Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.944
Filtrar
1.
Commun Biol ; 7(1): 521, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702540

RESUMO

Histone acetylation, a crucial epigenetic modification, is governed by histone acetyltransferases (HATs), that regulate many biological processes. Functions of HATs in insects are not well understood. We identified 27 HATs and determined their functions using RNA interference (RNAi) in the model insect, Tribolium castaneum. Among HATs studied, N-alpha-acetyltransferase 40 (NAA40) knockdown caused a severe phenotype of arrested larval development. The steroid hormone, ecdysone induced NAA40 expression through its receptor, EcR (ecdysone receptor). Interestingly, ecdysone-induced NAA40 regulates EcR expression. NAA40 acetylates histone H4 protein, associated with the promoters of ecdysone response genes: EcR, E74, E75, and HR3, and causes an increase in their expression. In the absence of ecdysone and NAA40, histone H4 methylation by arginine methyltransferase 1 (ART1) suppressed the above genes. However, elevated ecdysone levels at the end of the larval period induced NAA40, promoting histone H4 acetylation and increasing the expression of ecdysone response genes. NAA40 is also required for EcR, and steroid-receptor co-activator (SRC) mediated induction of E74, E75, and HR3. These findings highlight the key role of ecdysone-induced NAA40-mediated histone acetylation in the regulation of metamorphosis.


Assuntos
Ecdisona , Histona Acetiltransferases , Histonas , Metamorfose Biológica , Receptores de Esteroides , Tribolium , Animais , Tribolium/genética , Tribolium/crescimento & desenvolvimento , Tribolium/metabolismo , Tribolium/enzimologia , Histonas/metabolismo , Ecdisona/metabolismo , Acetilação , Metamorfose Biológica/genética , Histona Acetiltransferases/metabolismo , Histona Acetiltransferases/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Larva/crescimento & desenvolvimento , Larva/genética , Larva/metabolismo , Interferência de RNA
2.
Biochem Biophys Res Commun ; 711: 149914, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38608434

RESUMO

The steroid hormone ecdysone is essential for the reproduction and survival of insects. The hormone is synthesized from dietary sterols such as cholesterol, yielding ecdysone in a series of consecutive enzymatic reactions. In the insect orders Lepidoptera and Diptera a glutathione transferase called Noppera-bo (Nobo) plays an essential, but biochemically uncharacterized, role in ecdysteroid biosynthesis. The Nobo enzyme is consequently a possible target in harmful dipterans, such as disease-carrying mosquitoes. Flavonoid compounds inhibit Nobo and have larvicidal effects in the yellow-fever transmitting mosquito Aedes aegypti, but the enzyme is functionally incompletely characterized. We here report that within a set of glutathione transferase substrates the double-bond isomerase activity with 5-androsten-3,17-dione stands out with an extraordinary specific activity of 4000 µmol min-1 mg-1. We suggest that the authentic function of Nobo is catalysis of a chemically analogous ketosteroid isomerization in ecdysone biosynthesis.


Assuntos
Aedes , Aedes/enzimologia , Aedes/metabolismo , Animais , Glutationa Transferase/metabolismo , Glutationa/metabolismo , Ecdisona/metabolismo , Proteínas de Insetos/metabolismo , Especificidade por Substrato , Esteroide Isomerases/metabolismo , Esteroide Isomerases/genética , Mosquitos Vetores/metabolismo , Cetosteroides/metabolismo , Cetosteroides/química
3.
Molecules ; 29(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38611907

RESUMO

The insecticidal property of ring C-seco limonoids has been discovered empirically and the target protein identified, but, to date, the molecular mechanism of action has not been described at the atomic scale. We elucidate on computational grounds whether nine C-seco limonoids present sufficiently high affinity to bind specifically with the putative target enzyme of the insects (ecdysone 20-monooxygenase). To this end, 3D models of ligands and the receptor target were generated and their interaction energies estimated by docking simulations. As a proof of concept, the tetrahydro-isoquinolinyl propenamide derivative QHC is the reference ligand bound to aldosterone synthase in the complex with PDB entry 4ZGX. It served as the 3D template for target modeling via homology. QHC was successfully docked back to its crystal pose in a one-digit nanomolar range. The reported experimental binding affinities span over the nanomolar to lower micromolar range. All nine limonoids were found with strong affinities in the range of -9 < ΔG < -13 kcal/mol. The molt hormone ecdysone showed a comparable ΔG energy of -12 kcal/mol, whereas -11 kcal/mol was the back docking result for the liganded crystal 4ZGX. In conclusion, the nine C-seco limonoids were strong binders on theoretical grounds in an activity range between a ten-fold lower to a ten-fold higher concentration level than insecticide ecdysone with its known target receptor. The comparable or even stronger binding hints at ecdysone 20-monooxygenase as their target biomolecule. Our assumption, however, is in need of future experimental confirmation before conclusions with certainty can be drawn about the true molecular mechanism of action for the C-seco limonoids under scrutiny.


Assuntos
Inseticidas , Limoninas , Oxigenases , Inseticidas/farmacologia , Ecdisona , Limoninas/farmacologia , Muda
4.
Arch Insect Biochem Physiol ; 115(4): e22110, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38605666

RESUMO

20-Hydroxyecdysone (20E) plays a vital role in a series of biological processes, via the nuclear receptors, EcR/USP by activating the ecdysone regulatory cascade. To clarify the role of EcR during the development of Grapholita molesta, the complementary DNA of ecdysone receptor isoform B1 (GmEcR-B1) was obtained from the transcriptome of G. molesta and verified by PCR. Alignment analysis revealed that the deduced protein sequence of GmEcR-B1 was highly homologous to EcR proteins identified in other lepidopteran species, especially the EcR-B1 isoform in Spodoptera litura. Quantitative real-time PCR showed that GmEcRs was expressed at all test developmental stages, and the expression level of GmEcRs was relatively higher during the period of the 3rd day of fifth instar larvae to 2nd of pupa than those in other stages. Moreover, the messenger RNA of GmEcRs was much more strongly expressed in the Malpighian tubule and epidermis than those in other tissues, which suggests that this gene may function in a tissue-specific manner during larval development. Silencing of GmEcRs could significantly downregulate the transcriptional level of ecdysone-inducible genes and result in increased mortality during metamorphosis and prolonged prepupal duration. Taken together, the present results indicate that GmEcRs may directly or indirectly affect the development of G. molesta.


Assuntos
Mariposas , Receptores de Esteroides , Animais , Mariposas/metabolismo , Ecdisona , Frutas/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Isoformas de Proteínas/genética
5.
Int J Mol Sci ; 25(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38674140

RESUMO

During choriogenesis in insects, chorion (eggshell) is formed by surrounding follicular epithelial cells in ovarioles. However, the regulatory endocrine factor(s) activating choriogenesis and the effect of chemical components on eggshell deserve further exploration. In two representative coleopterans, a coccinellid Henosepilachna vigintioctopunctata and a chrysomelid Leptinotarsa decemlineata, genes encoding the 20-hydroxyecdysone (20E) receptor heterodimer, ecdysone receptor (EcR) and ultraspiracle (USP), and two chitin biosynthesis enzymes UDP-N-acetylglucosamine pyrophosphorylase (UAP) and chitin synthase (ChS1), were highly expressed in ovaries of the young females. RNA interference (RNAi)-aided knockdown of either HvEcR or Hvusp in H. vigintioctopunctata inhibited oviposition, suppressed the expression of HvChS1, and lessened the positive signal of Calcofluor staining on the chorions, which suggests the reduction of a chitin-like substance (CLS) deposited on eggshells. Similarly, RNAi of LdEcR or Ldusp in L. decemlineata constrained oviposition, decreased the expression of LdUAP1 and LdChS1, and reduced CLS contents in the resultant ovaries. Knockdown of LdUAP1 or LdChS1 caused similar defective phenotypes, i.e., reduced oviposition and CLS contents in the L. decemlineata ovaries. These results, for the first time, indicate that 20E signaling activates choriogenesis in two coleopteran species. Moreover, our findings suggest the deposition of a CLS on the chorions.


Assuntos
Besouros , Ecdisona , Interferência de RNA , Receptores de Esteroides , Transdução de Sinais , Animais , Besouros/metabolismo , Besouros/genética , Feminino , Ecdisona/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Oviposição/efeitos dos fármacos , Casca de Ovo/metabolismo , Ovário/metabolismo
6.
Genes (Basel) ; 15(4)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38674345

RESUMO

Integrated networks have become a new interest in genome-scale network research due to their ability to comprehensively reflect and analyze the molecular processes in cells. Currently, none of the integrated networks have been reported for higher organisms. Eriocheir sinensis is a typical aquatic animal that grows through ecdysis. Ecdysone has been identified to be a crucial regulator of ecdysis, but the influence factors and regulatory mechanisms of ecdysone synthesis in E. sinensis are still unclear. In this work, the genome-scale metabolic network and protein-protein interaction network of E. sinensis were integrated to reconstruct a metabolic-protein interaction integrated network (MPIN). The MPIN was used to analyze the influence factors of ecdysone synthesis through flux variation analysis. In total, 236 integrated reactions (IRs) were found to influence the ecdysone synthesis of which 16 IRs had a significant impact. These IRs constitute three ecdysone synthesis routes. It is found that there might be alternative pathways to obtain cholesterol for ecdysone synthesis in E. sinensis instead of absorbing it directly from the feeds. The MPIN reconstructed in this work is the first integrated network for higher organisms. The analysis based on the MPIN supplies important information for the mechanism analysis of ecdysone synthesis in E. sinensis.


Assuntos
Braquiúros , Ecdisona , Mapas de Interação de Proteínas , Ecdisona/metabolismo , Animais , Braquiúros/metabolismo , Braquiúros/genética , Redes e Vias Metabólicas
7.
Pestic Biochem Physiol ; 200: 105845, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582577

RESUMO

7-dehydrocholesterol (7-DHC) is a key intermediate product used for biosynthesis of molting hormone. This is achieved through a series of hydroxylation reactions catalyzed by the Halloween family of cytochrome P450s. Neverland is an enzyme catalyzes the first reaction of the ecdysteroidogenic pathway, which converts dietary cholesterol into 7-DHC. However, research on the physiological function of neverland in orthopteran insects is lacking. In this study, neverland from Locusta migratoria (LmNvd) was cloned and analyzed. LmNvd was mainly expressed in the prothoracic gland and highly expressed on days 6 and 7 of fifth instar nymphs. RNAi-mediated silencing of LmNvd resulted in serious molting delays and abnormal phenotypes, which could be rescued by 7-DHC and 20-hydroxyecdysone supplementation. Hematoxylin and eosin staining results showed that RNAi-mediated silencing of LmNvd disturbed the molting process by both promoting the synthesis of new cuticle and suppressing the degradation of the old cuticle. Quantitative real-time PCR results suggested that the mRNA expression of E75 early gene and chitinase 5 gene decreased and that of chitin synthase 1 gene was markedly upregulated after knockdown of LmNvd. Our results suggest that LmNvd participates in the biosynthesis process of molting hormone, which is involved in regulating chitin synthesis and degradation in molting cycles.


Assuntos
Locusta migratoria , Muda , Animais , Muda/genética , Ecdisona/metabolismo , Locusta migratoria/genética , Locusta migratoria/metabolismo , Interferência de RNA , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
8.
Int J Biol Macromol ; 263(Pt 1): 130607, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447848

RESUMO

Bactrocera dorsalis is a notorious pest widely distributed across most Asian countries. With the rapid development of pesticide resistance, new pest control methods are urgently needed. RNAi-based sterile insect technique (SIT) is a species-specific pest management strategy for B. dorsalis control. It is of great significance to identify more target genes from B. dorsalis, and improve the RNAi efficiency. In this study, microinjection-based RNAi results showed that six 20E response genes were necessary for male fertility of B. dorsalis, of which E75 was identified as the key target according to the lowest egg-laying number and hatching rate after E75 knockdown. Three nanoparticles chitosan (CS), chitosan­sodium tripolyphosphate (CS-TPP), and star polycation (SPc) were used to encapsulate dsE75 expressed by HT115 strain. Properties analysis of nanoparticle-dsRNA complexes showed that both CS-TPP-dsRNA and SPc-dsRNA exhibited better properties (smaller size and polydispersity index) than CS-dsRNA. Moreover, oral administration of CS-TPP-dsE75 and SPc-dsE75 by males resulted in more abnormal testis and significantly lower fertility than feeding naked dsE75. Semi-field trials further confirmed that the number of hatched larvae was dramatically reduced in these two groups. Our study not only provides more valuable targets for RNAi-based SIT, but also promotes the application of environment-friendly management against B. dorsalis in the field.


Assuntos
Quitosana , Infertilidade , Nanopartículas , Tephritidae , Animais , Masculino , Interferência de RNA , Ecdisona , Insetos , Controle de Pragas
9.
PLoS Genet ; 20(3): e1011204, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38452112

RESUMO

We investigate the contribution of a candidate gene, fiz (fezzik), to complex polygenic adaptation to juvenile malnutrition in Drosophila melanogaster. Experimental populations maintained for >250 generations of experimental evolution to a nutritionally poor larval diet (Selected populations) evolved several-fold lower fiz expression compared to unselected Control populations. Here we show that this divergence in fiz expression is mediated by a cis-regulatory polymorphism. This polymorphism, originally sampled from a natural population in Switzerland, is distinct from a second cis-regulatory SNP previously identified in non-African D. melanogaster populations, implying that two independent cis-regulatory variants promoting high fiz expression segregate in non-African populations. Enzymatic analyses of Fiz protein expressed in E. coli demonstrate that it has ecdysone oxidase activity acting on both ecdysone and 20-hydroxyecdysone. Four of five fiz paralogs annotated to ecdysteroid metabolism also show reduced expression in Selected larvae, implying that malnutrition-driven selection favored general downregulation of ecdysone oxidases. Finally, as an independent test of the role of fiz in poor diet adaptation, we show that fiz knockdown by RNAi results in faster larval growth on the poor diet, but at the cost of greatly reduced survival. These results imply that downregulation of fiz in Selected populations was favored by selection on the nutritionally poor diet because of its role in suppressing growth in response to nutrient shortage. However, they suggest that fiz downregulation is only adaptive in combination with other changes evolved by Selected populations, which ensure that the organism can sustain the faster growth promoted by fiz downregulation.


Assuntos
3-Hidroxiesteroide Desidrogenases , Drosophila , Desnutrição , Animais , Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Ecdisona/genética , Escherichia coli , Larva
10.
Curr Biol ; 34(7): 1438-1452.e6, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38513654

RESUMO

Steroid hormones regulate tissue development and physiology by modulating the transcription of a broad spectrum of genes. In insects, the principal steroid hormones, ecdysteroids, trigger the expression of thousands of genes through a cascade of transcription factors (TFs) to coordinate developmental transitions such as larval molting and metamorphosis. However, whether ecdysteroid signaling can bypass transcriptional hierarchies to exert its function in individual developmental processes is unclear. Here, we report that a single non-TF effector gene mediates the transcriptional output of ecdysteroid signaling in Drosophila myoblast fusion, a critical step in muscle development and differentiation. Specifically, we show that the 20-hydroxyecdysone (commonly referred to as "ecdysone") secreted from an extraembryonic tissue, amnioserosa, acts on embryonic muscle cells to directly activate the expression of antisocial (ants), which encodes an essential scaffold protein enriched at the fusogenic synapse. Not only is ants transcription directly regulated by the heterodimeric ecdysone receptor complex composed of ecdysone receptor (EcR) and ultraspiracle (USP) via ecdysone-response elements but also more strikingly, expression of ants alone is sufficient to rescue the myoblast fusion defect in ecdysone signaling-deficient mutants. We further show that EcR/USP and a muscle-specific TF Twist synergistically activate ants expression in vitro and in vivo. Taken together, our study provides the first example of a steroid hormone directly activating the expression of a single key non-TF effector gene to regulate a developmental process via inter-organ signaling and provides a new paradigm for understanding steroid hormone signaling in other developmental and physiological processes.


Assuntos
Proteínas de Drosophila , Receptores de Esteroides , Animais , Proteínas de Ligação a DNA/metabolismo , Ecdisona , Ecdisteroides , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Muda/fisiologia , Drosophila/fisiologia , Regulação da Expressão Gênica no Desenvolvimento
11.
PLoS Genet ; 20(3): e1011196, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38466721

RESUMO

Hematophagous mosquitoes require vertebrate blood for their reproductive cycles, making them effective vectors for transmitting dangerous human diseases. Thus, high-intensity metabolism is needed to support reproductive events of female mosquitoes. However, the regulatory mechanism linking metabolism and reproduction in mosquitoes remains largely unclear. In this study, we found that the expression of estrogen-related receptor (ERR), a nuclear receptor, is activated by the direct binding of 20-hydroxyecdysone (20E) and ecdysone receptor (EcR) to the ecdysone response element (EcRE) in the ERR promoter region during the gonadotropic cycle of Aedes aegypti (named AaERR). RNA interference (RNAi) of AaERR in female mosquitoes led to delayed development of ovaries. mRNA abundance of genes encoding key enzymes involved in carbohydrate metabolism (CM)-glucose-6-phosphate isomerase (GPI) and pyruvate kinase (PYK)-was significantly decreased in AaERR knockdown mosquitoes, while the levels of metabolites, such as glycogen, glucose, and trehalose, were elevated. The expression of fatty acid synthase (FAS) was notably downregulated, and lipid accumulation was reduced in response to AaERR depletion. Dual luciferase reporter assays and electrophoretic mobility shift assays (EMSA) determined that AaERR directly activated the expression of metabolic genes, such as GPI, PYK, and FAS, by binding to the corresponding AaERR-responsive motif in the promoter region of these genes. Our results have revealed an important role of AaERR in the regulation of metabolism during mosquito reproduction and offer a novel target for mosquito control.


Assuntos
Aedes , Receptores de Esteroides , Animais , Feminino , Humanos , Aedes/genética , Aedes/metabolismo , Ecdisona/metabolismo , Mosquitos Vetores/genética , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Homeostase/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
12.
Pestic Biochem Physiol ; 199: 105787, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458687

RESUMO

Pieris rapae is among the most damaging pests globally, and diapause makes it highly resistant to environmental stresses, playing a crucial role in the survival and reproduction of P. rapae while exacerbating the challenges of pest management and control. However, the mechanisms of its diapause regulation remain poorly understood. This research used RNA sequencing to profile the transcriptomes of three diapause phases (induction and preparation, initiation, maintenance) and synchronous nondiapause phases in P. rapae. During each comparison phase, 759, 1045, and 4721 genes were found to be differentially expressed. Among these, seven clock genes and seven pivotal hormone synthesis and metabolism genes were identified as having differential expression patterns in diapause type and nondiapause type. The weighted gene co-expression network analysis (WGCNA) revealed the red and blue modules as pivotal for diapause initiation, while the grey module was identified to be crucial to diapause maintenance. Meanwhile, the hub genes HDAC11, METLL16D, Dyw-like, GST, and so on, were identified within these hub modules. Moreover, an ecdysone downstream nuclear receptor gene, HR3, was found to be a shared transcription factor across all three phases. RNA interference of HR3 resulted in delayed pupal development, indicating its involvement in regulating pupal dipause in P. rapae. The further hormone assays revealed that the 20-hydroxyecdysone (20E) titer in diapause type pupae was lower than that in nondiapause type pupae, which exhibited a similar trend to HR3. When 20E was injected into diapause pupae, the HR3 expression levels were improved, and the pupal diapause were broken. These results indicate that the 20E/HR3 pathway is a critical pathway for the diapause regulation of P. rapae, and perturbing this pathway by ecdysone treatment or RNAi would result in the disruption of diapause. These findings provide initial insights into the molecular mechanisms of P. rapae diapause and suggest the potential use of ecdysone analogs and HR3 RNAi pesticides, which specifically target to diapause, as a means of pest control in P. rapae.


Assuntos
Borboletas , Diapausa , Animais , Transcriptoma , Ecdisona/metabolismo , Borboletas/genética , Regulação da Expressão Gênica , Pupa/genética
13.
J Cell Sci ; 137(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38323986

RESUMO

Migratory cells - either individually or in cohesive groups - are critical for spatiotemporally regulated processes such as embryonic development and wound healing. Their dysregulation is the underlying cause of formidable health problems such as congenital abnormalities and metastatic cancers. Border cell behavior during Drosophila oogenesis provides an effective model to study temporally regulated, collective cell migration in vivo. Developmental timing in flies is primarily controlled by the steroid hormone ecdysone, which acts through a well-conserved, nuclear hormone receptor complex. Ecdysone signaling determines the timing of border cell migration, but the molecular mechanisms governing this remain obscure. We found that border cell clusters expressing a dominant-negative form of ecdysone receptor extended ineffective protrusions. Additionally, these clusters had aberrant spatial distributions of E-cadherin (E-cad), apical domain markers and activated myosin that did not overlap. Remediating their expression or activity individually in clusters mutant for ecdysone signaling did not restore proper migration. We propose that ecdysone signaling synchronizes the functional distribution of E-cadherin, atypical protein kinase C (aPKC), Discs large (Dlg1) and activated myosin post-transcriptionally to coordinate adhesion, polarity and contractility and temporally control collective cell migration.


Assuntos
Proteínas de Drosophila , Animais , Proteínas de Drosophila/metabolismo , Ecdisona/metabolismo , Drosophila/metabolismo , Caderinas/genética , Caderinas/metabolismo , Movimento Celular/fisiologia , Miosinas/metabolismo , Drosophila melanogaster/metabolismo , Polaridade Celular/fisiologia , Adesão Celular
14.
Sci Adv ; 10(6): eadg8816, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38335295

RESUMO

To achieve a highly differentiated state, cells undergo multiple transcriptional processes whose coordination and timing are not well understood. In Drosophila embryonic epidermal cells, polished-rice (Pri) smORF peptides act as temporal mediators of ecdysone to activate a transcriptional program leading to cell shape remodeling. Here, we show that the ecdysone/Pri axis concomitantly represses the transcription of a large subset of cuticle genes to ensure proper differentiation of the insect exoskeleton. The repression relies on the transcription factor Ken and persists for several days throughout early larval stages, during which a soft cuticle allows larval crawling. The onset of these cuticle genes normally awaits the end of larval stages when the rigid pupal case assembles, and their premature expression triggers abnormal sclerotization of the larval cuticle. These results uncovered a temporal switch to set up distinct structures of cuticles adapted to the animal lifestyle and which might be involved in the evolutionary history of insects.


Assuntos
Proteínas de Drosophila , Ecdisona , Animais , Ecdisona/metabolismo , Drosophila/genética , Drosophila/metabolismo , Diferenciação Celular/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peptídeos/metabolismo , Larva/genética , Insetos/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
15.
Int J Biol Macromol ; 261(Pt 1): 129745, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286378

RESUMO

Efficient detoxification is the key factor for phytophagous insect to adapt to phytochemicals. However, the role of uridine diphosphate (UDP)-glycosyltransferases (UGTs) in insect anti-defense to phytochemical flavone is largely unknown. In this study, 52 UGT genes were identified in Spodoptera litura and they presented evident gene duplication. UGT played a crucial part in larval tolerance to flavone because the enzyme activity and transcriptional level of 77 % UGT members were remarkably upregulated by flavone administration and suppression of UGT enzyme activity and gene expressions significantly increased larval susceptibility to flavone. Bacteria coexpressing UGTs had high survival rates under flavone treatment and flavone was dramatically metabolized by UGT recombinant cells, which indicated the involvement of UGTs in flavone detoxification. What's more, ecdysone pathway was activated by flavone. Topical application of 20-hydroxyecdysone highly upregulated UGT enzyme activity and more than half of UGT expressions. The effects were opposite when ecdysone receptor (EcR) and ultraspiracle (USP)-mediated ecdysone signaling pathway was inhibited. Furtherly, promoter reporter assays of 5 UGT genes showed that their transcription activities were notably increased by cotransfection with EcR and USP. In consequence, this study suggested that UGTs were involved in flavone detoxification and their transcriptional expressions were regulated by ecdysone pathway.


Assuntos
Flavonas , Glicosiltransferases , Animais , Glicosiltransferases/metabolismo , Difosfato de Uridina , Spodoptera/genética , Ecdisona , Insetos/metabolismo , Compostos Fitoquímicos , Flavonas/farmacologia
16.
Dev Biol ; 508: 8-23, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38199580

RESUMO

Steroid hormones play various physiological roles including metabolism and reproduction. Steroid hormones in insects are ecdysteroids, and the major form in Drosophila melanogaster is ecdysone. In Drosophila males, the accessory gland is responsive to nutrient-dependent regulation of fertility/fecundity. The accessory gland is composed of two types of binucleated epithelial cells: a main cell and a secondary cell (SC). The transcription factors Defective proventriculus (Dve), Abdominal-B, and Ecdysone receptors (EcRs) are strongly expressed in adult SCs. We show that this EcR expression is regulated by parallel pathways of nutrient signaling and the Dve activity. Induction of Dve expression is also dependent on nutrient signaling, and it becomes nutrient signal-independent during a restricted period of development. Forced dve expression during the restricted period significantly increased the number of SCs. Here, we provide evidence that the level of nutrient signal-dependent Dve expression during the restricted period determines the number of SCs, and that ecdysone signaling is also crucial to optimize male fecundity through nutrient signal-dependent survival and maturation of SCs.


Assuntos
Proteínas de Drosophila , Receptores de Esteroides , Animais , Masculino , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ecdisona/metabolismo , Fertilidade , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Esteroides/metabolismo
17.
Curr Opin Genet Dev ; 84: 102148, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38271845

RESUMO

Specifically timed pulses of the moulting hormone ecdysone are necessary for developmental progression in insects, guiding development through important milestones such as larval moults, pupation and metamorphosis. It also coordinates the acquisition of cell identities, known as cell patterning, and growth in a tissue-specific manner. In the absence of ecdysone, the ecdysone receptor heterodimer Ecdysone Receptor and Ultraspiracle represses expression of target primary response genes, which become de-repressed as the ecdysone titre rises. However, ecdysone signalling elicits both repressive and activating responses in a temporal and tissue-specific manner. To understand how ecdysone achieves such specificity, this review explores the layers of gene regulation involved in stage-appropriate ecdysone responses in Drosophila fruit flies.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/genética , Drosophila/metabolismo , Ecdisona/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Esteroides , Regulação da Expressão Gênica , Larva , Regulação da Expressão Gênica no Desenvolvimento/genética , Drosophila melanogaster
18.
Arch Insect Biochem Physiol ; 115(1): e22074, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38288488

RESUMO

The fall armyworm (FAW), Spodoptera frugiperda, is one of the most harmful plant pests in the world and is globally distributed from the American continent to the Asian region. The FAW USA population (Sf-USA) and China population (Sf-CHN), which belong to corn strain, showed different developmental periods and fecundity rates in lab conditions. Sf-USA had faster development and higher fecundity compared with Sf-CHN. To examine these differences, transcriptomic data from two FAW populations were analyzed and compared. Twelve gigabytes of transcripts were read from each sample and 21,258 differentially expressed genes (DEGs) were detected. DEGs with log2 fold change ≥ 2 were identified and compared in two populations. In comparison to the Sf-CHN, we discovered that 3471 and 3851 individual DEGs upregulated and downregulated, respectively. Comparing transcriptome profiles for differential gene expression revealed several DEGs, including 39 of ecdysone (E)-, 25 of juvenile hormone-, and 15 of insulin-related genes. We selected six of E-related genes, such as Neverland, Shade, Ecdysone receptor, Ecdysone-inducible protein 74 (E74), E75, and E78 from DEGs. Gene expressions were suppressed by RNA interference to confirm the physiological functions of the selected genes from Sf-USA. The Sf-USA showed developmental retardation and a decrease in fecundity rate by suppression of E-related genes. These findings show that biological characteristics between Sf-USA and Sf-CHN are influenced by E-related genes.


Assuntos
Ecdisona , Transcriptoma , Animais , Spodoptera/genética , Perfilação da Expressão Gênica , Fertilidade/genética , Larva , Zea mays
19.
Arch Insect Biochem Physiol ; 115(1): e22076, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38288490

RESUMO

In the present study, we tried to clarify when and how pupal commitment (PT) better to use PC occurs and what is involved in the PT of Bombyx mori. To clarify this, we examined the responsiveness of a wing disc to ecdysone, referring to metamorphosis-related BR-C, development-related Myc and Wnt, and chromatin remodeling-related genes at around the predicted PT stage of the Bombyx wing disc. Wing disc responsiveness to juvenile hormone (JH) and ecdysone was examined using Methoprene and 20-hydroxyecdysone (20E) in vitro. The body weight of B. mori increased after the last larval ecdysis, peaked at Day 5 of the fifth larval instar (D5L5), and then decreased. The responsiveness of the wing disc to JH decreased after the last larval ecdysis up to D3L5. Bmbr-c (the Broad Complex of B. mori) showed enhanced expression in D4L5 wing discs with 20E treatment. Some chromatin remodeler and histone modifier genes (Bmsnr1, Bmutx, and Bmtip60) showed upregulation after being cultured with 20E in D4L5 wing discs. A low concentration of 20E is suggested to induce responsiveness to 20E in D4L5 wing discs. Bmbr-c, Bmsnr1, Bmutx, and Bmtip60 were upregulated after being cultured with a low concentration of 20E in D4L5 wing discs. The expression of Bmmyc and Bmwnt1 did not show a change after being cultured with or without 20E in D4L5 wing discs, while enhanced expression was observed with 20E in D5L5 wing discs. From the present results, we concluded that PT of the wing disc of B. mori occurred beginning on D4L5 with the secretion of low concentrations of ecdysteroids. Bmsnr1, Bmutx, Bmtip60, and BR-C are also involved.


Assuntos
Bombyx , Ecdisona , Animais , Bombyx/metabolismo , Montagem e Desmontagem da Cromatina , Pupa/genética , Pupa/metabolismo , Código das Histonas , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Ecdisterona/farmacologia , Ecdisterona/metabolismo , Metamorfose Biológica/fisiologia , Hormônios Juvenis/farmacologia , Hormônios Juvenis/metabolismo , Larva/genética , Larva/metabolismo , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento
20.
Nat Ecol Evol ; 8(1): 70-82, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37957313

RESUMO

Developmental time is a key life-history trait with large effects on Darwinian fitness. In many insects, developmental time is currently under strong selection to minimize ecological mismatches in seasonal timing induced by climate change. The genetic basis of responses to such selection, however, is poorly understood. To address this problem, we set up a long-term evolve-and-resequence experiment in the beetle Tribolium castaneum and selected replicate, outbred populations for fast or slow embryonic development. The response to this selection was substantial and embryonic developmental timing of the selection lines started to diverge during dorsal closure. Pooled whole-genome resequencing, gene expression analysis and an RNAi screen pinpoint a 222 bp deletion containing binding sites for Broad and Tramtrack upstream of the ecdysone degrading enzyme Cyp18a1 as a main target of selection. Using CRISPR/Cas9 to reconstruct this allele in the homogenous genetic background of a laboratory strain, we unravel how this single deletion advances the embryonic ecdysone peak inducing dorsal closure and show that this allele accelerates larval development but causes a trade-off with fecundity. Our study uncovers a life-history allele of large effect and reveals the evolvability of developmental time in a natural insect population.


Assuntos
Besouros , Tribolium , Animais , Ecdisona , Alelos , Insetos , Tribolium/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA