechanism whereby the circadian clock mediates the fly's response to seasonal changes in temperature.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Temperatura , Animais , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Redes Reguladoras de Genes/genética , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Regulação da Expressão Gênica/genética , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Drosophila/genética , Drosophila/fisiologia , Transcriptoma/genética , Biologia Computacional , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Transcrição Gênica/genética
6.
Curr Biol ; 34(7): R288-R291, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38593775

RESUMO

The development of sex-specific neural circuitry is critical for reproductive behaviors. A new study traces the developmental origin of female-specific neurons that underlie an adult mating behavior to larval neurons common to both sexes in Drosophila.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Masculino , Feminino , Larva , Drosophila/fisiologia , Neurônios/fisiologia , Comportamento Sexual Animal/fisiologia , Drosophila melanogaster/fisiologia
7.
Neotrop Entomol ; 53(3): 578-595, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38687423

RESUMO

The ability of an organism to respond to nutritional stress can be a plastic character under the action of natural selection, affecting several characteristics, including life history and energy storage. The genus Drosophila (Diptera; Drosophilidae) presents high variability regarding natural resource exploration. However, most works on this theme have studied the model species D. melanogaster Meigen, 1830 and little is known about Neotropical drosophilids. Here we evaluate the effects of three diets, with different carbohydrate-to-protein ratios, on life history (viability and development time) and metabolic pools (triglycerides, glycogen, and total soluble protein contents) of three Neotropical species of Drosophila: D. maculifrons Duda, 1927; D. ornatifrons Duda, 1927, both of the subgenus Drosophila Sturtevant, 1939, and D. willistoni Sturtevant, 1916 of the subgenus Sophophora Sturtevant, 1939. Our results showed that only D. willistoni was viable on all diets, D. maculifrons was not viable on the sugary diet, while D. ornatifrons was barely viable on this diet. The sugary diet increased the development time of D. willistoni and D. ornatifrons, and D. willistoni glycogen content. Thus, the viability of D. maculifrons and D. ornatifrons seems to depend on a certain amount of protein and/or a low concentration of carbohydrate in the diet. A more evident effect of the diets on triglyceride and protein pools was detected in D. ornatifrons, which could be related to the adult attraction to dung and carrion baited pitfall as food resource tested in nature. Our results demonstrated that the evolutionary history and differential adaptations to natural macronutrient resources are important to define the amplitude of response that a species can present when faced with dietary variation.


Assuntos
Dieta , Drosophila , Características de História de Vida , Animais , Drosophila/fisiologia , Metabolismo Energético , Feminino , Masculino , Glicogênio/metabolismo , Proteínas Alimentares , Carboidratos da Dieta
8.
J Neurosci Res ; 102(4): e25332, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38646942

RESUMO

The coordinated action of multiple leg joints and muscles is required even for the simplest movements. Understanding the neuronal circuits and mechanisms that generate precise movements is essential for comprehending the neuronal basis of the locomotion and to infer the neuronal mechanisms underlying several locomotor-related diseases. Drosophila melanogaster provides an excellent model system for investigating the neuronal circuits underlying motor behaviors due to its simple nervous system and genetic accessibility. This review discusses current genetic methods for studying locomotor circuits and their function in adult Drosophila. We highlight recently identified neuronal pathways that modulate distinct forward and backward locomotion and describe the underlying neuronal control of leg swing and stance phases in freely moving flies. We also report various automated leg tracking methods to measure leg motion parameters and define inter-leg coordination, gait and locomotor speed of freely moving adult flies. Finally, we emphasize the role of leg proprioceptive signals to central motor circuits in leg coordination. Together, this review highlights the utility of adult Drosophila as a model to uncover underlying motor circuitry and the functional organization of the leg motor system that governs correct movement.


Assuntos
Locomoção , Animais , Locomoção/fisiologia , Neurônios/fisiologia , Drosophila melanogaster/fisiologia , Drosophila/fisiologia
9.
Proc Natl Acad Sci U S A ; 121(16): e2315958121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38588427

RESUMO

The ability of neurons to rapidly remodel their synaptic structure and strength in response to neuronal activity is highly conserved across species and crucial for complex brain functions. However, mechanisms required to elicit and coordinate the acute, activity-dependent structural changes across synapses are not well understood, as neurodevelopment and structural plasticity are tightly linked. Here, using an RNAi screen in Drosophila against genes affecting nervous system functions in humans, we uncouple cellular processes important for synaptic plasticity and synapse development. We find mutations associated with neurodegenerative and mental health disorders are 2-times more likely to affect activity-induced synaptic remodeling than synapse development. We report that while both synapse development and activity-induced synaptic remodeling at the fly NMJ require macroautophagy (hereafter referred to as autophagy), bifurcation in the autophagy pathway differentially impacts development and synaptic plasticity. We demonstrate that neuronal activity enhances autophagy activation but diminishes degradative autophagy, thereby driving the pathway towards autophagy-based secretion. Presynaptic knockdown of Snap29, Sec22, or Rab8, proteins implicated in the secretory autophagy pathway, is sufficient to abolish activity-induced synaptic remodeling. This study uncovers secretory autophagy as a transsynaptic signaling mechanism modulating synaptic plasticity.


Assuntos
Proteínas de Drosophila , Junção Neuromuscular , Animais , Humanos , Junção Neuromuscular/metabolismo , Sinapses/metabolismo , Drosophila/fisiologia , Neurônios/metabolismo , Autofagia/genética , Plasticidade Neuronal/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Transmissão Sináptica/fisiologia , GTP Fosfo-Hidrolases/metabolismo
10.
Curr Biol ; 34(7): 1438-1452.e6, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38513654

RESUMO

Steroid hormones regulate tissue development and physiology by modulating the transcription of a broad spectrum of genes. In insects, the principal steroid hormones, ecdysteroids, trigger the expression of thousands of genes through a cascade of transcription factors (TFs) to coordinate developmental transitions such as larval molting and metamorphosis. However, whether ecdysteroid signaling can bypass transcriptional hierarchies to exert its function in individual developmental processes is unclear. Here, we report that a single non-TF effector gene mediates the transcriptional output of ecdysteroid signaling in Drosophila myoblast fusion, a critical step in muscle development and differentiation. Specifically, we show that the 20-hydroxyecdysone (commonly referred to as "ecdysone") secreted from an extraembryonic tissue, amnioserosa, acts on embryonic muscle cells to directly activate the expression of antisocial (ants), which encodes an essential scaffold protein enriched at the fusogenic synapse. Not only is ants transcription directly regulated by the heterodimeric ecdysone receptor complex composed of ecdysone receptor (EcR) and ultraspiracle (USP) via ecdysone-response elements but also more strikingly, expression of ants alone is sufficient to rescue the myoblast fusion defect in ecdysone signaling-deficient mutants. We further show that EcR/USP and a muscle-specific TF Twist synergistically activate ants expression in vitro and in vivo. Taken together, our study provides the first example of a steroid hormone directly activating the expression of a single key non-TF effector gene to regulate a developmental process via inter-organ signaling and provides a new paradigm for understanding steroid hormone signaling in other developmental and physiological processes.


Assuntos
Proteínas de Drosophila , Receptores de Esteroides , Animais , Proteínas de Ligação a DNA/metabolismo , Ecdisona , Ecdisteroides , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Muda/fisiologia , Drosophila/fisiologia , Regulação da Expressão Gênica no Desenvolvimento
11.
J Exp Biol ; 227(9)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38511428

RESUMO

Odorants interact with receptors expressed in specialized olfactory neurons, and neurons of the same class send their axons to distinct glomeruli in the brain. The stereotypic spatial glomerular activity map generates recognition and the behavioral response for the odorant. The valence of an odorant changes with concentration, typically becoming aversive at higher concentrations. Interestingly, in Drosophila larvae, the odorant (E)-2-hexenal is aversive at low concentrations and attractive at higher concentrations. We investigated the molecular and neural basis of this phenomenon, focusing on how activities of different olfactory neurons conveying opposing effects dictate behaviors. We identified the repellant neuron in the larvae as one expressing the olfactory receptor Or7a, whose activation alone at low concentrations of (E)-2-hexenal elicits an avoidance response in an Or7a-dependent manner. We demonstrate that avoidance can be overcome at higher concentrations by activation of additional neurons that are known to be attractive, most notably odorants that are known activators of Or42a and Or85c. These findings suggest that in the larval stage, the attraction-conveying neurons can overcome the aversion-conveying channels for (E)-2-hexenal.


Assuntos
Aldeídos , Larva , Odorantes , Neurônios Receptores Olfatórios , Receptores Odorantes , Animais , Larva/crescimento & desenvolvimento , Larva/fisiologia , Receptores Odorantes/metabolismo , Odorantes/análise , Neurônios Receptores Olfatórios/metabolismo , Neurônios Receptores Olfatórios/fisiologia , Aldeídos/metabolismo , Aldeídos/farmacologia , Drosophila melanogaster/fisiologia , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Olfato/fisiologia , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila/fisiologia , Drosophila/metabolismo
12.
Behav Brain Funct ; 20(1): 5, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493127

RESUMO

Fruit fly courtship behaviors composed of a series of actions have always been an important model for behavioral research. While most related studies have focused only on total courtship behaviors, specific courtship elements have often been underestimated. Identifying these courtship element details is extremely labor intensive and would largely benefit from an automatic recognition system. To address this issue, in this study, we established a vision-based fly courtship behavior recognition system. The system based on the proposed image processing methods can precisely distinguish body parts such as the head, thorax, and abdomen and automatically recognize specific courtship elements, including orientation, singing, attempted copulation, copulation and tapping, which was not detectable in previous studies. This system, which has high identity tracking accuracy (99.99%) and high behavioral element recognition rates (> 97.35%), can ensure correct identification even when flies completely overlap. Using this newly developed system, we investigated the total courtship time, and proportion, and transition of courtship elements in flies across different ages and found that male flies adjusted their courtship strategy in response to their physical condition. We also identified differences in courtship patterns between males with and without successful copulation. Our study therefore demonstrated how image processing methods can be applied to automatically recognize complex animal behaviors. The newly developed system will largely help us investigate the details of fly courtship in future research.


Assuntos
Corte , Comportamento Sexual Animal , Animais , Masculino , Comportamento Sexual Animal/fisiologia , Drosophila/fisiologia , Comportamento Animal , Copulação
13.
Ecol Lett ; 27(3): e14421, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38549250

RESUMO

Studies of ectotherm responses to heat extremes often rely on assessing absolute critical limits for heat coma or death (CTmax), however, such single parameter metrics ignore the importance of stress exposure duration. Furthermore, population persistence may be affected at temperatures considerably below CTmax through decreased reproductive output. Here we investigate the relationship between tolerance duration and severity of heat stress across three ecologically relevant life-history traits (productivity, coma and mortality) using the global agricultural pest Drosophila suzukii. For the first time, we show that for sublethal reproductive traits, tolerance duration decreases exponentially with increasing temperature (R2 > 0.97), thereby extending the Thermal Death Time framework recently developed for mortality and coma. Using field micro-environmental temperatures, we show how thermal stress can lead to considerable reproductive loss at temperatures with limited heat mortality highlighting the importance of including limits to reproductive performance in ecological studies of heat stress vulnerability.


Assuntos
Drosophila , Características de História de Vida , Animais , Drosophila/fisiologia , Coma , Reprodução , Temperatura
14.
PLoS Genet ; 20(3): e1011204, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38452112

RESUMO

We investigate the contribution of a candidate gene, fiz (fezzik), to complex polygenic adaptation to juvenile malnutrition in Drosophila melanogaster. Experimental populations maintained for >250 generations of experimental evolution to a nutritionally poor larval diet (Selected populations) evolved several-fold lower fiz expression compared to unselected Control populations. Here we show that this divergence in fiz expression is mediated by a cis-regulatory polymorphism. This polymorphism, originally sampled from a natural population in Switzerland, is distinct from a second cis-regulatory SNP previously identified in non-African D. melanogaster populations, implying that two independent cis-regulatory variants promoting high fiz expression segregate in non-African populations. Enzymatic analyses of Fiz protein expressed in E. coli demonstrate that it has ecdysone oxidase activity acting on both ecdysone and 20-hydroxyecdysone. Four of five fiz paralogs annotated to ecdysteroid metabolism also show reduced expression in Selected larvae, implying that malnutrition-driven selection favored general downregulation of ecdysone oxidases. Finally, as an independent test of the role of fiz in poor diet adaptation, we show that fiz knockdown by RNAi results in faster larval growth on the poor diet, but at the cost of greatly reduced survival. These results imply that downregulation of fiz in Selected populations was favored by selection on the nutritionally poor diet because of its role in suppressing growth in response to nutrient shortage. However, they suggest that fiz downregulation is only adaptive in combination with other changes evolved by Selected populations, which ensure that the organism can sustain the faster growth promoted by fiz downregulation.


Assuntos
3-Hidroxiesteroide Desidrogenases , Drosophila , Desnutrição , Animais , Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Ecdisona/genética , Escherichia coli , Larva
15.
BMC Biol ; 22(1): 67, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504308

RESUMO

BACKGROUND: Insects have evolved complex visual systems and display an astonishing range of adaptations for diverse ecological niches. Species of Drosophila melanogaster subgroup exhibit extensive intra- and interspecific differences in compound eye size. These differences provide an excellent opportunity to better understand variation in insect eye structure and the impact on vision. Here we further explored the difference in eye size between D. mauritiana and its sibling species D. simulans. RESULTS: We confirmed that D. mauritiana have rapidly evolved larger eyes as a result of more and wider ommatidia than D. simulans since they recently diverged approximately 240,000 years ago. The functional impact of eye size, and specifically ommatidia size, is often only estimated based on the rigid surface morphology of the compound eye. Therefore, we used 3D synchrotron radiation tomography to measure optical parameters in 3D, predict optical capacity, and compare the modelled vision to in vivo optomotor responses. Our optical models predicted higher contrast sensitivity for D. mauritiana, which we verified by presenting sinusoidal gratings to tethered flies in a flight arena. Similarly, we confirmed the higher spatial acuity predicted for Drosophila simulans with smaller ommatidia and found evidence for higher temporal resolution. CONCLUSIONS: Our study demonstrates that even subtle differences in ommatidia size between closely related Drosophila species can impact the vision of these insects. Therefore, further comparative studies of intra- and interspecific variation in eye morphology and the consequences for vision among other Drosophila species, other dipterans and other insects are needed to better understand compound eye structure-function and how the diversification of eye size, shape, and function has helped insects to adapt to the vast range of ecological niches.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Drosophila/fisiologia , Drosophila melanogaster/genética , Olho/anatomia & histologia , Especificidade da Espécie
16.
Sci Adv ; 10(8): eadj4399, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38381836

RESUMO

Identifying different sleep stages in humans and other mammals has traditionally relied on electroencephalograms. Such an approach is not feasible in certain animals such as invertebrates, although these animals could also be sleeping in stages. Here, we perform long-term multichannel local field potential recordings in the brains of behaving flies undergoing spontaneous sleep bouts. We acquired consistent spatial recordings of local field potentials across multiple flies, allowing us to compare brain activity across awake and sleep periods. Using machine learning, we uncover distinct temporal stages of sleep and explore the associated spatial and spectral features across the fly brain. Further, we analyze the electrophysiological correlates of microbehaviors associated with certain sleep stages. We confirm the existence of a distinct sleep stage associated with rhythmic proboscis extensions and show that spectral features of this sleep-related behavior differ significantly from those associated with the same behavior during wakefulness, indicating a dissociation between behavior and the brain states wherein these behaviors reside.


Assuntos
Fenômenos Fisiológicos do Sistema Nervoso , Sono , Animais , Humanos , Sono/fisiologia , Fases do Sono/fisiologia , Drosophila/fisiologia , Eletrofisiologia , Mamíferos
17.
Aging (Albany NY) ; 16(3): 2005-2025, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38329439

RESUMO

Adult stem cells are pivotal for maintaining tissue homeostasis, and their functional decline is linked to aging and its associated diseases, influenced by the niche cells' environment. Age- and cancer-related reduction of vitamin D and its receptor levels are well documented in human clinical studies. However, the mechanisms through which the vitamin D/vitamin D receptor pathway contributes to anti-aging and extends life expectancy are not well understood. In this study, we aimed to determine the protective role of the vitamin D/vitamin D receptor pathway in differentiated enterocytes (ECs) during intestinal stem cell (ISC) aging. By utilizing a well- established Drosophila midgut model for stem cell aging biology, we revealed that vitamin D receptor knockdown in ECs induced ISC proliferation, EC death, ISC aging, and enteroendocrine cell differentiation. Additionally, age- and oxidative stress-induced increases in ISC proliferation and centrosome amplification were reduced by vitamin D treatment. Our findings suggest a direct evidence of the anti-aging role of the vitamin D/vitamin D receptor pathway and provides insights into the molecular mechanisms underlying healthy aging in Drosophila.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Humanos , Drosophila/fisiologia , Vitamina D/farmacologia , Vitamina D/metabolismo , Receptores de Calcitriol/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Envelhecimento/metabolismo , Intestinos , Diferenciação Celular/fisiologia , Proliferação de Células , Drosophila melanogaster/metabolismo
18.
Bull Entomol Res ; 114(2): 180-189, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38327068

RESUMO

Drosophila suzukii (Matsumura) is an exotic pest of economic importance that affects several soft-skinned fruits in Mexico. Previously, we found that yellow or yellow-green rectangular cards inside a transparent trap baited with attractants improved D. suzukii capture. In this study, we evaluated the influence of rectangular cards with different yellow shades inside a transparent multi-hole trap baited with apple cider vinegar (ACV) on D. suzukii capture in the field. Second, we tested whether ACV-baited traps with cards of other geometric shapes affected D. suzukii catches compared to traps with rectangular cards. Third, we evaluated the effects of commercial lures combined with a more efficient visual stimulus from previous experiments on trapping D. suzukii flies. We found that ACV-baited traps plus a yellow-shaded rectangle card with 67% reflectance at a 549.74 nm dominant wavelength captured more flies than ACV-baited traps with yellow rectangle cards with a higher reflectance. Overall, ACV-baited traps with rectangles and squares caught more flies than did ACV-baited traps without visual stimuli. The traps baited with SuzukiiLURE-Max, ACV and Z-Kinol plus yellow rectangles caught 57, 70 and 101% more flies, respectively, than the traps baited with the lure but without a visual stimulus.


Assuntos
Drosophila , Controle de Insetos , Animais , Drosophila/fisiologia , Controle de Insetos/instrumentação , Controle de Insetos/métodos , Feromônios/farmacologia , Feminino , Estimulação Luminosa , México , Ácido Acético/farmacologia , Masculino
19.
Nat Neurosci ; 27(4): 666-678, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38360946

RESUMO

Sleep is thought to be restorative to brain energy homeostasis, but it is not clear how this is achieved. We show here that Drosophila glia exhibit a daily cycle of glial mitochondrial oxidation and lipid accumulation that is dependent on prior wake and requires the Drosophila APOE orthologs NLaz and GLaz, which mediate neuron-glia lipid transfer. In turn, a full night of sleep is required for glial lipid clearance, mitochondrial oxidative recovery and maximal neuronal mitophagy. Knockdown of neuronal NLaz causes oxidative stress to accumulate in neurons, and the neuronal mitochondrial integrity protein, Drp1, is required for daily glial lipid accumulation. These data suggest that neurons avoid accumulation of oxidative mitochondrial damage during wake by using mitophagy and passing damage to glia in the form of lipids. We propose that a mitochondrial lipid metabolic cycle between neurons and glia reflects a fundamental function of sleep relevant for brain energy homeostasis.


Assuntos
Proteínas de Drosophila , Neuroglia , Animais , Neuroglia/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Neurônios/metabolismo , Drosophila/fisiologia , Homeostase , Sono , Lipídeos
20.
Evolution ; 78(5): 995-1004, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38416119

RESUMO

Seminal fluid protein (Sfp) genes show, in general, a higher rate of sequence divergence than genes from other categories, which is often attributed to forms of postcopulatory sexual selection or sexual conflict. Recently, the relaxation of selective constraints has been proposed as an alternative explanation for the rapid sequence evolution of Sfps and other genes with sex-limited expression. The expression of Sfp genes is a likely target of selection, but the evolution of differences in their expression levels is less understood. Here, we explore both polymorphism and divergence in Sfp gene expression between Drosophila melanogaster and Drosophila simulans, how selection might have influenced their expression, and whether changes in expression might trigger the evolution of reproductive isolating barriers. In our analysis, Sfp genes showed higher divergence, but not higher polymorphism, in expression than the average male reproductive glands gene. Sfp genes with reproductive-tissue-specific expression were enriched for both directional and stabilizing selection, while relaxed selection was the predominant mode of evolution among Sfp genes with any other nonreproductive tissue-specific or nontissue-specific expression. The knockdown of single genes known to affect intraspecific sperm competition, and with patterns of expression divergence and polymorphism suggestive of directional selection, was not enough to break down postmating reproductive isolation barriers between species. Our results identify the expression of male-specific Sfp genes as an enriched target of selection and suggest a complex molecular relationship between postcopulatory sexual selection on a single gene's expression and its effect on the onset of speciation.


Assuntos
Drosophila melanogaster , Evolução Molecular , Isolamento Reprodutivo , Animais , Masculino , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Plasma Seminal/genética , Seleção Genética , Polimorfismo Genético , Drosophila simulans/genética , Feminino , Sêmen , Drosophila/genética , Drosophila/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA