Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
1.
J Virol ; 97(2): e0194522, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36651749

RESUMO

Receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like pseudokinase (MLKL) are proteins that are critical for necroptosis, a mechanism of programmed cell death that is both activated when apoptosis is inhibited and thought to be antiviral. Here, we investigated the role of RIPK3 and MLKL in controlling the Orthopoxvirus ectromelia virus (ECTV), a natural pathogen of the mouse. We found that C57BL/6 (B6) mice deficient in RIPK3 (Ripk3-/-) or MLKL (Mlkl-/-) were as susceptible as wild-type (WT) B6 mice to ECTV lethality after low-dose intraperitoneal infection and were as resistant as WT B6 mice after ECTV infection through the natural footpad route. Additionally, after footpad infection, Mlkl-/- mice, but not Ripk3-/- mice, endured lower viral titers than WT mice in the draining lymph node (dLN) at three days postinfection and in the spleen or in the liver at seven days postinfection. Despite the improved viral control, Mlkl-/- mice did not differ from WT mice in the expression of interferons or interferon-stimulated genes or in the recruitment of natural killer (NK) cells and inflammatory monocytes (iMOs) to the dLN. Additionally, the CD8 T-cell responses in Mlkl-/- and WT mice were similar, even though in the dLNs of Mlkl-/- mice, professional antigen-presenting cells were more heavily infected. Finally, the histopathology in the livers of Mlkl-/- and WT mice at 7 dpi did not differ. Thus, the mechanism of the increased virus control by Mlkl-/- mice remains to be defined. IMPORTANCE The molecules RIPK3 and MLKL are required for necroptotic cell death, which is widely thought of as an antiviral mechanism. Here we show that C57BL/6 (B6) mice deficient in RIPK3 or MLKL are as susceptible as WT B6 mice to ECTV lethality after a low-dose intraperitoneal infection and are as resistant as WT B6 mice after ECTV infection through the natural footpad route. Mice deficient in MLKL are more efficient than WT mice at controlling virus loads in various organs. This improved viral control is not due to enhanced interferon, natural killer cell, or CD8 T-cell responses. Overall, the data indicate that deficiencies in the molecules that are critical to necroptosis do not necessarily result in worse outcomes following viral infection and may improve virus control.


Assuntos
Ectromelia Infecciosa , Animais , Camundongos , Vírus da Ectromelia , Ectromelia Infecciosa/imunologia , Interferons/metabolismo , Camundongos Endogâmicos C57BL , Necroptose/imunologia , Proteínas Quinases/genética , Proteínas Quinases/imunologia , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/imunologia
2.
Viruses ; 13(6)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203773

RESUMO

Ectromelia virus (ECTV), the causative agent of mousepox, has threatened laboratory mouse colonies worldwide for almost a century. Mousepox has been valuable for the understanding of poxvirus pathogenesis and immune evasion. Here, we have monitored in parallel the pathogenesis of nine ECTVs in BALB/cJ mice and report the full-length genome sequence of eight novel ECTV isolates or strains, including the first ECTV isolated from a field mouse, ECTV-MouKre. This approach allowed us to identify several genes, absent in strains attenuated through serial passages in culture, that may play a role in virulence and a set of putative genes that may be involved in enhancing viral growth in vitro. We identified a putative strong inhibitor of the host inflammatory response in ECTV-MouKre, an isolate that did not cause local foot swelling and developed a moderate virulence. Most of the ECTVs, except ECTV-Hampstead, encode a truncated version of the P4c protein that impairs the recruitment of virions into the A-type inclusion bodies, and our data suggest that P4c may play a role in viral dissemination and transmission. This is the first comprehensive report that sheds light into the phylogenetic and geographic relationship of the worldwide outbreak dynamics for the ECTV species.


Assuntos
Vírus da Ectromelia/genética , Vírus da Ectromelia/patogenicidade , Ectromelia Infecciosa/patologia , Ectromelia Infecciosa/virologia , Genômica , Filogenia , Animais , Modelos Animais de Doenças , Vírus da Ectromelia/classificação , Vírus da Ectromelia/imunologia , Ectromelia Infecciosa/imunologia , Feminino , Evasão da Resposta Imune , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos DBA , Filogeografia , Proteínas Virais/genética , Virulência
3.
J Virol ; 95(19): e0056621, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34260270

RESUMO

Cytotoxic CD4 T lymphocytes (CD4-CTL) are important in antiviral immunity. For example, we have previously shown that in mice, CD4-CTL are important to control ectromelia virus (ECTV) infection. How viral infections induce CD4-CTL responses remains incompletely understood. We demonstrate here that not only ECTV but also vaccinia virus and lymphocytic choriomeningitis virus induce CD4-CTL, though the response to ECTV is stronger. Using ECTV, we also demonstrate that in contrast to CD8-CTL, CD4-CTL differentiation requires constant virus replication and ceases once the virus is controlled. We also show that major histocompatibility complex class II molecules on CD11c+ cells are required for CD4-CTL differentiation and for mousepox resistance. Transcriptional analysis indicated that antiviral CD4-CTL and noncytolytic T helper 1 (Th1) CD4 T cells have similar transcriptional profiles, suggesting that CD4-CTL are terminally differentiated classical Th1 cells. Interestingly, CD4-CTL and classical Th1 cells expressed similar mRNA levels of the transcription factors ThPOK and GATA-3, necessary for CD4 T cell linage commitment, and Runx3, required for CD8 T cell development and effector function. However, at the protein level, CD4-CTL had higher levels of the three transcription factors, suggesting that further posttranscriptional regulation is required for CD4-CTL differentiation. Finally, CRISPR/Cas9-mediated deletion of Runx3 in CD4 T cells inhibited CD4-CTL but not classical Th1 cell differentiation in response to ECTV infection. These results further our understanding of the mechanisms of CD4-CTL differentiation during viral infection and the role of posttranscriptionally regulated Runx3 in this process. IMPORTANCE While it is well established that cytotoxic CD4 T cells (CD4-CTLs) directly contribute to viral clearance, it remains unclear how CD4-CTL are induced. We now show that CD4-CTLs require sustained antigen presentation and are induced by CD11c-expressing antigen-presenting cells. Moreover, we show that CD4-CTLs are derived from the terminal differentiation of classical T helper 1 (Th1) subset of CD4 cells. Compared to Th1 cells, CD4-CTLs upregulate protein levels of the transcription factors ThPOK, Runx3, and GATA-3 posttranscriptionally. Deletion of Runx3 in differentiated CD4 T cells prevents induction of CD4-CTLs but not classical Th1 cells. These results advance our knowledge of how CD4-CTLs are induced during viral infection.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Ectromelia Infecciosa/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Citotóxicos/imunologia , Células Th1/imunologia , Viroses/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Antígenos CD11/análise , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Citotoxicidade Imunológica , Vírus da Ectromelia/fisiologia , Ectromelia Infecciosa/virologia , Antígenos de Histocompatibilidade Classe II/análise , Fígado/imunologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Baço/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Citotóxicos/metabolismo , Células Th1/metabolismo , Transcriptoma , Replicação Viral
4.
Mol Ther ; 29(9): 2769-2781, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33992803

RESUMO

It is well established that memory CD8 T cells protect susceptible strains of mice from mousepox, a lethal viral disease caused by ectromelia virus (ECTV), the murine counterpart to human variola virus. While mRNA vaccines induce protective antibody (Ab) responses, it is unknown whether they also induce protective memory CD8 T cells. We now show that immunization with different doses of unmodified or N(1)-methylpseudouridine-modified mRNA (modified mRNA) in lipid nanoparticles (LNP) encoding the ECTV gene EVM158 induced similarly strong CD8 T cell responses to the epitope TSYKFESV, albeit unmodified mRNA-LNP had adverse effects at the inoculation site. A single immunization with 10 µg modified mRNA-LNP protected most susceptible mice from mousepox, and booster vaccination increased the memory CD8 T cell pool, providing full protection. Moreover, modified mRNA-LNP encoding TSYKFESV appended to green fluorescent protein (GFP) protected against wild-type ECTV infection while lymphocytic choriomeningitis virus glycoprotein (GP) modified mRNA-LNP protected against ECTV expressing GP epitopes. Thus, modified mRNA-LNP can be used to create protective CD8 T cell-based vaccines against viral infections.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Vírus da Ectromelia/imunologia , Ectromelia Infecciosa/prevenção & controle , Proteínas Virais/genética , Vacinas de mRNA/administração & dosagem , Animais , Composição de Medicamentos , Ectromelia Infecciosa/imunologia , Imunização Secundária , Memória Imunológica , Lipossomos , Masculino , Camundongos , Nanopartículas , Peptídeos/química , Peptídeos/genética , Peptídeos/imunologia , Pseudouridina/análogos & derivados , Pseudouridina/química , Proteínas Virais/química , Proteínas Virais/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/química , Vacinas Virais/farmacologia , Vacinas de mRNA/química , Vacinas de mRNA/farmacologia
5.
PLoS Pathog ; 17(5): e1009593, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34015056

RESUMO

Type I interferons (IFN-I) are antiviral cytokines that signal through the ubiquitous IFN-I receptor (IFNAR). Following footpad infection with ectromelia virus (ECTV), a mouse-specific pathogen, C57BL/6 (B6) mice survive without disease, while B6 mice broadly deficient in IFNAR succumb rapidly. We now show that for survival to ECTV, only hematopoietic cells require IFNAR expression. Survival to ECTV specifically requires IFNAR in both natural killer (NK) cells and monocytes. However, intrinsic IFNAR signaling is not essential for adaptive immune cell responses or to directly protect non-hematopoietic cells such as hepatocytes, which are principal ECTV targets. Mechanistically, IFNAR-deficient NK cells have reduced cytolytic function, while lack of IFNAR in monocytes dampens IFN-I production and hastens virus dissemination. Thus, during a pathogenic viral infection, IFN-I coordinates innate immunity by stimulating monocytes in a positive feedback loop and by inducing NK cell cytolytic function.


Assuntos
Vírus da Ectromelia/imunologia , Ectromelia Infecciosa/imunologia , Receptor de Interferon alfa e beta/metabolismo , Transdução de Sinais , Animais , Citocinas/imunologia , Resistência à Doença , Ectromelia Infecciosa/virologia , Feminino , Hepatócitos/imunologia , Hepatócitos/virologia , Imunidade Inata , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Monócitos/virologia , Receptor de Interferon alfa e beta/genética
6.
Acta Virol ; 64(3): 307-324, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32985205

RESUMO

Mitochondria are multitasking organelles that play a central role in energy production, survival and primary host defense against viral infections. Therefore, viruses target mitochondria dynamics and functions to benefit their replication and morphogenetic processes. We endeavor to understand the role of mitochondria during infection of ectromelia virus (ECTV), hence our investigations on mitochondria-related genes in non-immune (L929 fibroblasts) and immune (RAW 264.7 macrophages) cells. Our results show that during later stages of infection, ECTV significantly decreases the expression of mitochondria-related genes regulating many aspects of mitochondrial physiology and functions, including mitochondrial transport, small molecule transport, membrane polarization and potential, targeting proteins to mitochondria, inner membrane translocation, and apoptosis. Such down-regulation is cell-specific, since macrophages exhibited a more profound down-regulation of mitochondria-related genes compared to infected L929 fibroblasts. Only L929 cells exhibited up-regulation of two important genes responsible for oxidative phosphorylation and subsequent ATP production: Slc25a23 and Slc25a31. Changes in the expression of mitochondria-related genes are accompanied by altered mitochondria morphology and distribution in both types of cells. In depth Ingenuity Pathway Analysis (IPA) identified the "Sirtuin Signaling Pathway" as the most significant top canonical pathway associated with ECTV infection in both analyzed cell types. Taken together, down-regulation of mitochondria-related genes observed especially in macrophages indicates dysfunctional mitochondria, possibly contributing to energy collapse and induction of intrinsic pathway of apoptosis. Meanwhile, alteration of the expression of several mitochondria-related genes in fibroblasts without apoptosis induction may represent poxviral strategy to control cellular energy metabolism for efficient replication. Keywords: ectromelia virus; mitochondria; fibroblasts; macrophages.


Assuntos
Ectromelia Infecciosa/genética , Fibroblastos , Macrófagos , Mitocôndrias/genética , Transcriptoma , Animais , Vírus da Ectromelia , Ectromelia Infecciosa/imunologia , Camundongos , Células RAW 264.7
7.
Sci Rep ; 10(1): 13167, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32759969

RESUMO

Vaccination with vaccinia virus (VACV) elicits heterotypic immunity to smallpox, monkeypox, and mousepox, the mechanistic basis for which is poorly understood. It is generally assumed that heterotypic immunity arises from the presentation of a wide array of VACV-derived, CD8+ T cell epitopes that share homology with other poxviruses. Herein this assumption was tested using a large panel of VACV-derived peptides presented by HLA-B*07:02 (B7.2) molecules in a mousepox/ectromelia virus (ECTV)-infection, B7.2 transgenic mouse model. Most dominant epitopes recognized by ECTV- and VACV-reactive CD8+ T cells overlapped significantly without altering immunodominance hierarchy. Further, several epitopes recognized by ECTV-reactive CD8+ T cells were not recognized by VACV-reactive CD8+ T cells, and vice versa. In one instance, the lack of recognition owed to a N72K variation in the ECTV C4R70-78 variant of the dominant VACV B8R70-78 epitope. C4R70-78 does not bind to B7.2 and, hence, it was neither immunogenic nor antigenic. These findings provide a mechanistic basis for VACV vaccination-induced heterotypic immunity which can protect against Variola and Monkeypox disease. The understanding of how cross-reactive responses develop is essential for the rational design of a subunit-based vaccine that would be safe, and effectively protect against heterologous infection.


Assuntos
Ectromelia Infecciosa/prevenção & controle , Antígeno HLA-B7/genética , Peptídeos/imunologia , Vaccinia virus/imunologia , Proteínas Virais/química , Animais , Linfócitos T CD8-Positivos/metabolismo , Modelos Animais de Doenças , Vírus da Ectromelia/patogenicidade , Ectromelia Infecciosa/imunologia , Antígeno HLA-B7/metabolismo , Epitopos Imunodominantes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia
8.
PLoS Pathog ; 16(8): e1008685, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32745153

RESUMO

Smallpox and monkeypox pose severe threats to human health. Other orthopoxviruses are comparably virulent in their natural hosts, including ectromelia, the cause of mousepox. Disease severity is linked to an array of immunomodulatory proteins including the B22 family, which has homologs in all pathogenic orthopoxviruses but not attenuated vaccine strains. We demonstrate that the ectromelia B22 member, C15, is necessary and sufficient for selective inhibition of CD4+ but not CD8+ T cell activation by immunogenic peptide and superantigen. Inhibition is achieved not by down-regulation of surface MHC- II or co-stimulatory protein surface expression but rather by interference with antigen presentation. The appreciable outcome is interference with CD4+ T cell synapse formation as determined by imaging studies and lipid raft disruption. Consequently, CD4+ T cell activating stimulus shifts to uninfected antigen-presenting cells that have received antigen from infected cells. This work provides insight into the immunomodulatory strategies of orthopoxviruses by elucidating a mechanism for specific targeting of CD4+ T cell activation, reflecting the importance of this cell type in control of the virus.


Assuntos
Apresentação de Antígeno/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Vírus da Ectromelia/imunologia , Ectromelia Infecciosa/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Proteínas Virais/imunologia , Animais , Ectromelia Infecciosa/metabolismo , Ectromelia Infecciosa/virologia , Feminino , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas Virais/metabolismo , Virulência
9.
J Immunol ; 204(6): 1582-1591, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-32015010

RESUMO

NK cells play an important role in antiviral resistance. The integrin α2, which dimerizes with integrin ß1, distinguishes NK cells from innate lymphoid cells 1 and other leukocytes. Despite its use as an NK cell marker, little is known about the role of α2ß1 in NK cell biology. In this study, we show that in mice α2ß1 deficiency does not alter the balance of NK cell/ innate lymphoid cell 1 generation and slightly decreases the number of NK cells in the bone marrow and spleen without affecting NK cell maturation. NK cells deficient in α2ß1 had no impairment at entering or distributing within the draining lymph node of ectromelia virus (ECTV)-infected mice or at becoming effectors but proliferated poorly in response to ECTV and did not increase in numbers following infection with mouse CMV (MCMV). Still, α2ß1-deficient NK cells efficiently protected from lethal mousepox and controlled MCMV titers in the spleen. Thus, α2ß1 is required for optimal NK cell proliferation but is dispensable for protection against ECTV and MCMV, two well-established models of viral infection in which NK cells are known to be important.


Assuntos
Ectromelia Infecciosa/imunologia , Infecções por Herpesviridae/imunologia , Integrina alfa2beta1/metabolismo , Células Matadoras Naturais/imunologia , Animais , Contagem de Células , Proliferação de Células , Modelos Animais de Doenças , Vírus da Ectromelia/imunologia , Ectromelia Infecciosa/sangue , Ectromelia Infecciosa/virologia , Feminino , Infecções por Herpesviridae/sangue , Infecções por Herpesviridae/virologia , Humanos , Imunidade Inata , Integrina alfa2beta1/imunologia , Células Matadoras Naturais/metabolismo , Masculino , Camundongos , Muromegalovirus/imunologia , Replicação Viral/imunologia
10.
J Virol ; 94(5)2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31776282

RESUMO

Chronic viral infections. like those of humans with cytomegalovirus, human immunodeficiency virus (even when under antiretroviral therapy), and hepatitis C virus or those of mice with lymphocytic choriomeningitis virus (LCMV) clone 13 (CL13), result in immune dysfunction that predisposes the host to severe infections with unrelated pathogens. It is known that C57BL/6 (B6) mice are resistant to mousepox, a lethal disease caused by the orthopoxvirus ectromelia virus (ECTV), and that this resistance requires natural killer (NK) cells and other immune cells. We show that most B6 mice chronically infected with CL13 succumb to mousepox but that most of those that recovered from acute infection with the LCMV Armstrong (Arm) strain survive. We also show that B6 mice chronically infected with CL13 and those that recovered from Arm infection have a reduced frequency and a reduced number of NK cells. However, at steady state, NK cells in mice that have recovered from Arm infection mature normally and, in response to ECTV, get activated, become more mature, proliferate, and increase their cytotoxicity in vivo Conversely, in mice chronically infected with CL13, NK cells are immature and residually activated, and following ECTV infection, they do not mature, proliferate, or increase their cytotoxicity. Given the well-established importance of NK cells in resistance to mousepox, these data suggest that the NK cell dysfunction caused by CL13 persistence may contribute to the susceptibility of CL13-infected mice to mousepox. Whether chronic infections similarly affect NK cells in humans should be explored.IMPORTANCE Infection of adult mice with the clone 13 (CL13) strain of lymphocytic choriomeningitis virus (LCMV) is extensively used as a model of chronic infection. In this paper, we show that mice chronically infected with CL13 succumb to challenge with ectromelia virus (ECTV; the agent of mousepox) and that natural killer (NK) cells in CL13-infected mice are reduced in numbers and have an immature and partially activated phenotype but do respond to ECTV. These data may provide additional clues why humans chronically infected with certain pathogens are less resistant to viral diseases.


Assuntos
Vírus da Ectromelia/imunologia , Ectromelia Infecciosa/imunologia , Células Matadoras Naturais/imunologia , Coriomeningite Linfocítica/imunologia , Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Vírus da Coriomeningite Linfocítica/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
11.
J Virol ; 94(5)2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31826990

RESUMO

It is well established that chronic viral infections can cause immune suppression, resulting in increased susceptibility to other infectious diseases. However, the effects of chronic viral infection on T-cell responses and vaccination against highly pathogenic viruses are not well understood. We have recently shown that C57BL/6 (B6) mice lose their natural resistance to wild-type (WT) ectromelia virus (ECTV) when chronically infected with lymphocytic choriomeningitis virus (LCMV) clone 13 (CL13). Here we compared the T-cell response to ECTV in previously immunologically naive mice that were chronically infected with CL13 or that were convalescent from acute infection with the Armstrong (Arm) strain of LCMV. Our results show that mice that were chronically infected with CL13 but not those that had recovered from Arm infection have highly defective ECTV-specific CD8+ and CD4+ T-cell responses to WT ECTV. These defects are at least partly due to the chronic infection environment. In contrast to mice infected with WT ECTV, mice chronically infected with CL13 survived without signs of disease when infected with ECTV-Δ036, a mutant ECTV strain that is highly attenuated. Strikingly, mice chronically infected with CL13 mounted a strong CD8+ T-cell response to ECTV-Δ036 and survived without signs of disease after a subsequent challenge with WT ECTV. Our work suggests that enhanced susceptibility to acute viral infections in chronically infected individuals can be partly due to poor T-cell responses but that sufficient T-cell function can be recovered and resistance to acute infection can be restored by immunization with highly attenuated vaccines.IMPORTANCE Chronic viral infections may result in immunosuppression and enhanced susceptibility to infections with other pathogens. For example, we have recently shown that mice chronically infected with lymphocytic choriomeningitis virus (LCMV) clone 13 (CL13) are highly susceptible to mousepox, a disease that is caused by ectromelia virus and that is the mouse homolog of human smallpox. Here we show chronic CL13 infection severely disrupts the expansion, proliferation, activation, and cytotoxicity of T cells in response due at least in part to the suppressive effects of the chronic infection milieu. Notably, despite this profound immunodeficiency, mice chronically infected with CL13 could be protected by vaccination with a highly attenuated variant of ECTV. These results demonstrate that protective vaccination of immunosuppressed individuals is possible, provided that proper immunization tools are used.


Assuntos
Ectromelia Infecciosa/imunologia , Imunidade Inata/imunologia , Imunização , Coriomeningite Linfocítica/imunologia , Linfócitos T/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Vírus da Ectromelia/imunologia , Feminino , Humanos , Tolerância Imunológica , Memória Imunológica , Vírus da Coriomeningite Linfocítica/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vacinação
12.
Arch Immunol Ther Exp (Warsz) ; 67(6): 401-414, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31324924

RESUMO

Poxviruses utilize multiple strategies to prevent activation of extrinsic and intrinsic apoptotic pathways for successful replication. Mitochondrial heat shock proteins (mtHsps), especially Hsp60 and its cofactor Hsp10, are engaged in apoptosis regulation; however, until now, the influence of poxviruses on mtHsps has never been studied. We used highly infectious Moscow strain of ectromelia virus (ECTV) to investigate the mitochondrial heat shock response and apoptotic potential in permissive L929 fibroblasts. Our results show that ECTV-infected cells exhibit mostly mitochondrial localization of Hsp60 and Hsp10, and show overexpression of both proteins during later stages of infection. ECTV infection has only moderate effect on the electron transport chain subunit expression. Moreover, increase of mtHsp amounts is accompanied by lack of apoptosis, and confirmed by reduced level of pro-apoptotic Bax protein and elevated levels of anti-apoptotic Bcl-2 and Bcl-xL proteins. Taken together, we show a positive relationship between increased levels of Hsp60 and Hsp10 and decreased apoptotic potential of L929 fibroblasts, and further hypothesize that Hsp60 and/or its cofactor play important roles in maintaining protein homeostasis in mitochondria for promotion of cell survival allowing efficient replication of ECTV.


Assuntos
Chaperonina 10/metabolismo , Chaperonina 60/metabolismo , Vírus da Ectromelia/fisiologia , Ectromelia Infecciosa/imunologia , Fibroblastos/fisiologia , Resposta ao Choque Térmico/imunologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Apoptose , Linhagem Celular , Fibroblastos/virologia , Regulação da Expressão Gênica , Evasão da Resposta Imune , Camundongos , Transporte Proteico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Virulência , Replicação Viral
13.
Immunol Invest ; 48(4): 392-409, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30884992

RESUMO

Ectromelia virus (ECTV) is the etiological agent of mousepox, an acute and systemic disease with high mortality rates in susceptible strains of mice. Resistance and susceptibility to mousepox are triggered by the dichotomous T-helper (Th) immune response generated in infected animals, with strong protective Th1 or nonprotective Th2 profile, respectively. Th1/Th2 balance is influenced by dendritic cells (DCs), which were shown to differ in their ability to polarize naïve CD4+ T cells in different mouse strains. Therefore, we have studied the inner-strain differences in the ability of conventional DCs (cDCs), generated from resistant (C57BL/6) and susceptible (BALB/c) mice, to stimulate proliferation and activation of Th cells upon ECTV infection. We found that ECTV infection of GM-CSF-derived bone marrow (GM-BM) cells, composed of cDCs and macrophages, affected initiation of allogeneic CD4+ T cells proliferation in a mouse strain-independent manner. Moreover, infected GM-BM cells from both mouse strains failed to induce and even inhibited the production of Th1 (IFN-γ and IL-2), Th2 (IL-4 and IL-10) and Th17 (IL-17A) cytokines by allogeneic CD4+ T cells. These results indicate that in in vitro conditions ECTV compromises the ability of cDCs to initiate/polarize adaptive antiviral immune response independently of the host strain resistance/susceptibility to lethal infection.


Assuntos
Células da Medula Óssea/imunologia , Células da Medula Óssea/virologia , Linfócitos T CD4-Positivos/imunologia , Vírus da Ectromelia , Ectromelia Infecciosa/imunologia , Animais , Citocinas/imunologia , Ectromelia Infecciosa/virologia , Teste de Cultura Mista de Linfócitos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Especificidade da Espécie
14.
Front Immunol ; 9: 1297, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29963044

RESUMO

Activation of the DNA-dependent innate immune pathway plays a pivotal role in the host defense against poxvirus. Cyclic GMP-AMP synthase (cGAS) is a key cytosolic DNA sensor that produces the cyclic dinucleotide cGMP-AMP (cGAMP) upon activation, which triggers stimulator of interferon genes (STING), leading to type I Interferons (IFNs) production and an antiviral response. Ectromelia virus (ECTV) has emerged as a valuable model for investigating the host-Orthopoxvirus relationship. However, the role of cGas-Sting pathway in response to ECTV is not clearly understood. Here, we showed that murine cells (L929 and RAW264.7) mount type I IFN responses to ECTV that are dependent upon cGas, Sting, TANK binding kinase 1 (Tbk1), and interferon regulatory factor 3 (Irf3) signaling. Disruption of cGas or Sting expression in mouse macrophages blocked the type I IFN production and facilitated ECTV replication. Consistently, mice deficient in cGas or Sting exhibited lower type I IFN levels and higher viral loads, and are more susceptible to mousepox. Collectively, our study indicates that the cGas-Sting pathway is critical for sensing of ECTV infection, inducing the type I IFN production, and controlling ECTV replication.


Assuntos
Vírus da Ectromelia/imunologia , Ectromelia Infecciosa/imunologia , Ectromelia Infecciosa/metabolismo , Imunidade Inata , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Transdução de Sinais , Animais , Chlorocebus aethiops , Ectromelia Infecciosa/virologia , Interações Hospedeiro-Patógeno , Humanos , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/biossíntese , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Células NIH 3T3 , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Células RAW 264.7 , Células Vero , Replicação Viral
15.
Nat Commun ; 9(1): 1790, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29724993

RESUMO

The role of cytokines and chemokines in anti-viral defense has been demonstrated, but their relative contribution to protective anti-viral responses in vivo is not fully understood. Cytokine response modifier D (CrmD) is a secreted receptor for TNF and lymphotoxin containing the smallpox virus-encoded chemokine receptor (SECRET) domain and is expressed by ectromelia virus, the causative agent of the smallpox-like disease mousepox. Here we show that CrmD is an essential virulence factor that controls natural killer cell activation and allows progression of fatal mousepox, and demonstrate that both SECRET and TNF binding domains are required for full CrmD activity. Vaccination with recombinant CrmD protects animals from lethal mousepox. These results indicate that a specific set of chemokines enhance the inflammatory and protective anti-viral responses mediated by TNF and lymphotoxin, and illustrate how viruses optimize anti-TNF strategies with the addition of a chemokine binding domain as soluble decoy receptors.


Assuntos
Quimiocinas/fisiologia , Ectromelia Infecciosa/imunologia , Ectromelia Infecciosa/prevenção & controle , Inflamação/etiologia , Fator de Necrose Tumoral alfa/fisiologia , Animais , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular , Feminino , Inflamação/imunologia , Células Matadoras Naturais/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Poxviridae/patogenicidade , Fatores de Virulência/fisiologia , Replicação Viral
16.
Microb Pathog ; 109: 99-109, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28554653

RESUMO

Dendritic cells (DCs) are effector cells linking the innate immune system with the adaptive immune response. Many viruses eliminate DCs to prevent host response, induce immunosuppression and to maintain chronic infection. In this study, we examined apoptotic response of dendritic cells during in vitro and in vivo infection with ectromelia virus (ECTV), the causative agent of mousepox. ECTV-infected bone marrow dendritic cells (BMDCs) from BALB/c mice underwent apoptosis through mitochondrial pathway at 48 h post infection, up-regulated FasL and decreased expression of anti-apoptotic Bcl-2 and pro-apoptotic Fas. Similar pattern of Bcl-2, Fas and FasL expression was observed for DCs early during in vivo infection of BALB/c mice. Both BMDCs and DCs from BALB/c mice showed no maturation upon ECTV infection. We conclude that ECTV-infected DCs from BALB/c mouse strain help the virus to spread and to maintain infection.


Assuntos
Apoptose , Células Dendríticas/imunologia , Vírus da Ectromelia/fisiologia , Vírus da Ectromelia/patogenicidade , Ectromelia Infecciosa/imunologia , Imunidade Adaptativa , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Caspase 3 , Chlorocebus aethiops , Células Dendríticas/patologia , Células Dendríticas/fisiologia , Células Dendríticas/virologia , Modelos Animais de Doenças , Ectromelia Infecciosa/virologia , Proteína Ligante Fas/metabolismo , Regulação da Expressão Gênica , Imunidade Inata , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Regulação para Cima , Células Vero
17.
Immunol Cell Biol ; 95(8): 676-683, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28428612

RESUMO

The biological role of granzyme K, a serine protease of cytotoxic T lymphocytes (CTL), is controversial. It has been reported to induce perforin-mediated cell death in vitro, but is also reported to be non-cytotoxic and to operate in inflammatory processes. To elucidate the biological role of this protease, we have deleted the granzyme K gene in mice (mutant allele: Gzmktm1.1Pib; MGI:5636646). Gzmk -/- mice are healthy, anatomically normal, fecund and show normal hematopoietic development. Gzmk -/- mice readily recover from lymphocytic choriomeningitis virus and mouse pox Ectromelia virus infection. Ex vivo, virus-specific granzyme K-deficient CTL are indistinguishable from those of wild-type mice in apoptosis induction of target cells. These data suggest that granzyme K does not play an essential role in viral immunity or cytotoxicity. Our granzyme K knockout line completes the collection of mouse models for the human granzymes, and will further our understanding of their biological roles and relationships.


Assuntos
Vírus da Ectromelia/imunologia , Ectromelia Infecciosa/imunologia , Granzimas/genética , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Antígenos Virais/imunologia , Células Cultivadas , Citotoxicidade Imunológica , Granzimas/metabolismo , Hematopoese/genética , Ativação Linfocitária/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
18.
Viral Immunol ; 30(5): 315-329, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28453414

RESUMO

Poxviruses have evolved numerous mechanisms to avoid the immune response of the infected host, and many of these mechanisms have not been fully described. Here, we studied the transcriptional response of innate immune genes in BALB/c and C57BL/6 peritoneal macrophages following infection with the Moscow strain of ectromelia virus (ECTV-Mos) with the aim of delineating innate immune genes that contribute to the difference between susceptibility and resistance to lethal infection. We show a generalized downregulation of many genes in four categories (toll-like receptor signaling, NOD-like receptor signaling, RIG-I-like receptor signaling, and type I interferon signaling) of antiviral innate immune receptors, downstream signaling pathways, and responsive components. Two important observations were made. First, 14 innate antiviral genes were differentially expressed with fold change upregulation of two and above occurring in C57BL/6 mice, known to be resistant to ECTV-Mos infection, whereas the same genes were downregulated in BALB/c mice with fold change of two and below. Second, the cathepsin group of genes was downregulated in both strains of mice but with profound fold changes of 17, 38, and 62 downregulation for CtsL, CtsB, and CtsS, respectively, in C57BL/6 mice. We show that a poxvirus profoundly downregulates both the mRNA and protein expression of these three cathepsins and this change appears to support virus replication. Based on these data we propose that the variations in gene expression observed may contribute to the difference in resistance/susceptibility between BALB/c and C57BL/6 mice to lethal infection by ECTV-Mos.


Assuntos
Resistência à Doença , Vírus da Ectromelia/imunologia , Ectromelia Infecciosa/imunologia , Perfilação da Expressão Gênica , Imunidade Inata , Macrófagos Peritoneais/imunologia , Animais , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
19.
Arch Virol ; 161(4): 913-28, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26780774

RESUMO

Ectromelia virus (ECTV) is an orthopoxvirus (OPV) that causes mousepox, the murine equivalent of human smallpox. Fas receptor-Fas ligand (FasL) signaling is involved in apoptosis of immune cells and virus-specific cytotoxicity. The Fas/FasL pathway also plays an important role in controlling the local inflammatory response during ECTV infection. Here, the immune response to the ECTV Moscow strain was examined in Fas (-) (lpr), FasL (-) (gld) and C57BL6 wild-type mice. During ECTV-MOS infection, Fas- and FasL mice showed increased viral titers, decreased total numbers of NK cells, CD4(+) and CD8(+) T cells followed by decreased percentages of IFN-γ expressing NK cells, CD4(+) and CD8(+) T cells in spleens and lymph nodes. At day 7 of ECTV-MOS infection, Fas- and FasL-deficient mice had the highest regulatory T cell (Treg) counts in spleen and lymph nodes in contrast to wild-type mice. Furthermore, at days 7 and 10 of the infection, we observed significantly higher numbers of PD-L1-expressing dendritic cells in Fas (-) and FasL (-) mice in comparison to wild-type mice. Experiments in co-cultures of CD4(+) T cells and bone-marrow-derived dendritic cells showed that the lack of bilateral Fas-FasL signalling led to expansion of Tregs. In conclusion, our results demonstrate that during ECTV infection, Fas/FasL can regulate development of tolerogenic DCs and Tregs, leading to an ineffective immune response.


Assuntos
Vírus da Ectromelia , Ectromelia Infecciosa/metabolismo , Proteína Ligante Fas/metabolismo , Receptor fas/metabolismo , Animais , Células da Medula Óssea , Linfócitos T CD4-Positivos/fisiologia , Linfócitos T CD4-Positivos/virologia , Linhagem Celular , Chlorocebus aethiops , Técnicas de Cocultura , Células Dendríticas/fisiologia , Células Dendríticas/virologia , Ectromelia Infecciosa/imunologia , Ectromelia Infecciosa/virologia , Proteína Ligante Fas/genética , Regulação da Expressão Gênica , Células Matadoras Naturais , Linfonodos , Masculino , Camundongos , Transdução de Sinais , Baço , Fatores de Tempo , Receptor fas/genética
20.
Adv Immunol ; 129: 251-76, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26791861

RESUMO

Ectromelia virus is a mouse-specific orthopoxvirus that, following footpad infection or natural transmission, causes mousepox in most strains of mice, while a few strains, such as C57BL/6, are resistant to the disease but not to the infection. Mousepox is an acute, systemic, highly lethal disease of remarkable semblance to smallpox, caused by the human-specific variola virus. Starting in 1929 with its discovery by Marchal, work with ECTV has provided essential information for our current understanding on how viruses spread lympho-hematogenously, the genetic control of antiviral resistance, the role of different components of the innate and adaptive immune system in the control of primary and secondary infections with acute viruses, and how the mechanisms of immune evasion deployed by the virus affect virulence in vivo. Here, I review the literature on the pathogenesis and immunobiology of ECTV infection in vivo.


Assuntos
Imunidade Adaptativa , Resistência à Doença/imunologia , Vírus da Ectromelia/patogenicidade , Ectromelia Infecciosa/imunologia , Varíola/imunologia , Vaccinia virus/imunologia , Animais , Modelos Animais de Doenças , Vírus da Ectromelia/imunologia , Ectromelia Infecciosa/prevenção & controle , Ectromelia Infecciosa/virologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Vacinação , Proteínas Virais/imunologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA