Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.924
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
J Transl Med ; 22(1): 437, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720345

RESUMO

BACKGROUND: Biological-derived hydroxyapatite is widely used as a bone substitute for addressing bone defects, but its limited osteoconductive properties necessitate further improvement. The osteo-immunomodulatory properties hold crucial promise in maintaining bone homeostasis, and precise modulation of macrophage polarization is essential in this process. Metabolism serves as a guiding force for immunity, and fluoride modification represents a promising strategy for modulating the osteoimmunological environment by regulating immunometabolism. In this context, we synthesized fluorinated porcine hydroxyapatite (FPHA), and has demonstrated its enhanced biological properties and osteogenic capacity. However, it remains unknown whether and how FPHA affects the immune microenvironment of the bone defects. METHODS: FPHA was synthesized and its composition and structural properties were confirmed. Macrophages were cultured with FPHA extract to investigate the effects of FPHA on their polarization and the related osteo-immune microenvironment. Furthermore, total RNA of these macrophages was extracted, and RNA-seq analysis was performed to explore the underlying mechanisms associated with the observed changes in macrophages. The metabolic states were evaluated with a Seahorse analyzer. Additionally, immunohistochemical staining was performed to evaluate the macrophages response after implantation of the novel bone substitutes in critical size calvarial defects in SD rats. RESULTS: The incorporation of fluoride ions in FPHA was validated. FPHA promoted macrophage proliferation and enhanced the expression of M2 markers while suppressing the expression of M1 markers. Additionally, FPHA inhibited the expression of inflammatory factors and upregulated the expression of osteogenic factors, thereby enhancing the osteogenic differentiation capacity of the rBMSCs. RNA-seq analysis suggested that the polarization-regulating function of FPHA may be related to changes in cellular metabolism. Further experiments confirmed that FPHA enhanced mitochondrial function and promoted the metabolic shift of macrophages from glycolysis to oxidative phosphorylation. Moreover, in vivo experiments validated the above results in the calvarial defect model in SD rats. CONCLUSION: In summary, our study reveals that FPHA induces a metabolic shift in macrophages from glycolysis to oxidative phosphorylation. This shift leads to an increased tendency toward M2 polarization in macrophages, consequently creating a favorable osteo-immune microenvironment. These findings provide valuable insights into the impact of incorporating an appropriate concentration of fluoride on immunometabolism and macrophage mitochondrial function, which have important implications for the development of fluoride-modified immunometabolism-based bone regenerative biomaterials and the clinical application of FPHA or other fluoride-containing materials.


Assuntos
Durapatita , Glicólise , Macrófagos , Fosforilação Oxidativa , Ratos Sprague-Dawley , Animais , Durapatita/química , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Ratos , Suínos , Proliferação de Células/efeitos dos fármacos , Masculino , Osteogênese/efeitos dos fármacos , Crânio/patologia , Crânio/efeitos dos fármacos , Camundongos , Microambiente Celular/efeitos dos fármacos , Células RAW 264.7 , Osso e Ossos/metabolismo , Osso e Ossos/efeitos dos fármacos
2.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731827

RESUMO

The reunion and restoration of large segmental bone defects pose significant clinical challenges. Conventional strategies primarily involve the combination of bone scaffolds with seeded cells and/or growth factors to regulate osteogenesis and angiogenesis. However, these therapies face inherent issues related to immunogenicity, tumorigenesis, bioactivity, and off-the-shelf transplantation. The biogenic micro-environment created by implanted bone grafts plays a crucial role in initiating the bone regeneration cascade. To address this, a highly porous bi-phasic ceramic synthetic bone graft, composed of hydroxyapatite (HA) and alumina (Al), was developed. This graft was employed to repair critical segmental defects, involving the creation of a 2 cm segmental defect in a canine tibia. The assessment of bone regeneration within the synthetic bone graft post-healing was conducted using scintigraphy, micro-CT, histology, and dynamic histomorphometry. The technique yielded pore sizes in the range of 230-430 µm as primary pores, 40-70 µm as secondary inner microchannels, and 200-400 nm as tertiary submicron surface holes. These three components are designed to mimic trabecular bone networks and to provide body fluid adsorption, diffusion, a nutritional supply, communication around the cells, and cell anchorage. The overall porosity was measured at 82.61 ± 1.28%. Both micro-CT imaging and histological analysis provided substantial evidence of robust bone formation and the successful reunion of the critical defect. Furthermore, an histology revealed the presence of vascularization within the newly formed bone area, clearly demonstrating trabecular and cortical bone formation at the 8-week mark post-implantation.


Assuntos
Regeneração Óssea , Tíbia , Alicerces Teciduais , Animais , Cães , Alicerces Teciduais/química , Tíbia/diagnóstico por imagem , Projetos Piloto , Osteogênese , Porosidade , Microtomografia por Raio-X , Durapatita , Transplante Ósseo/métodos , Substitutos Ósseos
3.
J Biomed Mater Res B Appl Biomater ; 112(5): e35416, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747324

RESUMO

The bone formation response of ceramic bone graft materials can be improved by modifying the material's surface and composition. A unique dual-phase ceramic bone graft material with a nanocrystalline, hydroxycarbanoapatite (HCA) surface and a calcium carbonate core (TrelCor®-Biogennix, Irvine, CA) was characterized through a variety of analytical methods. Scanning electron microscopy (SEM) of the TrelCor surface (magnification 100-100,000X) clearly demonstrated a nanosized crystalline structure covering the entire surface. The surface morphology showed a hierarchical structure that included micron-sized spherulites fully covered by plate-like nanocrystals (<60 nm in thickness). Chemical and physical characterization of the material using X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and Scanning Electron Microscopy Energy Dispersive X-ray Spectroscopy (SEM-EDX) showed a surface composed of HCA. Analysis of fractured samples confirmed the dual-phase composition with the presence of a calcium carbonate core and HCA surface. An in vitro bioactivity study was conducted to evaluate whether TrelCor would form a bioactive layer when immersed in simulated body fluid. This response was compared to a known bioactive material (45S5 bioactive glass - Bioglass). Following 14-days of immersion, surface and cross-sectional analysis via SEM-EDX showed that the TrelCor material elicited a bioactive response with the formation of a bioactive layer that was qualitatively thicker than the layer that formed on Bioglass. An in vivo sheep muscle pouch model was also conducted to evaluate the ability of the material to stimulate an ectopic, cellular bone formation response. Results were compared against Bioglass and a first-generation calcium phosphate ceramic that lacked a nanocrystalline surface. Histology and histomorphometric analysis (HMA) confirmed that the TrelCor nanocrystalline HCA surface stimulated a bone formation response in muscle (avg. 11% bone area) that was significantly greater than Bioglass (3%) and the smooth surface calcium phosphate ceramic (0%).


Assuntos
Substitutos Ósseos , Nanopartículas , Animais , Substitutos Ósseos/química , Nanopartículas/química , Cerâmica/química , Teste de Materiais , Durapatita/química , Ovinos , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Difração de Raios X , Transplante Ósseo
4.
J Biomed Mater Res B Appl Biomater ; 112(5): e35405, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38701384

RESUMO

The structure and handling properties of a P407 hydrogel-based bone substitute material (BSM) might be affected by different poloxamer P407 and silicon dioxide (SiO2) concentrations. The study aimed to compare the mechanical properties and biological parameters (bone remodeling, BSM degradation) of a hydroxyapatite: silica (HA)-based BSM with various P407 hydrogels in vitro and in an in vivo rat model. Rheological analyses for mechanical properties were performed on one BSM with an SiO2-enriched hydrogel (SPH25) as well on two BSMs with unaltered hydrogels in different gel concentrations (PH25 and PH30). Furthermore, the solubility of all BSMs were tested. In addition, 30 male Wistar rats underwent surgical creation of a well-defined bone defect in the tibia. Defects were filled randomly with PH30 (n = 15) or SPH25 (n = 15). Animals were sacrificed after 12 (n = 5 each), 21 (n = 5 each), and 63 days (n = 5 each). Histological evaluation and histomorphometrical quantification of new bone formation (NB;%), residual BSM (rBSM;%), and soft tissue (ST;%) was conducted. Rheological tests showed an increased viscosity and lower solubility of SPH when compared with the other hydrogels. Histomorphometric analyses in cancellous bone showed a decrease of ST in PH30 (p = .003) and an increase of NB (PH30: p = .001; SPH: p = .014) over time. A comparison of both BSMs revealed no significant differences. The addition of SiO2 to a P407 hydrogel-based hydroxyapatite BSM improves its mechanical stability (viscosity, solubility) while showing similar in vivo healing properties compared to PH30. Additionally, the SiO2-enrichment allows a reduction of poloxamer ratio in the hydrogel without impairing the material properties.


Assuntos
Substitutos Ósseos , Durapatita , Hidrogéis , Poloxâmero , Ratos Wistar , Dióxido de Silício , Animais , Masculino , Poloxâmero/química , Poloxâmero/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Durapatita/química , Durapatita/farmacologia , Dióxido de Silício/química , Substitutos Ósseos/química , Substitutos Ósseos/farmacologia , Ratos , Teste de Materiais , Reologia , Tíbia/metabolismo
5.
Anal Chim Acta ; 1306: 342617, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692789

RESUMO

BACKGROUND: Alpha-fetoprotein (AFP) is a fetal protein that can indicate congenital anomalies such as Down syndrome and spinal canal blockage when detected at abnormal levels in pregnant women. Current AFP detection methods rely on invasive blood or serum samples, which require sophisticated equipment. From the many solutions proposed, colorimetric paper-based assays excel in point-of-care settings. The concept of paper-based ELISA (p-ELISA) enhances traditional methods, aligning with the ASSURED criteria for diagnostics in resource-limited regions. Despite success in microfluidic paper-based assay devices, laser printing remains underexplored for p-ELISA. Additionally, modifying the paper surface provides an additional layer of sensitivity enhancement. RESULTS: In this study, we developed a novel laser-printed paper-based ELISA (LP-pELISA) for rapid, sensitive, and noninvasive detection of AFP in saliva samples. The LP-pELISA platform was fabricated by printing hydrophobic barriers on filter paper using a laser printer, followed by depositing hydroxyapatite (HAp) as an immobilization material for the antibodies. The colorimetric detection was achieved using AuNPs functionalized with anti-AFP antibodies and silver nitrate enhancement. The LP-pELISA exhibited a linear response for AFP detection in both buffer and saliva samples over a range of 1.0-800 ng mL-1, with a limit of detection (LOD) reaching 1.0 ng mL-1. The assay also demonstrated good selectivity, repeatability, reproducibility, and stability. The LP-pELISA was further validated by testing spiked human saliva samples, showing its potential for point-of-care diagnosis of congenital disabilities. SIGNIFICANCE: The LP-pELISA is a noninvasive platform showcasing simplicity, cost-effectiveness, and user-friendliness, utilizing laser printing, hydroxyapatite modification, and saliva samples to efficiently detect AFP. Beyond its application for AFP, this method's versatility extends to other biomarkers, positioning it as a catalyst for the evolution of paper-based biosensors. The LP-pELISA holds promise as a transformative tool for point-of-care diagnostics, fostering advancements in healthcare with its innovative technology.


Assuntos
Colorimetria , Durapatita , Ensaio de Imunoadsorção Enzimática , Lasers , Papel , Saliva , alfa-Fetoproteínas , Humanos , Saliva/química , Durapatita/química , alfa-Fetoproteínas/análise , Impressão , Ouro/química , Limite de Detecção , Anticorpos Imobilizados/imunologia , Anticorpos Imobilizados/química
6.
Environ Geochem Health ; 46(6): 190, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695943

RESUMO

A magnetic nanocomposite of hydroxyapatite and biomass (HAp-CM) was synthesized through a combined ultrasonic and hydrothermal method, aiming for efficient adsorption of arsenic (As) and fluoride (F-) from drinking water in natural environments. The characterization of HAp-CM was carried out using TG, FTIR, XRD, SEM, SEM-EDS, and TEM techniques, along with the determination of pHpzc charge. FTIR analysis suggested that coordinating links are the main interactions that allow the formation of the nanocomposite. XRD data indicated that the crystalline structure of the constituent materials remained unaffected during the formation of HAp-CM. SEM-EDS analysis revelated a Ca/P molar ratio of 1.78. Adsorption assays conducted in batches demonstrated that As and F- followed a PSO kinetic model. Furthermore, As adsorption fitting well to the Langmuir model, while F- adsorption could be explained by both Langmuir and Freundlich models. The maximum adsorption capacity of HAp-CM was found to be 5.0 mg g-1 for As and 10.2 mg g-1 for F-. The influence of sorbent dosage, pH, and the presence of coexisting species on adsorption capacity was explored. The pH significantly affected the nanocomposite's efficiency in removing both pollutants. The presence of various coexisting species had different effects on F- removal efficiency, while As adsorption efficiency was generally enhanced, except in the case of PO43-. The competitive adsorption between F- and As on HAp-CM was also examined. The achieved results demonstrate that HAp-CM has great potential for use in a natural environment, particularly in groundwater remediation as a preliminary treatment for water consumption.


Assuntos
Arsênio , Durapatita , Fluoretos , Nanocompostos , Poluentes Químicos da Água , Purificação da Água , Fluoretos/química , Adsorção , Nanocompostos/química , Durapatita/química , Poluentes Químicos da Água/química , Arsênio/química , Purificação da Água/métodos , Concentração de Íons de Hidrogênio , Biomassa , Cinética , Água Potável/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
7.
Sci Rep ; 14(1): 10798, 2024 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734777

RESUMO

The nucleation of carbonate-containing apatite on the biomaterials surface is regarded as a significant stage in bone healing process. In this regard, composites contained hydroxyapatite (Ca10(PO4)6(OH)2, HA), wollastonite (CaSiO3, WS) and polyethersulfone (PES) were synthesized via a simple solvent casting technique. The in-vitro bioactivity of the prepared composite films with different weight ratios of HA and WS was studied by placing the samples in the simulated body fluid (SBF) for 21 days. The results indicated that the the surface of composites containing 2 wt% HA and 4 wt% WS was completely covered by a thick bone-like apatite layer, which was characterized by Grazing incidence X-ray diffraction, attenuated total reflectance-Fourier transform infrared spectrometer, field emission electron microscopy and energy dispersive X-ray analyzer (EDX). The degradation study of the samples showed that the concentration of inorganic particles could not influence the degradability of the polymeric matrix, where all samples expressed similar dexamethasone (DEX) release behavior. Moreover, the in-vitro cytotoxicity results indicated the significant cyto-compatibility of all specimens. Therefore, these findings revealed that the prepared composite films composed of PES, HA, WS and DEX could be regarded as promising bioactive candidates with low degradation rate for bone tissue engineering applications.


Assuntos
Materiais Biocompatíveis , Substitutos Ósseos , Durapatita , Nanocompostos , Silicatos , Durapatita/química , Nanocompostos/química , Substitutos Ósseos/química , Substitutos Ósseos/farmacologia , Silicatos/química , Materiais Biocompatíveis/química , Compostos de Cálcio/química , Liberação Controlada de Fármacos , Dexametasona/química , Dexametasona/farmacologia , Polímeros/química , Humanos , Difração de Raios X , Teste de Materiais , Espectroscopia de Infravermelho com Transformada de Fourier , Animais
8.
J Biomed Mater Res B Appl Biomater ; 112(5): e35417, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38742468

RESUMO

Stress shielding is one of the major concerns for total ankle replacement implants nowadays, because it is responsible for implant-induced bone resorption. The bone resorption contributes to the aseptic loosening and failure of ankle implants in later stages. To reduce the stress shielding, improvements can be made in the implant material by decreasing the elastic mismatch between the implant and the tibia bone. This study proposes a new functionally graded material (FGM) based tibial implant for minimizing the problem of stress shielding. Three-dimensional finite element (FE) models of the intact tibia and the implanted tibiae were created to study the influence of material gradation law and volume fraction index on stress shielding and implant-bone micromotion. Different implant materials were considered that is, cobalt-chromium, titanium (Ti), and FGM with Ti at the bottom and hydroxyapatite (HA) at the top. The FE models of FGM implants were generated by using different volume fractions and the rule of mixtures. The rule of mixtures was used to calculate the FGM properties based on the local volume fraction. The volume fraction was defined by using exponential, power, and sigmoid laws. For the power and sigmoid law varying volume fraction indices (0.1, 0.2, 0.5, 1, 2, and 5) were considered. The geometry resembling STAR® ankle system tibial implant was considered for the present study. The results indicate that FGMs lower stress shielding but also marginally increase implant-bone micromotion; however, the values were within the acceptable limit for bone ingrowth. It is observed that the material gradation law and volume fraction index influence the performance of FGM tibial implants. The tibial implant composed of FGM using power law with a volume fraction index of 0.1 was the preferred option because it showed the least stress shielding.


Assuntos
Artroplastia de Substituição do Tornozelo , Análise de Elementos Finitos , Tíbia , Titânio , Titânio/química , Humanos , Durapatita/química , Desenho de Prótese , Estresse Mecânico , Teste de Materiais
9.
Molecules ; 29(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38731508

RESUMO

This study delves into the physicochemical properties of inorganic hydroxyapatite (HAp) and hybrid hydroxyapatite-chitosan (HAp-CTS) granules, also gold-enriched, which can be used as aggregates in biomicroconcrete-type materials. The impact of granules' surface modifications with citric acid (CA) or polyethylene glycol (PEG) was assessed. Citric acid modification induced increased specific surface area and porosity in inorganic granules, contrasting with reduced parameters in hybrid granules. PEG modification resulted in a slight increase in specific surface area for inorganic granules and a substantial rise for hybrid granules with gold nanoparticles. Varied effects on open porosity were observed based on granule type. Microstructural analysis revealed increased roughness for inorganic granules post CA modification, while hybrid granules exhibited smoother surfaces. Novel biomicroconcretes, based on α-tricalcium phosphate (α-TCP) calcium phosphate cement and developed granules as aggregates within, were evaluated for compressive strength. Compressive strength assessments showcased significant enhancement with PEG modification, emphasizing its positive impact. Citric acid modification demonstrated variable effects, depending on granule composition. The incorporation of gold nanoparticles further enriched the multifaceted approach to enhancing calcium phosphate-based biomaterials for potential biomedical applications. This study demonstrates the pivotal role of surface modifications in tailoring the physicochemical properties of granules, paving the way for advanced biomicroconcretes with improved compressive strength for diverse biomedical applications.


Assuntos
Ácido Cítrico , Durapatita , Polietilenoglicóis , Ácido Cítrico/química , Durapatita/química , Polietilenoglicóis/química , Ouro/química , Materiais Biocompatíveis/química , Teste de Materiais , Quitosana/química , Porosidade , Nanopartículas Metálicas/química , Fenômenos Químicos , Força Compressiva , Propriedades de Superfície
10.
ACS Biomater Sci Eng ; 10(5): 3316-3330, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38619014

RESUMO

In this study, we propose a spatially patterned 3D-printed nanohydroxyapatite (nHA)/beta-tricalcium phosphate (ß-TCP)/collagen composite scaffold incorporating human dental pulp-derived mesenchymal stem cells (hDP-MSCs) for bone regeneration in critical-sized defects. We investigated angiogenesis and osteogenesis in a rabbit critical-sized mandibular defect model treated with this engineered construct. The critical and synergistic role of collagen coating and incorporation of stem cells in the regeneration process was confirmed by including a cell-free uncoated 3D-printed nHA/ß-TCP scaffold, a stem cell-loaded 3D-printed nHA/ß-TCP scaffold, and a cell-free collagen-coated 3D-printed nHA/ß-TCP scaffold in the experimental design, in addition to an empty defect. Posteuthanasia evaluations through X-ray analysis, histological assessments, immunohistochemistry staining, histomorphometry, and reverse transcription-polymerase chain reaction (RT-PCR) suggest the formation of substantial woven and lamellar bone in the cell-loaded collagen-coated 3D-printed nHA/ß-TCP scaffolds. Histomorphometric analysis demonstrated a significant increase in osteoblasts, osteocytes, osteoclasts, bone area, and vascularization compared to that observed in the control group. Conversely, a significant decrease in fibroblasts/fibrocytes and connective tissue was observed in this group compared to that in the control group. RT-PCR indicated a significant upregulation in the expression of osteogenesis-related genes, including BMP2, ALPL, SOX9, Runx2, and SPP1. The findings suggest that the hDP-MSC-loaded 3D-printed nHA/ß-TCP/collagen composite scaffold is promising for bone regeneration in critical-sized defects.


Assuntos
Regeneração Óssea , Fosfatos de Cálcio , Cerâmica , Hidrogéis , Mandíbula , Neovascularização Fisiológica , Impressão Tridimensional , Alicerces Teciduais , Animais , Coelhos , Regeneração Óssea/efeitos dos fármacos , Alicerces Teciduais/química , Humanos , Cerâmica/química , Fosfatos de Cálcio/química , Hidrogéis/química , Osteogênese/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Colágeno/química , Durapatita/química , Engenharia Tecidual/métodos , Polpa Dentária/citologia , Modelos Animais de Doenças , Masculino , Angiogênese
11.
Colloids Surf B Biointerfaces ; 238: 113880, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38581836

RESUMO

In the field of orthopedics, it's crucial to effectively slow down the degradation rate of Mg alloys. This study aims to improve the degradation behavior of Mg-Zn-Ca alloys by electrodepositing fluorohydroxyapatite (FHA). We investigated the microstructure and bond strength of the deposition, as well as degradation and cellular reactions. After 15-30 days of degradation in Hanks solution, FHA deposited alloys showed enhanced stability and less pH change. The strong interfacial bond between FHA and the Mg-Zn-Ca substrate was verified through scratch tests (Critical loads: 10.73 ± 0.014 N in Mg-Zn-0.5Ca alloys). Cellular studies demonstrated that FHA-coated alloys exhibited good cytocompatibility and promoted the growth of MC3T3-E1 cells. Further tests showed FHA-coated alloys owed improved early bone mineralization and osteogenic properties, especially in Mg-Zn-0.5Ca. This research highlighted the potential of FHA-coated Mg-Zn-0.5Ca alloys in orthopedics applications.


Assuntos
Ligas , Cálcio , Magnésio , Zinco , Ligas/química , Ligas/farmacologia , Corrosão , Animais , Zinco/química , Zinco/farmacologia , Magnésio/química , Camundongos , Cálcio/química , Cálcio/metabolismo , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Propriedades de Superfície , Teste de Materiais , Proliferação de Células/efeitos dos fármacos , Hidroxiapatitas/química , Linhagem Celular , Durapatita/química , Durapatita/farmacologia
12.
Nat Commun ; 15(1): 3359, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637527

RESUMO

Calcium orthophosphates (CaPs), as hydroxyapatite (HAP) in bones and teeth are the most important biomineral for humankind. While clusters in CaP nucleation have long been known, their speciation and mechanistic pathways to HAP remain debated. Evidently, mineral nucleation begins with two ions interacting in solution, fundamentally underlying solute clustering. Here, we explore CaP ion association using potentiometric methods and computer simulations. Our results agree with literature association constants for Ca2+ and H2PO4-, and Ca2+ and HPO42-, but not for Ca2+ and PO43- ions, which previously has been strongly overestimated by two orders of magnitude. Our data suggests that the discrepancy is due to a subtle, premature phase separation that can occur at low ion activity products, especially at higher pH. We provide an important revision of long used literature constants, where association of Ca2+ and PO43- actually becomes negligible below pH 9.0, in contrast to previous values. Instead, [CaHPO4]0 dominates the aqueous CaP speciation between pH ~6-10. Consequently, calcium hydrogen phosphate association is critical in cluster-based precipitation in the near-neutral pH regime, e.g., in biomineralization. The revised thermodynamics reveal significant and thus far unexplored multi-anion association in computer simulations, constituting a kinetic trap that further complicates aqueous calcium phosphate speciation.


Assuntos
Biomineralização , Fosfatos de Cálcio , Cálcio/metabolismo , Durapatita , Concentração de Íons de Hidrogênio
13.
J Hazard Mater ; 470: 134210, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38581876

RESUMO

Modern metallurgical and smelting activities discharge the lead-containing wastewater, causing serious threats to human health. Bacteria and urease applied to microbial-induced carbonate precipitation (MICP) and enzyme-induced carbonate precipitation (EICP) are denatured under high Pb2+ concentration. The nano-hydroxyapatite (nHAP)-assisted biomineralization technology was applied in this study for Pb immobilization. Results showed that the extracellular polymers and cell membranes failed to secure the urease activity when subjected to 60 mM Pb2+. The immobilization efficiency dropped to below 50% under MICP, whereas it due to a lack of extracellular polymers and cell membranes dropped to below 30% under EICP. nHAP prevented the attachment of Pb2+ either through competing with bacteria and urease or promoting Ca2+/Pb2+ ion exchange. Furthermore, CO32- from ureolysis replaced the hydroxyl (-OH) in hydroxylpyromorphite to encourage the formation of carbonate-bearing hydroxylpyromorphite of higher stability (Pb10(PO4)6CO3). Moreover, nHAP application overcame an inability to provide nucleation sites by urease. As a result, the immobilization efficiency, when subjected to 60 mM Pb2+, elevated to above 80% under MICP-nHAP and to some 70% under EICP-nHAP. The findings highlight the potential of applying the nHAP-assisted biomineralization technology to Pb-containing water bodies remediation.


Assuntos
Biomineralização , Durapatita , Chumbo , Urease , Poluentes Químicos da Água , Durapatita/química , Chumbo/química , Urease/metabolismo , Urease/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Carbonatos/química , Recuperação e Remediação Ambiental/métodos
14.
Pol Merkur Lekarski ; 52(2): 171-177, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38642352

RESUMO

OBJECTIVE: Aim: The purpose of the study was to determine the features of the expression of T-lymphocytes, B-lymphocytes, macrophages in the post-traumatic regenerate of the mandible rats under conditions of filling a bone defect with hydroxyapatite-containing osteotropic material and thymalin injecting the surrounding soft tissues. PATIENTS AND METHODS: Materials and Methods: An experiment was conducted on 48 mature rats of the WAG population weighing 160-180 grams. Four groups were formed. Group 1 included 12 rats with a simulated holey defect in the lower jaw. Group 2 included 12 rats with a simulated holey defect in the lower jaw followed by its closure with hydroxyapatite-containing osteotropic material (bone graft "Biomin GT"). Group 3 included 12 rats with a simulated holey defect in the lower jaw with injecting the surrounding soft tissues with thymalin. Group 4 included 12 rats with a simulated holey defect in the lower jaw followed by its closure with hydroxyapatite-containing osteotropic material (bone graft "Biomin GT") and injecting the surrounding soft tissues with thymalin. The material for the morphological study was a fragment of the lower jaw from the area of the simulated holey defect. An immunohistochemical study was aperformed using monoclonal antibodies to CD68, CD20, CD163, CD86, CD3. RESULTS: Results: A comprehensive experimental and morphological study conducted by the authors revealed that thymalin injection of the soft tissues surrounding the bone defect of the lower jaw, filled with hydroxyapatite-containing osteotropic material "Biomin GT", stimulates local immune reactions in the post-traumatic regenerate, which is manifested, firstly, by an increase in the number T-lymphocytes on the 3rd day of the experiment and their increase up to the 28th day; secondly, by increasing the number of B-lymphocytes on the 14th day of the experiment with their further increase up to the 28th day; thirdly, by increasing the number of macrophages on the 3rd day of the experiment and their growth up to the 28th day; fourth, changes in macrophages phenotypes (decrease in the number of M1-macrophages and increase in the number of M2-macrophages). CONCLUSION: Conclusions: Stimulation of local immune reactions in the post-traumatic regenerate can be one of the mechanisms that activate reparative osteogenesis in the lower jaw of rats under the conditions of filling bone defects with hydroxyapatite-containing osteotropic material "Biomin GT" and thymalin injecting the surrounding soft tissues.


Assuntos
Regeneração Óssea , Durapatita , Hormônios do Timo , Ratos , Animais , Linfócitos T , Mandíbula , Linfócitos B
15.
J Mater Chem B ; 12(18): 4509-4520, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38647022

RESUMO

One of the key challenges in diagnosing thyroid cancer lies in the substantial percentage of indeterminate diagnoses of thyroid nodules that have undergone ultrasound-guided fine-needle aspiration (FNA) biopsy for cytological evaluation. This delays the definitive diagnosis and treatment plans. We recently demonstrated that hydroxyapatite microcalcifications (MCs) aspirated from thyroid nodules may aid nodule diagnosis based on their composition. In particular, Zn-enriched MCs have emerged as potential cancer biomarkers. However, a pertinent question remains: is the elevated Zn content within MCs a consequence of cancer, or do the Zn-enriched MCs encourage tumorigenesis? To address this, we treated the human thyroid cancer cell line MDA-T32 with synthetic MC analogs comprising hydroxyapatite crystals with varied pathologically relevant Zn fractions and assessed the cellular response. The MC analogs exhibited an irregular surface morphology similar to FNA MCs observed in cancerous thyroid nodules. These MC analogs displayed an inverse relationship between Zn fraction and crystallinity, as shown by X-ray diffractometry. The zeta potential of the non-Zn-bearing hydroxyapatite crystals was negative, which decreased once Zn was incorporated into the crystal. The MC analogs were not cytotoxic. The cellular response to exposure to these crystals was evaluated in terms of cell migration, proliferation, the tendency of the cells to form multicellular spheroids, and the expression of cancer markers. Our findings suggest that, if thyroid MCs play a role in promoting cancerous behavior in vivo, it is likely a result of the interplay of crystallinity with Zn and carbonate fractions in MCs.


Assuntos
Calcinose , Neoplasias da Glândula Tireoide , Zinco , Humanos , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Zinco/química , Calcinose/patologia , Calcinose/metabolismo , Carbonatos/química , Cristalização , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Durapatita/química
16.
Acta Orthop Belg ; 90(1): 35-40, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38669646

RESUMO

There are many different types of cementless anatomically adapted Total Hip Arthroplasties (THAs) on the market, the Anatomic Benoist Gerard (ABG) I and II are such types of cementless THAs. In this retrospective single-centre study we evaluated the overall survival with revision for any reason and aseptic loosening as endpoint at more than 11 years follow-up. Between 2000 and 2004, 244 cementless THAs were performed in 230 patients in a primary care hospital. At a mean of 11.3 years follow-up (range 9.8 - 12.8 years) clinical examination, plain radiography and Patient Reported Outcome Measures (PROMs) were obtained and analysed. The PROMs consisted of the Oxford Hip Score (OHS) and the Western Ontario and McMaster University Index (WOMAC). At a mean of 11.3 years follow-up 32 patients (13.1%) had died of unrelated causes. Of the remaining cohort all 198 patients (212 THAs) have been reached for evaluation. There were no patients considered as lost to follow-up. At a mean of 11.3 years 11 patients (11 THAs) have had a revision of either the femoral implant or acetabular component resulting in an overall survival of 95.5%. There was no statistically significant difference (p=0.564) in survival between the ABG I and II THAs. Radiographic there were no changes between the ABG I and II last follow up. The ABG II performed statistically significant better in PROMs. We concluded that both anatomically adapted hydroxyapatite coated cementless THAs show excellent survival at more than 11 years follow-up.


Assuntos
Artroplastia de Quadril , Durapatita , Prótese de Quadril , Humanos , Artroplastia de Quadril/métodos , Artroplastia de Quadril/instrumentação , Masculino , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Seguimentos , Idoso , Adulto , Reoperação/estatística & dados numéricos , Desenho de Prótese , Falha de Prótese , Idoso de 80 Anos ou mais , Materiais Revestidos Biocompatíveis
17.
J Hazard Mater ; 470: 134306, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38626684

RESUMO

Soil cadmium (Cd) is immobilized by the progressing biomineralization process as microbial induced phosphate precipitation (MIPP), which is regulated by phosphate (P) solubilizing microorganisms and P sources. However, little attention has been paid to the implications of Cd biosorption during MIPP. In this study, the newly isolated Penicillium oxalicum could immobilize 5.4-12.6 % of Cd2+, while the presence of hydroxyapatite (HAP) considerably enhanced Cd2+ immobilization in P. oxalicum and reached over 99 % Cd2+ immobilization efficiency within 7 days. Compared to P. oxalicum mono inoculation, MIPP dramatically boosted Cd biosorption and biomineralization efficiency by 71 % and 16 % after 96 h cultivation, respectively. P. oxalicum preferred to absorbing Cd2+ and reaching maximum Cd2+ biosorption efficiency of 87.8 % in the presence of HAP. More surface groups in P. oxalicum and HAP mineral involved adsorption which resulted in the formation of Cd-apatite [Ca8Cd2(PO4)6(OH)2] via ion exchange. Intracellular S2-, secreted organic acids and soluble P via HAP solubilization complexed with Cd2+, progressively mineralized into Cd5(PO4)3OH, Cd(H2PO4)2, C4H6CdO4 and CdS. These results suggested that Cd2+ immobilization was enhanced simultaneously by the accelerated biosorption and biomineralization during P. oxalicum induced P precipitation. Our findings revealed new mechanisms of Cd immobilization in MIPP process and offered clues for remediation practices at metal contaminated sites.


Assuntos
Biomineralização , Cádmio , Penicillium , Fosfatos , Penicillium/metabolismo , Cádmio/química , Cádmio/metabolismo , Fosfatos/química , Fosfatos/metabolismo , Adsorção , Durapatita/química , Poluentes do Solo/metabolismo , Poluentes do Solo/química , Biodegradação Ambiental , Precipitação Química
18.
Med Eng Phys ; 126: 104160, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38621842

RESUMO

In this study, amino-functionalized mesoporous silica/hydroxyapatite nanoparticles (MSNS/HAP) with the property of acid dissociation have been prepared as a traditional Chinese medicine monomer carriers to improve the drug loading rate and antibacterial properties of antimicrobial quercetin (QUE) in vitro. The experimental results confirm that the drug loading rate of MSNs/HAP is 28.94 %, which is about 3.6 times higher than that of aminated mesoporous sililca nanoparticles (MSNs). The drug release of QUE on MSNs/HAP is pH-sensitive in phosphate buffered saline (pH=4.0-7.4). The above fabricated traditional Chinese medicine monomer modified nanocomposites (QUE@MSNs/HAP) displays concentration-dependent inhibitory effect, which shows better antibacterial effect than free QUE. The minimum inhibitory concentration for two tested bacteria, Staphylococcus aureus (S.aureus) and Escherichia coli (E.coli), is 256 mg·L -1. In summary, QUE@MSNs/HAP have successfully prepared, which not only improves the bio-availability of QUE, but also has acid-sensitive drug release properties. Compared with free QUE, its antibacterial performance significantly enhances, which provides a theoretical basis for the application of Chinese medicine molecules in bacterial treatment.


Assuntos
Durapatita , Nanopartículas , Quercetina/farmacologia , Dióxido de Silício/farmacologia , Antibacterianos/farmacologia , Porosidade , Portadores de Fármacos
19.
Kyobu Geka ; 77(4): 279-283, 2024 Apr.
Artigo em Japonês | MEDLINE | ID: mdl-38644175

RESUMO

In case that met several indication criteria with 4 or more rib fractures, we performed surgical stabilization of multiple fractured ribs using a plate and screw system( Super FIXORB MX) that was made of uncalcined hydroxyapatite (u-HA)/poly-L-lactic acid (PLLA) composite material with excellent bioactivity and absorbability. We report our clinical experience of 7 cases in which this device was used. Although there is still room for further consideration of the technique and the strength of the device itself, computed tomography( CT) images taken 9 months after surgery showed that the fixative device was almost assimilated with the bone at the fracture repair site in cases where fixation was successful.


Assuntos
Durapatita , Fixação Interna de Fraturas , Fraturas das Costelas , Humanos , Fraturas das Costelas/cirurgia , Fraturas das Costelas/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Feminino , Fixação Interna de Fraturas/métodos , Adulto , Idoso , Poliésteres , Fraturas Múltiplas/cirurgia , Fraturas Múltiplas/diagnóstico por imagem , Implantes Absorvíveis , Placas Ósseas , Polímeros
20.
Int J Nanomedicine ; 19: 3275-3293, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601348

RESUMO

Purpose: This study aims to explore a novel scaffold for osteotendinous junction regeneration and to preliminarily verify its osteogenic and tenogenic abilities in vitro. Methods: A polycaprolactone (PCL) scaffold with aligned and orthogonal fibers was created using melt electrowriting (MEW) and fused deposition modeling (FDM). The scaffold was coated with Type I collagen, and hydroxyapatite was carefully added to separate the regions intended for bone and tendon regeneration, before being rolled into a cylindrical shape. Human adipose-derived stem cells (hADSCs) were seeded to evaluate viability and differentiation. Scaffold characterization was performed with Scanning Electron Microscope (SEM). Osteogenesis was assessed by alkaline phosphatase (ALP) and Alizarin red staining, while immunostaining and transcription-quantitative polymerase chain reaction (RT-qPCR) evaluated osteogenic and tendogenic markers. Results: Scaffolds were developed in four variations: aligned (A), collagen-coated aligned (A+C), orthogonal (O), and mineral-coated orthogonal (O+M). SEM analysis confirmed surface morphology and energy-dispersive X-ray spectroscopy (EDS) verified mineral coating on O+M types. Hydrophilicity and mechanical properties were optimized in modified scaffolds, with A+C showing increased tensile strength and O+M improved in compression. hADSCs demonstrated good viability and morphology across scaffolds, withO+M scaffolds showing higher cell proliferation and osteogenic potential, and A and A+C scaffolds supporting tenogenic differentiation. Conclusion: This study confirms the potential of a novel PCL scaffold with distinct regions for osteogenic and tenogenic differentiation, supporting the regeneration of osteotendinous junctions in vitro.


Assuntos
Biomimética , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Osteogênese , Poliésteres/química , Durapatita/farmacologia , Durapatita/química , Impressão Tridimensional , Engenharia Tecidual/métodos , Diferenciação Celular , Regeneração Óssea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA