Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 10: e14255, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36345481

RESUMO

Elasmobranchs provide greatly relevant ecosystem services for the balance of the environments in which they are inserted. In recent decades, sharp population declines have been reported for many species in different regions worldwide, making this taxonomic group currently one of the most threatened with extinction. This scenario is almost entirely due to excessive fishing pressure, but any contributing factor that may cause additional mortality to populations must be mapped and monitored. In a fast-changing world, emerging marine pollution associated with climate change display the potential to increase the spread of infectious agents. These can, in turn, lead to mortality events, both directly and indirectly, by reducing immune responses and the physical and nutritional condition of affected individuals. In this context, the present study aimed to analyze data concerning elasmobranch-associated microbiota, identifying study trends and knowledge gaps in order to direct future studies on this topic of growing relevance for the health of wild populations, as well as individuals maintained in captivity, considering the zoonotic potential of these microorganisms.


Assuntos
Ecossistema , Elasmobrânquios , Microbiota , Animais , Mudança Climática , Conservação dos Recursos Naturais , Elasmobrânquios/microbiologia
2.
Microbiome ; 8(1): 93, 2020 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-32534596

RESUMO

BACKGROUND: The vertebrate clade diverged into Chondrichthyes (sharks, rays, and chimeras) and Osteichthyes fishes (bony fishes) approximately 420 mya, with each group accumulating vast anatomical and physiological differences, including skin properties. The skin of Chondrichthyes fishes is covered in dermal denticles, whereas Osteichthyes fishes are covered in scales and are mucous rich. The divergence time among these two fish groups is hypothesized to result in predictable variation among symbionts. Here, using shotgun metagenomics, we test if patterns of diversity in the skin surface microbiome across the two fish clades match predictions made by phylosymbiosis theory. We hypothesize (1) the skin microbiome will be host and clade-specific, (2) evolutionary difference in elasmobranch and teleost will correspond with a concomitant increase in host-microbiome dissimilarity, and (3) the skin structure of the two groups will affect the taxonomic and functional composition of the microbiomes. RESULTS: We show that the taxonomic and functional composition of the microbiomes is host-specific. Teleost fish had lower average microbiome within clade similarity compared to among clade comparison, but their composition is not different among clade in a null based model. Elasmobranch's average similarity within clade was not different than across clade and not different in a null based model of comparison. In the comparison of host distance with microbiome distance, we found that the taxonomic composition of the microbiome was related to host distance for the elasmobranchs, but not the teleost fishes. In comparison, the gene function composition was not related to the host-organism distance for elasmobranchs but was negatively correlated with host distance for teleost fishes. CONCLUSION: Our results show the patterns of phylosymbiosis are not consistent across both fish clades, with the elasmobranchs showing phylosymbiosis, while the teleost fish are not. The discrepancy may be linked to alternative processes underpinning microbiome assemblage, including possible historical host-microbiome evolution of the elasmobranchs and convergent evolution in the teleost which filter specific microbial groups. Our comparison of the microbiomes among fishes represents an investigation into the microbial relationships of the oldest divergence of extant vertebrate hosts and reveals that microbial relationships are not consistent across evolutionary timescales. Video abstract.


Assuntos
Elasmobrânquios/microbiologia , Peixes/microbiologia , Tegumento Comum/microbiologia , Metagenômica , Microbiota/genética , Filogenia , Simbiose , Animais , Bactérias/genética , Bactérias/isolamento & purificação
3.
J Exp Biol ; 222(Pt 3)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30530835

RESUMO

Ureotelic elasmobranchs require nitrogen for both protein growth and urea-based osmoregulation, and therefore are probably nitrogen-limited in nature. Mechanisms exist for retaining and/or scavenging nitrogen in the gills, kidney, rectal gland and gut, but as yet, the latter are not well characterized. Intestinal sac preparations of the Pacific spiny dogfish shark (Squalus acanthias suckleyi) incubated in vitro strongly reabsorbed urea from the lumen after feeding, but mucosal fluid ammonia concentrations increased with incubation time. Phloretin (0.25 mmol l-1, which blocked urea reabsorption) greatly increased the rate of ammonia accumulation in the lumen. A sensitive [14C]urea-based assay was developed to examine the potential role of microbial urease in this ammonia production. Urease activity was detected in chyme/intestinal fluid and intestinal epithelial tissue of both fed and fasted sharks. Urease was not present in gall-bladder bile. Urease activities were highly variable among animals, but generally greater in chyme than in epithelia, and greater in fed than in fasted sharks. Comparable urease activities were found in chyme and epithelia of the Pacific spotted ratfish (Hydrolagus colliei), a ureotelic holocephalan, but were much lower in ammonotelic teleosts. Urease activity in dogfish chyme was inhibited by acetohydroxamic acid (1 mmol l-1) and by boiling. Treatment of dogfish gut sac preparations with acetohydroxamic acid blocked ammonia production, changing net ammonia accumulation into net ammonia absorption. We propose that microbial urease plays an important role in nitrogen handling in the elasmobranch intestine, allowing some urea-N to be converted to ammonia, which is then reabsorbed for amino acid synthesis or reconversion to urea.


Assuntos
Microbioma Gastrointestinal , Trato Gastrointestinal/metabolismo , Nitrogênio/metabolismo , Squalus acanthias/metabolismo , Urease/metabolismo , Animais , Elasmobrânquios/metabolismo , Elasmobrânquios/microbiologia , Trato Gastrointestinal/microbiologia , Masculino , Squalus acanthias/microbiologia
4.
Mycoses ; 58(7): 422-31, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26095191

RESUMO

Fusarium species are environmental saprophytic fungi. Among the many Fusarium species, members of the Fusarium solani species complex (FSSC) are the most prevalent and virulent in causing human and animal infections. In this study, we describe the first case of fatal FSSC infection in a black spotted stingray and three concomitant infections in scalloped hammerhead sharks. In the stingray, cutaneous lesions were characterised by ulcers and haemorrhage of the ventral pectoral fin, or 'ray', especially around the head; while cutaneous lesions in the sharks were characterised by ulcers, haemorrhage, as well as white and purulent exudates at the cephalic canals of the cephalofoil and lateral line. Histological sections of the cutaneous lesions revealed slender (1-4 µm in diameter), branching, septate fungal hyphae. Internal transcribed spacer region and 28S nrDNA sequencing of the fungal isolates from the fish showed two isolates were F. keratoplasticum (FSSC 2) and the other two were FSSC 12. Environmental investigation revealed the FSSC strains isolated from water and biofilms in tanks that housed the elasmobranchs were also F. keratoplasticum and FSSC 12. Fusarium is associated with major infections in elasmobranchs and FSSC 12 is an emerging cause of infections in marine animals. DNA sequencing is so far the most reliable method for accurate identification of Fusarium species.


Assuntos
Elasmobrânquios/microbiologia , Doenças dos Peixes/microbiologia , Fusariose/veterinária , Fusarium/isolamento & purificação , Tubarões/microbiologia , Pele/microbiologia , Animais , Evolução Fatal , Fusariose/microbiologia , Fusarium/classificação , Fusarium/genética , Humanos , Dados de Sequência Molecular , Tipagem de Sequências Multilocus , Filogenia , Análise de Sequência de DNA , Pele/ultraestrutura
5.
Vet Pathol ; 50(3): 377-89, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23528944

RESUMO

This report reviews diseases of 1546 elasmobranchs representing at least 60 species submitted to Northwest ZooPath from 1994 to 2010. Cownose rays (Rhinoptera bonasus) (78), southern rays (Dasyatis americana) (75), dusky smooth-hounds (Mustelus canis) (74), bonnethead sharks (Sphyrna tiburo) (66), and bamboo sharks (Hemiscylliidae) (56) were the most commonly submitted species. Infectious/inflammatory disease was most common (33.5%) followed by nutritional (11.9%, mostly emaciation), traumatic (11.3%), cardiovascular (5.5%, mostly shock), and toxin-associated disease (3.7%). Bacterial infections (518/1546, 15%) included sepsis (136/518, 26%), dermatitis (7%), branchitis (6%), and enteritis (4%). Fungal infections (10/1546, 0.6%) included dermatitis (30%), hepatitis (30%), and branchitis (20%). Viral or suspected viral infections or disease processes (15/1546, 1%) included papillomatosis (47%), herpesvirus (20%), and adenovirus (7%). Parasitic infections (137/1546, 9%) included nematodiasis (36/137, 26%), ciliate infections (23%), trematodiasis (20%), coccidiosis (6%), myxozoanosis (5%), amoebiasis (4%), cestodiasis (1%), and flagellate infections (1%). Inflammation of unknown cause (401/1546, 26%) included enteritis (55/401, 14%), branchitis (9%), encephalitis (9%), and dermatitis (7%). Traumatic diseases (174/1546, 11.3%) included skin trauma (103/174, 60%), stress/maladaptation (9%), and gut trauma (7%). Toxicoses (57/1546, 4%) included toxic gill disease (16/57, 26%), gas bubble disease (19%), fenbendazole (7%), ammonia (7%), chlorine (5%), and chloramine (3%). Species trends included visceral nematodiasis in black-nosed sharks (Carcharhinus acronotus) (55%); sepsis in dusky smooth-hounds (41%), blue-spotted stingrays (36%), southern rays (36%), and wobeggong sharks (Orectolobus spp) (69%); emaciation in bamboo (33%) and bonnethead (32%) sharks and freshwater stingrays (Potamotrygon motoro) (32%); and trauma in bonnethead sharks (30%).


Assuntos
Elasmobrânquios , Doenças dos Peixes/patologia , Animais , Elasmobrânquios/lesões , Elasmobrânquios/microbiologia , Elasmobrânquios/parasitologia , Doenças dos Peixes/epidemiologia , Brânquias/patologia , Fígado/patologia , Miocárdio/patologia , Prevalência , Estudos Retrospectivos , Pele/patologia , Washington/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA