Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.194
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Emerg Microbes Infect ; 13(1): 2352520, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38713593

RESUMO

Vaginal transmission from semen of male Ebola virus (EBOV) survivors has been implicated as a potential origin of Ebola virus disease (EVD) outbreaks. While EBOV in semen must traverse cervicovaginal mucus (CVM) to reach target cells, the behaviour of EBOV in CVM is poorly understood. CVM contains substantial quantities of IgG, and arrays of IgG bound to a virion can develop multiple Fc-mucin bonds, immobilizing the IgG/virion complex in mucus. Here, we measured the real-time mobility of fluorescent Ebola virus-like-particles (VLP) in 50 CVM specimens from 17 women, with and without ZMapp, a cocktail of 3 monoclonal IgGs against EBOV. ZMapp-mediated effective trapping of Ebola VLPs in CVM from a subset of women across the menstrual cycle, primarily those with Lactobacillus crispatus dominant microbiota. Our work underscores the influence of the vaginal microbiome on IgG-mucin crosslinking against EBOV and identifies bottlenecks in the sexual transmission of EBOV.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Vagina , Humanos , Feminino , Ebolavirus/fisiologia , Vagina/virologia , Doença pelo Vírus Ebola/virologia , Doença pelo Vírus Ebola/transmissão , Vírion , Imunoglobulina G , Adulto , Muco do Colo Uterino/virologia , Muco/virologia
2.
Nat Commun ; 15(1): 4171, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755147

RESUMO

Human Ebola virus (EBOV) outbreaks caused by persistent EBOV infection raises questions on the role of zoonotic spillover in filovirus epidemiology. To characterise filovirus zoonotic exposure, we collected cross-sectional serum samples from bushmeat hunters (n = 498) in Macenta Prefecture Guinea, adjacent to the index site of the 2013 EBOV-Makona spillover event. We identified distinct immune signatures (20/498, 4.0%) to multiple EBOV antigens (GP, NP, VP40) using stepwise ELISA and Western blot analysis and, live EBOV neutralisation (5/20; 25%). Using comparative serological data from PCR-confirmed survivors of the 2013-2016 EBOV outbreak, we demonstrated that most signatures (15/20) were not plausibly explained by prior EBOV-Makona exposure. Subsequent data-driven modelling of EBOV immunological outcomes to remote-sensing environmental data also revealed consistent associations with intact closed canopy forest. Together our findings suggest exposure to other closely related filoviruses prior to the 2013-2016 West Africa epidemic and highlight future surveillance priorities.


Assuntos
Anticorpos Antivirais , Ebolavirus , Doença pelo Vírus Ebola , Humanos , Animais , Guiné/epidemiologia , Ebolavirus/imunologia , Ebolavirus/isolamento & purificação , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/virologia , Doença pelo Vírus Ebola/sangue , Doença pelo Vírus Ebola/transmissão , Adulto , Masculino , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Pessoa de Meia-Idade , Zoonoses/virologia , Zoonoses/epidemiologia , Zoonoses/transmissão , Feminino , Estudos Transversais , Surtos de Doenças , Adulto Jovem , Idoso , Ensaio de Imunoadsorção Enzimática , Zoonoses Virais/epidemiologia , Zoonoses Virais/transmissão , Zoonoses Virais/virologia , Antígenos Virais/imunologia
3.
Protein Sci ; 33(5): e4978, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38591637

RESUMO

The Ebola virus (EBOV) is a lipid-enveloped virus with a negative sense RNA genome that can cause severe and often fatal viral hemorrhagic fever. The assembly and budding of EBOV is regulated by the matrix protein, VP40, which is a peripheral protein that associates with anionic lipids at the inner leaflet of the plasma membrane. VP40 is sufficient to form virus-like particles (VLPs) from cells, which are nearly indistinguishable from authentic virions. Due to the restrictions of studying EBOV in BSL-4 facilities, VP40 has served as a surrogate in cellular studies to examine the EBOV assembly and budding process from the host cell plasma membrane. VP40 is a dimer where inhibition of dimer formation halts budding and formation of new VLPs as well as VP40 localization to the plasma membrane inner leaflet. To better understand VP40 dimer stability and critical amino acids to VP40 dimer formation, we integrated computational approaches with experimental validation. Site saturation/alanine scanning calculation, combined with molecular mechanics-based generalized Born with Poisson-Boltzmann surface area (MM-GB/PBSA) method and molecular dynamics simulations were used to predict the energetic contribution of amino acids to VP40 dimer stability and the hydrogen bonding network across the dimer interface. These studies revealed several previously unknown interactions and critical residues predicted to impact VP40 dimer formation. In vitro and cellular studies were then pursued for a subset of VP40 mutations demonstrating reduction in dimer formation (in vitro) or plasma membrane localization (in cells). Together, the computational and experimental approaches revealed critical residues for VP40 dimer stability in an alpha-helical interface (between residues 106-117) as well as in a loop region (between residues 52-61) below this alpha-helical region. This study sheds light on the structural origins of VP40 dimer formation and may inform the design of a small molecule that can disrupt VP40 dimer stability.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Humanos , Ebolavirus/genética , Ebolavirus/metabolismo , Doença pelo Vírus Ebola/metabolismo , Membrana Celular/metabolismo , Simulação de Dinâmica Molecular , Aminoácidos/metabolismo , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/metabolismo
4.
PLoS One ; 19(4): e0298620, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625847

RESUMO

In this manuscript, we developed a nonlinear fractional order Ebola virus with a novel piecewise hybrid technique to observe the dynamical transmission having eight compartments. The existence and uniqueness of a solution of piecewise derivative is treated for a system with Arzel'a-Ascoli and Schauder conditions. We investigate the effects of classical and modified fractional calculus operators, specifically the classical Caputo piecewise operator, on the behavior of the model. A model shows that a completely continuous operator is uniformly continuous, and bounded according to the equilibrium points. The reproductive number R0 is derived for the biological feasibility of the model with sensitivity analysis with different parameters impact on the model. Sensitivity analysis is an essential tool for comprehending how various model parameters affect the spread of illness. Through a methodical manipulation of important parameters and an assessment of their impact on Ro, we are able to learn more about the resiliency and susceptibility of the model. Local stability is established with next Matignon method and global stability is conducted with the Lyapunov function for a feasible solution of the proposed model. In the end, a numerical solution is derived with Newton's polynomial technique for a piecewise Caputo operator through simulations of the compartments at various fractional orders by using real data. Our findings highlight the importance of fractional operators in enhancing the accuracy of the model in capturing the intricate dynamics of the disease. This research contributes to a deeper understanding of Ebola virus dynamics and provides valuable insights for improving disease modeling and public health strategies.


Assuntos
Ebolavirus , Epidemias , Doença pelo Vírus Ebola , Humanos , Doença pelo Vírus Ebola/epidemiologia , Aprendizagem , Saúde Pública
5.
PLoS Pathog ; 20(4): e1012134, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38603762

RESUMO

Monoclonal antibodies (mAbs) are an important class of antiviral therapeutics. MAbs are highly selective, well tolerated, and have long in vivo half-life as well as the capacity to induce immune-mediated virus clearance. Their activities can be further enhanced by integration of their variable fragments (Fvs) into bispecific antibodies (bsAbs), affording simultaneous targeting of multiple epitopes to improve potency and breadth and/or to mitigate against viral escape by a single mutation. Here, we explore a bsAb strategy for generation of pan-ebolavirus and pan-filovirus immunotherapeutics. Filoviruses, including Ebola virus (EBOV), Sudan virus (SUDV), and Marburg virus (MARV), cause severe hemorrhagic fever. Although there are two FDA-approved mAb therapies for EBOV infection, these do not extend to other filoviruses. Here, we combine Fvs from broad ebolavirus mAbs to generate novel pan-ebolavirus bsAbs that are potently neutralizing, confer protection in mice, and are resistant to viral escape. Moreover, we combine Fvs from pan-ebolavirus mAbs with those of protective MARV mAbs to generate pan-filovirus protective bsAbs. These results provide guidelines for broad antiviral bsAb design and generate new immunotherapeutic candidates.


Assuntos
Anticorpos Biespecíficos , Anticorpos Antivirais , Ebolavirus , Doença pelo Vírus Ebola , Animais , Camundongos , Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Ebolavirus/imunologia , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Doença pelo Vírus Ebola/virologia , Anticorpos Antivirais/imunologia , Humanos , Filoviridae/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Monoclonais/imunologia , Feminino , Camundongos Endogâmicos BALB C , Infecções por Filoviridae/imunologia , Infecções por Filoviridae/terapia , Infecções por Filoviridae/prevenção & controle
6.
Genes (Basel) ; 15(4)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38674337

RESUMO

Ebola virus (EBOV) is a highly pathogenic virus that causes a severe illness called Ebola virus disease (EVD). EVD has a high mortality rate and remains a significant threat to public health. Research on EVD pathogenesis has traditionally focused on host transcriptional responses. Limited recent studies, however, have revealed some information on the significance of cellular microRNAs (miRNAs) in EBOV infection and pathogenic mechanisms, but further studies are needed. Thus, this study aimed to identify and validate additional known and novel human miRNAs in EBOV-infected adult retinal pigment epithelial (ARPE) cells and predict their potential roles in EBOV infection and pathogenic mechanisms. We analyzed previously available small RNA-Seq data obtained from ARPE cells and identified 23 upregulated and seven downregulated miRNAs in the EBOV-infected cells; these included two novel miRNAs and 17 additional known miRNAs not previously identified in ARPE cells. In addition to pathways previously identified by others, these miRNAs are associated with pathways and biological processes that include WNT, FoxO, and phosphatidylinositol signaling; these pathways were not identified in the original study. This study thus confirms and expands on the previous study using the same datasets and demonstrates further the importance of human miRNAs in the host response and EVD pathogenesis during infection.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , MicroRNAs , Epitélio Pigmentado da Retina , Humanos , MicroRNAs/genética , Doença pelo Vírus Ebola/genética , Doença pelo Vírus Ebola/virologia , Ebolavirus/genética , Ebolavirus/patogenicidade , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/virologia , Epitélio Pigmentado da Retina/patologia , Linhagem Celular
7.
ACS Infect Dis ; 10(5): 1590-1601, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38684073

RESUMO

Ebola virus (EBOV) is an enveloped virus that must fuse with the host cell membrane in order to release its genome and initiate infection. This process requires the action of the EBOV envelope glycoprotein (GP), encoded by the virus, which resides in the viral envelope and consists of a receptor binding subunit, GP1, and a membrane fusion subunit, GP2. Despite extensive research, a mechanistic understanding of the viral fusion process is incomplete. To investigate GP-membrane association, a key step in the fusion process, we used two approaches: high-throughput measurements of single-particle diffusion and single-molecule measurements with optical tweezers. Using these methods, we show that the presence of the endosomal Niemann-Pick C1 (NPC1) receptor is not required for primed GP-membrane binding. In addition, we demonstrate this binding is very strong, likely attributed to the interaction between the GP fusion loop and the membrane's hydrophobic core. Our results also align with previously reported findings, emphasizing the significance of acidic pH in the protein-membrane interaction. Beyond Ebola virus research, our approach provides a powerful toolkit for studying other protein-membrane interactions, opening new avenues for a better understanding of protein-mediated membrane fusion events.


Assuntos
Ebolavirus , Proteínas do Envelope Viral , Ebolavirus/metabolismo , Ebolavirus/fisiologia , Ebolavirus/genética , Ebolavirus/química , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Humanos , Ligação Proteica , Internalização do Vírus , Proteína C1 de Niemann-Pick/metabolismo , Membrana Celular/metabolismo , Membrana Celular/virologia , Doença pelo Vírus Ebola/virologia , Concentração de Íons de Hidrogênio
8.
Antiviral Res ; 226: 105873, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38580170

RESUMO

In the 1990s, monoclonal antibodies (mAbs) progressed from scientific tools to advanced therapeutics, particularly for the treatment of cancers and autoimmune and inflammatory disorders. In the arena of infectious disease, the inauguration of mAbs as a post-exposure treatment in humans against Ebola virus (EBOV) occurred in response to the 2013-2016 West Africa outbreak. This review recounts the history of a candidate mAb treatment, ZMapp, beginning with its emergency use in the 2013-2016 outbreak and advancing to randomized controlled trials into the 2018-2020 African outbreak. We end with a brief discussion of the hurdles and promise toward mAb therapeutic use against infectious disease.


Assuntos
Anticorpos Monoclonais , Anticorpos Antivirais , Ebolavirus , Doença pelo Vírus Ebola , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/imunologia , Humanos , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/imunologia , Ebolavirus/imunologia , Ebolavirus/efeitos dos fármacos , Anticorpos Antivirais/uso terapêutico , Anticorpos Antivirais/imunologia , Animais , Surtos de Doenças , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Neutralizantes/imunologia , África Ocidental/epidemiologia
9.
PLoS Negl Trop Dis ; 18(4): e0011500, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38603720

RESUMO

BACKGROUND: The exposure to parasites may influence the immune response to vaccines in endemic African countries. In this study, we aimed to assess the association between helminth exposure to the most prevalent parasitic infections, schistosomiasis, soil transmitted helminths infection and filariasis, and the Ebola virus glycoprotein (EBOV GP) antibody concentration in response to vaccination with the Ad26.ZEBOV, MVA-BN-Filo vaccine regimen in African and European participants using samples obtained from three international clinical trials. METHODS/PRINCIPAL FINDINGS: We conducted a study in a subset of participants in the EBL2001, EBL2002 and EBL3001 clinical trials that evaluated the Ad26.ZEBOV, MVA-BN-Filo vaccine regimen against EVD in children, adolescents and adults from the United Kingdom, France, Burkina Faso, Cote d'Ivoire, Kenya, Uganda and Sierra Leone. Immune markers of helminth exposure at baseline were evaluated by ELISA with three commercial kits which detect IgG antibodies against schistosome, filarial and Strongyloides antigens. Luminex technology was used to measure inflammatory and activation markers, and Th1/Th2/Th17 cytokines at baseline. The association between binding IgG antibodies specific to EBOV GP (measured on day 21 post-dose 2 and on Day 365 after the first dose respectively), and helminth exposure at baseline was evaluated using a multivariable linear regression model adjusted for age and study group. Seventy-eight (21.3%) of the 367 participants included in the study had at least one helminth positive ELISA test at baseline, with differences of prevalence between studies and an increased prevalence with age. The most frequently detected antibodies were those to Schistosoma mansoni (10.9%), followed by Acanthocheilonema viteae (9%) and then Strongyloides ratti (7.9%). Among the 41 immunological analytes tested, five were significantly (p < .003) lower in participants with at least one positive helminth ELISA test result: CCL2/MCP1, FGFbasic, IL-7, IL-13 and CCL11/Eotaxin compared to participants with negative helminth ELISA tests. No significant association was found with EBOV-GP specific antibody concentration at 21 days post-dose 2, or at 365 days post-dose 1, adjusted for age group, study, and the presence of any helminth antibodies at baseline. CONCLUSIONS/SIGNIFICANCE: No clear association was found between immune markers of helminth exposure as measured by ELISA and post-vaccination response to the Ebola Ad26.ZEBOV/ MVA-BN-Filo vaccine regimen. TRIAL REGISTRATION: NCT02416453, NCT02564523, NCT02509494. ClinicalTrials.gov.


Assuntos
Anticorpos Antivirais , Vacinas contra Ebola , Doença pelo Vírus Ebola , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , África , Anticorpos Anti-Helmínticos/sangue , Anticorpos Antivirais/sangue , Citocinas/imunologia , Vacinas contra Ebola/imunologia , Vacinas contra Ebola/administração & dosagem , Ebolavirus/imunologia , Ebolavirus/genética , Ensaio de Imunoadsorção Enzimática , Helmintíase/imunologia , Helmintíase/prevenção & controle , Helmintos/imunologia , Helmintos/genética , Doença pelo Vírus Ebola/prevenção & controle , Doença pelo Vírus Ebola/imunologia , Imunoglobulina G/sangue , Idoso
10.
PLoS Pathog ; 20(3): e1012038, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38489257

RESUMO

Ebola disease (EBOD) remains a significant and ongoing threat to African countries, characterized by a mortality rate of 25% to 90% in patients with high viral load and significant transmissibility. The most recent outbreak, reported in Uganda in September 2022, was declared officially over in January 2023. However, it was caused by the Sudan Ebola virus (SUDV), a culprit species not previously reported for a decade. Since its discovery in 1976, the management of EBOD has primarily relied on supportive care. Following the devastating outbreak in West Africa from 2014 to 2016 secondary to the Zaire Ebola virus (EBOV), where over 28,000 lives were lost, dedicated efforts to find effective therapeutic agents have resulted in considerable progress in treating and preventing disease secondary to EBOV. Notably, 2 monoclonal antibodies-Ebanga and a cocktail of monoclonal antibodies, called Inmazeb-received Food and Drug Administration (FDA) approval in 2020. Additionally, multiple vaccines have been approved for EBOD prevention by various regulatory bodies, with Ervebo, a recombinant vesicular stomatitis virus-vectored vaccine against EBOV being the first vaccine to receive approval by the FDA in 2019. This review covers the key signs and symptoms of EBOD, its modes of transmission, and the principles guiding supportive care. Furthermore, it explores recent advancements in treating and preventing EBOD, highlighting the unique properties of each therapeutic agent and the ongoing progress in discovering new treatments.


Assuntos
Vacinas contra Ebola , Ebolavirus , Doença pelo Vírus Ebola , Vacinas Virais , Humanos , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/prevenção & controle , Anticorpos Antivirais , Ebolavirus/genética , Anticorpos Monoclonais/uso terapêutico , Uganda/epidemiologia
11.
Science ; 383(6688): eadk6176, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484056

RESUMO

Obeldesivir (ODV, GS-5245) is an orally administered prodrug of the parent nucleoside of remdesivir (RDV) and is presently in phase 3 trials for COVID-19 treatment. In this work, we show that ODV and its circulating parent nucleoside metabolite, GS-441524, have similar in vitro antiviral activity against filoviruses, including Marburg virus, Ebola virus, and Sudan virus (SUDV). We also report that once-daily oral ODV treatment of cynomolgus monkeys for 10 days beginning 24 hours after SUDV exposure confers 100% protection against lethal infection. Transcriptomics data show that ODV treatment delayed the onset of inflammation and correlated with antigen presentation and lymphocyte activation. Our results offer promise for the further development of ODV to control outbreaks of filovirus disease more rapidly.


Assuntos
Alanina , Antivirais , Ebolavirus , Doença pelo Vírus Ebola , Nucleosídeos , Pró-Fármacos , Animais , Administração Oral , Ebolavirus/efeitos dos fármacos , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/prevenção & controle , Macaca fascicularis , Nucleosídeos/administração & dosagem , Nucleosídeos/farmacologia , Monofosfato de Adenosina/administração & dosagem , Monofosfato de Adenosina/farmacologia , Alanina/administração & dosagem , Alanina/análogos & derivados , Alanina/farmacologia , Pró-Fármacos/administração & dosagem , Pró-Fármacos/farmacologia , Antivirais/administração & dosagem , Antivirais/farmacologia
12.
Emerg Infect Dis ; 30(4): 681-690, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38526081

RESUMO

Although pigs are naturally susceptible to Reston virus and experimentally to Ebola virus (EBOV), their role in Orthoebolavirus ecology remains unknown. We tested 888 serum samples collected from pigs in Guinea during 2017-2019 (between the 2013-16 epidemic and its resurgence in 2021) by indirect ELISA against the EBOV nucleoprotein. We identified 2 hotspots of possible pig exposure by IgG titer levels: the northern coast had 48.7% of positive serum samples (37/76), and Forest Guinea, bordering Sierra Leone and Liberia, where the virus emerged and reemerged, had 50% of positive serum samples (98/196). The multitarget Luminex approach confirms ELISA results against Ebola nucleoprotein and highlights cross-reactivities to glycoprotein of EBOV, Reston virus, and Bundibugyo virus. Those results are consistent with previous observations of the circulation of Orthoebolavirus species in pig farming regions in Sierra Leone and Ghana, suggesting potential risk for Ebola virus disease in humans, especially in Forest Guinea.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Humanos , Suínos , Animais , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/veterinária , Guiné/epidemiologia , Sus scrofa , Serra Leoa/epidemiologia , Nucleoproteínas/genética
13.
Emerg Infect Dis ; 30(4): 757-760, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38526137

RESUMO

Analyzing vaccine stability under different storage and transportation conditions is critical to ensure that effectiveness and safety are not affected by distribution. In a simulation of the last mile in the supply chain, we found that shock and vibration had no effect on Ad26.ZEBOV/MVA-BN-Filo Ebola vaccine regimen quality under refrigerated conditions.


Assuntos
Vacinas contra Ebola , Ebolavirus , Doença pelo Vírus Ebola , Humanos , Doença pelo Vírus Ebola/prevenção & controle , Vibração , Simulação por Computador , Anticorpos Antivirais
15.
BMC Public Health ; 24(1): 860, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509557

RESUMO

BACKGROUND: Reducing Ebola virus transmission relies on the ability to identify cases and limit contact with infected bodily fluids through biosecurity, safe sex practices, safe burial and vaccination. Armed conflicts can complicate outbreak detection and interventions due to widespread disruption to governments and populations. Guinea and the Democratic Republic of the Congo (DRC) have historically reported the largest and the most recent Ebola virus outbreaks. Understanding if conflict played a role in these outbreaks may help in identifying key risks factors to improve disease control. METHODS: We used data from a range of publicly available data sources for both Ebola virus cases and conflict events from 2018 to 2021 in Guinea and the DRC. We fitted these data to conditional logistic regression models using the Self-Controlled Case Series methodology to evaluate the magnitude in which conflict increased the risk of reported Ebola virus cases in terms of incidence rate ratio. We re-ran the analysis sub-nationally, by conflict sub-event type and tested any lagged effects. RESULTS: Conflict was significantly associated with an increased risk of reported Ebola virus cases in both the DRC and Guinea in recent outbreaks. The effect was of a similar magnitude at 1.88- and 1.98-times increased risk for the DRC and Guinea, respectively. The greatest effects (often higher than the national values) were found in many conflict prone areas and during protest/riot-related conflict events. Conflict was influential in terms of Ebola virus risk from 1 week following the event and remained important by 10 weeks. CONCLUSION: Extra vigilance is needed following protests and riot-related conflict events in terms of Ebola virus transmission. These events are highly disruptive, in terms of access to transportation and healthcare and are often in urban areas with high population densities. Additional public health messaging around these types of conflict events, relating to the risks and clinical symptoms may be helpful in reducing transmission. Future work should aim to further understand and quantify conflict severity and intensity, to evaluate dose-response relationships in terms of disease risk.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Humanos , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/prevenção & controle , República Democrática do Congo/epidemiologia , Guiné/epidemiologia , Surtos de Doenças/prevenção & controle
16.
Antiviral Res ; 225: 105851, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38458540

RESUMO

Currently, there are two approved vaccine regimens designed to prevent Ebola virus (EBOV) disease (EVD). Both are virus-vectored, and concerns about cold-chain storage and pre-existing immunity to the vectors warrant investigating additional vaccine strategies. Here, we have explored the utility of adjuvanted recombinant glycoproteins (GPs) from ebolaviruses Zaire (EBOV), Sudan (SUDV), and Bundibugyo (BDBV) for inducing antibody (Ab) and T cell cross-reactivity. Glycoproteins expressed in insect cells were administered to C57BL/6 mice as free protein or bound to the surface of liposomes, and formulated with toll-like receptor agonists CpG and MPLA (agonists for TLR 9 and 4, respectively), with or without the emulsions AddaVax or TiterMax. The magnitude of Ab cross-reactivity in binding and neutralization assays, and T cell cross-reactivity in antigen recall assays, correlated with phylogenetic relatedness. While most adjuvants screened induced IgG responses, a combination of CpG, MPLA and AddaVax emulsion ("IVAX-1") was the most potent and polarized in an IgG2c (Th1) direction. Breadth was also achieved by combining GPs into a trivalent (Tri-GP) cocktail with IVAX-1, which did not compromise antibody responses to individual components in binding and neutralizing assays. Th1 signature cytokines in T cell recall assays were undetectable after Tri-GP/IVAX-1 administration, despite a robust IgG2c response, although administration of Tri-GP on lipid nanoparticles in IVAX-1 elevated Th1 cytokines to detectable levels. Overall, the data indicate an adjuvanted trivalent recombinant GP approach may represent a path toward a broadly reactive, deployable vaccine against EVD.


Assuntos
Vacinas contra Ebola , Ebolavirus , Doença pelo Vírus Ebola , Polissorbatos , Esqualeno , Animais , Camundongos , Anticorpos Antivirais , Sudão , Filogenia , Anticorpos Neutralizantes , Camundongos Endogâmicos C57BL , Glicoproteínas , Adjuvantes Imunológicos , Linfócitos T , Citocinas
17.
Elife ; 122024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526940

RESUMO

Marburg virus (MARV) is one of the filovirus species that cause deadly hemorrhagic fever in humans, with mortality rates up to 90%. Neutralizing antibodies represent ideal candidates to prevent or treat virus disease. However, no antibody has been approved for MARV treatment to date. In this study, we identified a novel human antibody named AF-03 that targeted MARV glycoprotein (GP). AF-03 possessed a high binding affinity to MARV GP and showed neutralizing and protective activities against the pseudotyped MARV in vitro and in vivo. Epitope identification, including molecular docking and experiment-based analysis of mutated species, revealed that AF-03 recognized the Niemann-Pick C1 (NPC1) binding domain within GP1. Interestingly, we found the neutralizing activity of AF-03 to pseudotyped Ebola viruses (EBOV, SUDV, and BDBV) harboring cleaved GP instead of full-length GP. Furthermore, NPC2-fused AF-03 exhibited neutralizing activity to several filovirus species and EBOV mutants via binding to CI-MPR. In conclusion, this work demonstrates that AF-03 represents a promising therapeutic cargo for filovirus-caused disease.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Marburgvirus , Humanos , Anticorpos Antivirais , Simulação de Acoplamento Molecular , Glicoproteínas , Doença pelo Vírus Ebola/prevenção & controle , Ebolavirus/química
18.
Hum Vaccin Immunother ; 20(1): 2327747, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38523332

RESUMO

This phase-3, double-blind, placebo-controlled study (NCT04228783) evaluated lot-to-lot consistency of the Ad26.ZEBOV, MVA-BN-Filo Ebola vaccine regimen. Participants were randomized (6:6:6:1) to receive the two-dose regimen from three consecutively manufactured lots of Ad26.ZEBOV on Day 1 paired with three consecutively manufactured lots of MVA-BN-Filo on Day 57 (Groups 1-3) or two doses of placebo (Group 4). An additional cohort also received an Ad26.ZEBOV booster or placebo 4 months post-dose 2. Equivalence of the immunogenicity at 21 days post-dose 2 between any two groups was demonstrated if the 95% confidence interval (CI) of the Ebola virus glycoprotein (EBOV GP)-binding antibody geometric mean concentration (GMC) ratio was entirely within the prespecified margin of 0.5-2.0. Lot-to-lot consistency (i.e., consecutive lots can be consistently manufactured) was accomplished if equivalence was shown for all three pairwise comparisons. Results showed that the primary objective in the per-protocol immunogenicity subset (n = 549) was established for each pairwise comparison (Group 1 vs 2: GMC ratio = 0.9 [95% CI: 0.8, 1.1], Group 1 vs 3: 0.9 [0.8, 1.1], Group 2 vs 3: 1.0 [0.9, 1.2]). Equivalence of the three groups for the Ad26.ZEBOV component only was also demonstrated at 56 days post-dose 1. EBOV GP-binding antibody responses (post-vaccination concentrations >2.5-fold from baseline) were observed in 419/421 (99.5%) vaccine recipients at 21 days post-dose 2 and 445/460 (96.7%) at 56 days post-dose 1. In the booster cohort (n = 39), GMCs increased 9.0- and 11.8-fold at 7 and 21 days post-booster, respectively, versus pre-booster. Ad26.ZEBOV, MVA-BN-Filo was well tolerated, and no safety issues were identified.


Assuntos
Vacinas contra Ebola , Ebolavirus , Doença pelo Vírus Ebola , Vacina Antivariólica , Humanos , Doença pelo Vírus Ebola/prevenção & controle , Vacinação/métodos , Anticorpos Antivirais , Método Duplo-Cego , Imunogenicidade da Vacina , Vacinas Atenuadas
19.
PLoS Pathog ; 20(3): e1012065, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38512815

RESUMO

Ebola virus disease (EVD), caused by infection with Ebola virus, results in severe, acute illness with a high mortality rate. As the incidence of outbreaks of EVD increases and with the development and approval of medical countermeasures (MCMs) against the acute disease, late phases of EVD, including sequelae, recrudescence, and viral persistence, are occuring more frequently and are now a focus of ongoing research. Existing animal disease models recapitulate acute EVD but are not suitable to investigate the mechanisms of these late disease phenomena. Although there are challenges in establishing such a late disease model, the filovirus research community has begun to call for the development of an EBOV persistence model to address late disease concerns. Ultimately, this will aid the development of MCMs against late disease and benefit survivors of future EVD and filovirus outbreaks.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Animais , Surtos de Doenças , Progressão da Doença , Modelos Animais de Doenças
20.
Int J Infect Dis ; 141: 106959, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38340782

RESUMO

BACKGROUND: Contact tracing (CT) is critical for ebolavirus outbreak response. Ideally, all new cases after the index case should be previously-known contacts (PKC) before their onset, and spend minimal time ill in the community. We assessed the impact of CT during the 2022 Sudan Virus Disease (SVD) outbreak in Uganda. METHODS: We collated anonymized data from the SVD case and contacts database to obtain and analyze data on CT performance indicators, comparing confirmed cases that were PKC and were not PKC (NPKC) before onset. We assessed the effect of being PKC on the number of people infected using Poisson regression. RESULTS: There were 3844 contacts of 142 confirmed cases (mean: 22 contacts/case). Forty-seven (33%) confirmed cases were PKC. PKCs had fewer median days from onset to isolation (4 vs 6; P<0.007) and laboratory confirmation (4 vs 7; P<0.001) than NPKC. Being a PKC vs NPKC reduced risk of transmitting infection by 84% (IRR=0.16, 95% CI 0.08-0.32). CONCLUSION: Contact identification was sub-optimal during the outbreak. However, CT reduced the time SVD cases spent in the community before isolation and the number of persons infected in Uganda. Approaches to improve contact tracing, especially contact listing, may improve control in future outbreaks.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Humanos , Busca de Comunicante , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/prevenção & controle , Uganda/epidemiologia , Surtos de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA