Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 17(8): e1009744, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34424906

RESUMO

Postzygotic isolation by genomic conflict is a major cause for the formation of species. Despite its importance, the molecular mechanisms that result in the lethality of interspecies hybrids are still largely unclear. The genus Drosophila, which contains over 1600 different species, is one of the best characterized model systems to study these questions. We showed in the past that the expression levels of the two hybrid incompatibility factors Hmr and Lhr diverged in the two closely related Drosophila species, D. melanogaster and D. simulans, resulting in an increased level of both proteins in interspecies hybrids. The overexpression of the two proteins also leads to mitotic defects, a misregulation in the expression of transposable elements and decreased fertility in pure species. In this work, we describe a distinct six subunit protein complex containing HMR and LHR and analyse the effect of Hmr mutations on complex integrity and function. Our experiments suggest that HMR needs to bring together components of centromeric and pericentromeric chromatin to fulfil its physiological function and to cause hybrid male lethality.


Assuntos
Proteínas de Drosophila/genética , Isolamento Reprodutivo , Animais , Centrômero/metabolismo , Elementos de DNA Transponíveis/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila simulans/genética , Drosophila simulans/metabolismo , Genes Letais/genética , Especiação Genética , Hibridização Genética/genética , Reprodução/genética
2.
Nat Commun ; 12(1): 2453, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33907186

RESUMO

Parasitoid wasps inflict widespread death upon the insect world. Hundreds of thousands of parasitoid wasp species kill a vast range of insect species. Insects have evolved defensive responses to the threat of wasps, some cellular and some behavioral. Here we find an unexpected response of adult Drosophila to the presence of certain parasitoid wasps: accelerated mating behavior. Flies exposed to certain wasp species begin mating more quickly. The effect is mediated via changes in the behavior of the female fly and depends on visual perception. The sight of wasps induces the dramatic upregulation in the fly nervous system of a gene that encodes a 41-amino acid micropeptide. Mutational analysis reveals that the gene is essential to the behavioral response of the fly. Our work provides a foundation for further exploration of how the activation of visual circuits by the sight of a wasp alters both sexual behavior and gene expression.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila simulans/genética , Drosophila/genética , Receptores Ionotrópicos de Glutamato/genética , Receptores Odorantes/genética , Comportamento Sexual Animal/fisiologia , Vespas/patogenicidade , Adaptação Fisiológica , Animais , Animais Geneticamente Modificados , Carnivoridade/fisiologia , Drosophila/metabolismo , Drosophila/parasitologia , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/parasitologia , Drosophila simulans/metabolismo , Drosophila simulans/parasitologia , Feminino , Fertilidade/genética , Regulação da Expressão Gênica , Masculino , Neurônios/citologia , Neurônios/metabolismo , Reconhecimento Visual de Modelos/fisiologia , Receptores Ionotrópicos de Glutamato/deficiência , Receptores Odorantes/deficiência , Vespas/fisiologia , beta-Caroteno 15,15'-Mono-Oxigenase/genética , beta-Caroteno 15,15'-Mono-Oxigenase/metabolismo
3.
Mol Biol Evol ; 38(2): 437-448, 2021 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-32931587

RESUMO

In the last 240,000 years, males of the Drosophila simulans species clade have evolved striking differences in the morphology of their epandrial posterior lobes and claspers (surstyli). These appendages are used for grasping the female during mating and so their divergence is most likely driven by sexual selection. Mapping studies indicate a highly polygenic and generally additive genetic basis for these morphological differences. However, we have limited understanding of the gene regulatory networks that control the development of genital structures and how they evolved to result in this rapid phenotypic diversification. Here, we used new D. simulans/D. mauritiana introgression lines on chromosome arm 3L to generate higher resolution maps of posterior lobe and clasper differences between these species. We then carried out RNA-seq on the developing genitalia of both species to identify the expressed genes and those that are differentially expressed between the two species. This allowed us to test the function of expressed positional candidates during genital development in D. melanogaster. We identified several new genes involved in the development and possibly the evolution of these genital structures, including the transcription factors Hairy and Grunge. Furthermore, we discovered that during clasper development Hairy negatively regulates tartan (trn), a gene known to contribute to divergence in clasper morphology. Taken together, our results provide new insights into the regulation of genital development and how this has evolved between species.


Assuntos
Evolução Biológica , Drosophila simulans/genética , Animais , Drosophila simulans/anatomia & histologia , Drosophila simulans/crescimento & desenvolvimento , Drosophila simulans/metabolismo , Genitália Masculina/anatomia & histologia , Genitália Masculina/crescimento & desenvolvimento , Genitália Masculina/metabolismo , Masculino
4.
PLoS Genet ; 16(6): e1008861, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32525870

RESUMO

In metazoan germlines, the piRNA pathway acts as a genomic immune system, employing small RNA-mediated silencing to defend host DNA from the harmful effects of transposable elements (TEs). Expression of genomic TEs is proposed to initiate self regulation by increasing the production of repressive piRNAs, thereby "adapting" piRNA-mediated control to the most active TE families. Surprisingly, however, piRNA pathway proteins, which execute piRNA biogenesis and enforce silencing of targeted sequences, evolve rapidly and adaptively in animals. If TE silencing is ensured through piRNA biogenesis, what necessitates changes in piRNA pathway proteins? Here we used interspecific complementation to test for functional differences between Drosophila melanogaster and D. simulans alleles of three adaptively evolving piRNA pathway proteins: Armitage, Aubergine and Spindle-E. In contrast to piRNA-mediated transcriptional regulators examined in previous studies, these three proteins have cytoplasmic functions in piRNA maturation and post-transcriptional silencing. Across all three proteins we observed interspecific divergence in the regulation of only a handful of TE families, which were more robustly silenced by the heterospecific piRNA pathway protein. This unexpected result suggests that unlike transcriptional regulators, positive selection has not acted on cytoplasmic piRNA effector proteins to enhance their function in TE repression. Rather, TEs may evolve to "escape" silencing by host proteins. We further discovered that D. simulans alleles of aub and armi exhibit enhanced off-target effects on host transcripts in a D. melanogaster background, as well as modest reductions in the efficiency of piRNA biogenesis, suggesting that promiscuous binding of D. simulans Aub and Armi proteins to host transcripts reduces their participation in piRNA production. Avoidance of genomic auto-immunity may therefore be a critical target of selection. Our observations suggest that piRNA effector proteins are subject to an evolutionary trade-off between defending the host genome from the harmful effect of TEs while also minimizing collateral damage to host genes.


Assuntos
Autoimunidade/genética , Elementos de DNA Transponíveis/imunologia , Drosophila simulans/genética , Evolução Molecular , Genoma de Inseto/imunologia , RNA Interferente Pequeno/biossíntese , Alelos , Animais , Animais Geneticamente Modificados , Citoplasma/genética , Citoplasma/metabolismo , Elementos de DNA Transponíveis/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/imunologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/imunologia , Drosophila melanogaster/metabolismo , Drosophila simulans/metabolismo , Feminino , Regulação da Expressão Gênica/imunologia , Genoma de Inseto/genética , Masculino , Mutação , Interferência de RNA/imunologia
5.
Genome Biol Evol ; 12(6): 931-947, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32396626

RESUMO

The germlines of metazoans contain transposable elements (TEs) causing genetic instability and affecting fitness. To protect the germline from TE activity, gonads of metazoans produce TE-derived PIWI-interacting RNAs (piRNAs) that silence TE expression. In Drosophila, our understanding of piRNA biogenesis is mainly based on studies of the Drosophila melanogaster female germline. However, it is not known whether piRNA functions are also important in the male germline or whether and how piRNAs are affected by the global genomic context. To address these questions, we compared genome sequences, transcriptomes, and small RNA libraries extracted from entire testes and ovaries of two sister species: D. melanogaster and Drosophila simulans. We found that most TE-derived piRNAs were produced in ovaries and that piRNA pathway genes were strongly overexpressed in ovaries compared with testes, indicating that the silencing of TEs by the piRNA pathway mainly took place in the female germline. To study the relationship between host piRNAs and TE landscape, we analyzed TE genomic features and how they correlate with piRNA production in the two species. In D. melanogaster, we found that TE-derived piRNAs target recently active TEs. In contrast, although Drosophila simulans TEs do not display any features of recent activity, the host still intensively produced silencing piRNAs targeting old TE relics. Together, our results show that the piRNA silencing response mainly takes place in Drosophila ovaries and indicate that the host piRNA response is implemented following a burst of TE activity and could persist long after the extinction of active TE families.


Assuntos
Elementos de DNA Transponíveis , Drosophila melanogaster/genética , Drosophila simulans/genética , RNA Interferente Pequeno/biossíntese , Animais , Drosophila melanogaster/metabolismo , Drosophila simulans/metabolismo , Feminino , Masculino , Ovário/metabolismo , Caracteres Sexuais , Testículo/metabolismo
6.
Evol Dev ; 21(3): 157-171, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30756455

RESUMO

Robustness in development allows for the accumulation of genetically based variation in expression. However, this variation is usually examined in response to large perturbations, and examination of this variation has been limited to being spatial, or quantitative, but because of technical restrictions not both. Here we bridge these gaps by investigating replicated quantitative spatial gene expression using rigorous statistical models, in different genotypes, sexes, and species (Drosophila melanogaster and D. simulans). Using this type of quantitative approach with molecular developmental data allows for comparison among conditions, such as different genetic backgrounds. We apply this approach to the morphogenetic furrow, a wave of differentiation that patterns the developing eye disc. Within the morphogenetic furrow, we focus on four genes, hairy, atonal, hedgehog, and Delta. Hybridization chain reaction quantitatively measures spatial gene expression, co-staining for all four genes simultaneously. We find considerable variation in the spatial expression pattern of these genes in the eye between species, genotypes, and sexes. We also find that there has been evolution of the regulatory relationship between these genes, and that their spatial interrelationships have evolved between species. This variation has no phenotypic effect, and could be buffered by network thresholds or compensation from other genes. Both of these mechanisms could potentially be contributing to long term developmental systems drift.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Drosophila simulans/embriologia , Olho/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Animais , Padronização Corporal , Drosophila melanogaster/genética , Drosophila simulans/genética , Drosophila simulans/metabolismo , Olho/metabolismo , Feminino , Genótipo , Larva , Masculino , Modelos Biológicos , Transcriptoma
7.
Elife ; 72018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30480548

RESUMO

How dietary selection affects genome evolution to define the optimal range of nutrient intake is a poorly understood question with medical relevance. We have addressed this question by analyzing Drosophila simulans and sechellia, recently diverged species with differential diet choice. D. sechellia larvae, specialized to a nutrient scarce diet, did not survive on sugar-rich conditions, while the generalist species D. simulans was sugar tolerant. Sugar tolerance in D. simulans was a tradeoff for performance on low-energy diet and was associated with global reprogramming of metabolic gene expression. Hybridization and phenotype-based introgression revealed the genomic regions of D. simulans that were sufficient for sugar tolerance. These regions included genes that are involved in mitochondrial ribosome biogenesis and intracellular signaling, such as PPP1R15/Gadd34 and SERCA, which contributed to sugar tolerance. In conclusion, genomic variation affecting genes involved in global metabolic control defines the optimal range for dietary macronutrient composition.


Assuntos
Açúcares da Dieta/metabolismo , Drosophila simulans/genética , Drosophila/genética , Tolerância a Medicamentos/genética , Genoma de Inseto , Transdução de Sinais , Animais , Reprogramação Celular/genética , Dieta/métodos , Açúcares da Dieta/administração & dosagem , Drosophila/efeitos dos fármacos , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila simulans/efeitos dos fármacos , Drosophila simulans/metabolismo , Regulação da Expressão Gênica , Variação Genética , Larva/efeitos dos fármacos , Larva/genética , Larva/metabolismo , Redes e Vias Metabólicas/genética , Mitocôndrias/metabolismo , Biogênese de Organelas , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Especificidade da Espécie
8.
Nucleic Acids Res ; 45(4): e17, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28204592

RESUMO

Over recent decades, substantial efforts have been made to understand the interactions between host genomes and transposable elements (TEs). The impact of TEs on the regulation of host genes is well known, with TEs acting as platforms of regulatory sequences. Nevertheless, due to their repetitive nature it is considerably hard to integrate TE analysis into genome-wide studies. Here, we developed a specific tool for the analysis of TE expression: TEtools. This tool takes into account the TE sequence diversity of the genome, it can be applied to unannotated or unassembled genomes and is freely available under the GPL3 (https://github.com/l-modolo/TEtools). TEtools performs the mapping of RNA-seq data obtained from classical mRNAs or small RNAs onto a list of TE sequences and performs differential expression analyses with statistical relevance. Using this tool, we analyzed TE expression from five Drosophila wild-type strains. Our data show for the first time that the activity of TEs is strictly linked to the activity of the genes implicated in the piwi-interacting RNA biogenesis and therefore fits an arms race scenario between TE sequences and host control genes.


Assuntos
Perfilação da Expressão Gênica/métodos , Sequências Repetitivas Dispersas , RNA Interferente Pequeno/genética , Software , Drosophila simulans/genética , Drosophila simulans/metabolismo , RNA Interferente Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA