Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.682
Filtrar
1.
Nat Commun ; 15(1): 3905, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724522

RESUMO

Glioblastoma multiforme (GBM) encompasses brain malignancies marked by phenotypic and transcriptional heterogeneity thought to render these tumors aggressive, resistant to therapy, and inevitably recurrent. However, little is known about how the spatial organization of GBM genomes underlies this heterogeneity and its effects. Here, we compile a cohort of 28 patient-derived glioblastoma stem cell-like lines (GSCs) known to reflect the properties of their tumor-of-origin; six of these were primary-relapse tumor pairs from the same patient. We generate and analyze 5 kbp-resolution chromosome conformation capture (Hi-C) data from all GSCs to systematically map thousands of standalone and complex structural variants (SVs) and the multitude of neoloops arising as a result. By combining Hi-C, histone modification, and gene expression data with chromatin folding simulations, we explain how the pervasive, uneven, and idiosyncratic occurrence of neoloops sustains tumor-specific transcriptional programs via the formation of new enhancer-promoter contacts. We also show how even moderately recurrent neoloops can relate to patient-specific vulnerabilities. Together, our data provide a resource for dissecting GBM biology and heterogeneity, as well as for informing therapeutic approaches.


Assuntos
Neoplasias Encefálicas , Cromatina , Regulação Neoplásica da Expressão Gênica , Glioblastoma , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Cromatina/metabolismo , Cromatina/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Linhagem Celular Tumoral , Heterogeneidade Genética , Regiões Promotoras Genéticas/genética , Transcrição Gênica , Elementos Facilitadores Genéticos/genética , Cromossomos Humanos/genética
2.
Development ; 151(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38722096

RESUMO

During embryonic development, lymphatic endothelial cell (LEC) precursors are distinguished from blood endothelial cells by the expression of Prospero-related homeobox 1 (Prox1), which is essential for lymphatic vasculature formation in mouse and zebrafish. Prox1 expression initiation precedes LEC sprouting and migration, serving as the marker of specified LECs. Despite its crucial role in lymphatic development, Prox1 upstream regulation in LECs remains to be uncovered. SOX18 and COUP-TFII are thought to regulate Prox1 in mice by binding its promoter region. However, the specific regulation of Prox1 expression in LECs remains to be studied in detail. Here, we used evolutionary conservation and chromatin accessibility to identify enhancers located in the proximity of zebrafish prox1a active in developing LECs. We confirmed the functional role of the identified sequences through CRISPR/Cas9 mutagenesis of a lymphatic valve enhancer. The deletion of this region results in impaired valve morphology and function. Overall, our results reveal an intricate control of prox1a expression through a collection of enhancers. Ray-finned fish-specific distal enhancers drive pan-lymphatic expression, whereas vertebrate-conserved proximal enhancers refine expression in functionally distinct subsets of lymphatic endothelium.


Assuntos
Células Endoteliais , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio , Vasos Linfáticos , Proteínas Supressoras de Tumor , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Peixe-Zebra/genética , Peixe-Zebra/embriologia , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Elementos Facilitadores Genéticos/genética , Vasos Linfáticos/metabolismo , Vasos Linfáticos/embriologia , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Células Endoteliais/metabolismo , Linfangiogênese/genética , Sistemas CRISPR-Cas/genética , Regiões Promotoras Genéticas/genética , Camundongos
3.
JCI Insight ; 9(9)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592784

RESUMO

Recent studies have uncovered that noncoding sequence variants may relate to Axenfeld-Rieger syndrome (ARS), a rare developmental anomaly with genetic heterogeneity. However, how these genomic regions are functionally and structurally associated with ARS is still unclear. In this study, we performed genome-wide linkage analysis and whole-genome sequencing in a Chinese family with ARS and identified a heterozygous deletion of about 570 kb (termed LOH-1) in the intergenic sequence between paired-like homeodomain transcription factor 2 (PITX2) and family with sequence similarity 241 member A. Knockout of LOH-1 homologous sequences caused ARS phenotypes in mice. RNA-Seq and real-time quantitative PCR revealed a significant reduction in Pitx2 gene expression in LOH-1-/- mice, while forkhead box C1 expression remained unchanged. ChIP-Seq and bioinformatics analysis identified a potential enhancer region (LOH-E1) within LOH-1. Deletion of LOH-E1 led to a substantial downregulation of the PITX2 gene. Mechanistically, we found a sequence (hg38 chr4:111,399,594-111,399,691) that is on LOH-E1 could regulate PITX2 by binding to RAD21, a critical component of the cohesin complex. Knockdown of RAD21 resulted in reduced PITX2 expression. Collectively, our findings indicate that a potential enhancer sequence that is within LOH-1 may regulate PITX2 expression remotely through cohesin-mediated loop domains, leading to ARS when absent.


Assuntos
Segmento Anterior do Olho , Anormalidades do Olho , Oftalmopatias Hereditárias , Proteína Homeobox PITX2 , Proteínas de Homeodomínio , Fatores de Transcrição , Animais , Feminino , Humanos , Masculino , Camundongos , Segmento Anterior do Olho/anormalidades , Segmento Anterior do Olho/metabolismo , DNA Intergênico/genética , Elementos Facilitadores Genéticos/genética , Anormalidades do Olho/genética , Oftalmopatias Hereditárias/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos Knockout , Linhagem , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Cell Rep ; 43(4): 114077, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38592974

RESUMO

Enhancer-derived RNAs (eRNAs) play critical roles in diverse biological processes by facilitating their target gene expression. However, the abundance and function of eRNAs in early embryos are not clear. Here, we present a comprehensive eRNA atlas by systematically integrating publicly available datasets of mouse early embryos. We characterize the transcriptional and regulatory network of eRNAs and show that different embryo developmental stages have distinct eRNA expression and regulatory profiles. Paternal eRNAs are activated asymmetrically during zygotic genome activation (ZGA). Moreover, we identify an eRNA, MZGAe1, which plays an important function in regulating mouse ZGA and early embryo development. MZGAe1 knockdown leads to a developmental block from 2-cell embryo to blastocyst. We create an online data portal, M2ED2, to query and visualize eRNA expression and regulation. Our study thus provides a systematic landscape of eRNA and reveals the important role of eRNAs in regulating mouse early embryo development.


Assuntos
Desenvolvimento Embrionário , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Animais , Desenvolvimento Embrionário/genética , Camundongos , Elementos Facilitadores Genéticos/genética , RNA/metabolismo , RNA/genética , Feminino , Embrião de Mamíferos/metabolismo , Zigoto/metabolismo , Redes Reguladoras de Genes , Masculino
5.
Cell Commun Signal ; 22(1): 207, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566153

RESUMO

Super enhancers (SEs) consist of clusters of enhancers, harboring an unusually high density of transcription factors, mediator coactivators and epigenetic modifications. SEs play a crucial role in the maintenance of cancer cell identity and promoting oncogenic transcription. Super enhancer lncRNAs (SE-lncRNAs) refer to either transcript from SEs locus or interact with SEs, whose transcriptional activity is highly dependent on SEs. Moreover, these SE-lncRNAs can interact with their associated enhancer regions in cis and modulate the expression of oncogenes or key signal pathways in cancers. Inhibition of SEs would be a promising therapy for cancer. In this review, we summarize the research of SE-lncRNAs in different kinds of cancers so far and decode the mechanism of SE-lncRNAs in carcinogenesis to provide novel ideas for the cancer therapy.


Assuntos
Neoplasias , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Super Intensificadores , Elementos Facilitadores Genéticos/genética , Neoplasias/genética , Fatores de Transcrição/genética
6.
Biomolecules ; 14(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38672444

RESUMO

Surgical castration can effectively avoid boar taint and improve pork quality by removing the synthesis of androstenone in the testis, thereby reducing its deposition in adipose tissue. The expression of genes involved in testis-derived hormone metabolism was altered following surgical castration, but the upstream regulatory factors and underlying mechanism remain unclear. In this study, we systematically profiled chromatin accessibility and transcriptional dynamics in liver tissue of castrated and intact full-sibling Yorkshire pigs. First, we identified 897 differentially expressed genes and 6864 differential accessible regions (DARs) using RNA- and ATAC-seq. By integrating the RNA- and ATAC-seq results, 227 genes were identified, and a significant positive correlation was revealed between differential gene expression and the ATAC-seq signal. We constructed a transcription factor regulatory network after motif analysis of DARs and identified a candidate transcription factor (TF) SP1 that targeted the HSD3B1 gene, which was responsible for the metabolism of androstenone. Subsequently, we annotated DARs by incorporating H3K27ac ChIP-seq data, marking 2234 typical enhancers and 245 super enhancers involved in the regulation of all testis-derived hormones. Among these, four typical enhancers associated with HSD3B1 were identified. Furthermore, an in-depth investigation was conducted on the androstenone-related enhancers, and an androstenone-related mutation was identified in a newfound candidatetypical enhancer (andEN) with dual-luciferase assays. These findings provide further insights into how enhancers function as links between phenotypic and non-coding area variations. The discovery of upstream TF and enhancers of HSD3B1 contributes to understanding the regulatory networks of androstenone metabolism and provides an important foundation for improving pork quality.


Assuntos
Cromatina , Elementos Facilitadores Genéticos , Fígado , Animais , Masculino , Suínos , Fígado/metabolismo , Cromatina/metabolismo , Cromatina/genética , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Transcriptoma , Testículo/metabolismo
7.
Cell Rep ; 43(4): 114107, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38613785

RESUMO

The production of type 1 conventional dendritic cells (cDC1s) requires high expression of the transcription factor IRF8. Three enhancers at the Irf8 3' region function in a differentiation stage-specific manner. However, whether and how these enhancers interact physically and functionally remains unclear. Here, we show that the Irf8 3' enhancers directly interact with each other and contact the Irf8 gene body during cDC1 differentiation. The +56 kb enhancer, which functions from multipotent progenitor stages, activates the other 3' enhancers through an IRF8-dependent transcription factor program, that is, in trans. Then, the +32 kb enhancer, which operates in cDC1-committed cells, reversely acts in cis on the other 3' enhancers to maintain the high expression of Irf8. Indeed, mice with compound heterozygous deletion of the +56 and +32 kb enhancers are unable to generate cDC1s. These results illustrate how multiple enhancers cooperate to induce a lineage-determining transcription factor gene during cell differentiation.


Assuntos
Diferenciação Celular , Células Dendríticas , Elementos Facilitadores Genéticos , Fatores Reguladores de Interferon , Fatores Reguladores de Interferon/metabolismo , Fatores Reguladores de Interferon/genética , Animais , Células Dendríticas/metabolismo , Células Dendríticas/citologia , Elementos Facilitadores Genéticos/genética , Camundongos , Camundongos Endogâmicos C57BL
8.
Nat Neurosci ; 27(5): 862-872, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38528203

RESUMO

The mammalian telencephalon contains distinct GABAergic projection neuron and interneuron types, originating in the germinal zone of the embryonic basal ganglia. How genetic information in the germinal zone determines cell types is unclear. Here we use a combination of in vivo CRISPR perturbation, lineage tracing and ChIP-sequencing analyses and show that the transcription factor MEIS2 favors the development of projection neurons by binding enhancer regions in projection-neuron-specific genes during mouse embryonic development. MEIS2 requires the presence of the homeodomain transcription factor DLX5 to direct its functional activity toward the appropriate binding sites. In interneuron precursors, the transcription factor LHX6 represses the MEIS2-DLX5-dependent activation of projection-neuron-specific enhancers. Mutations of Meis2 result in decreased activation of regulatory enhancers, affecting GABAergic differentiation. We propose a differential binding model where the binding of transcription factors at cis-regulatory elements determines differential gene expression programs regulating cell fate specification in the mouse ganglionic eminence.


Assuntos
Desenvolvimento Embrionário , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio , Fatores de Transcrição , Animais , Camundongos , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Desenvolvimento Embrionário/fisiologia , Elementos Facilitadores Genéticos/genética , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/fisiologia , Diferenciação Celular/fisiologia , Interneurônios/metabolismo , Interneurônios/fisiologia , Proteínas com Homeodomínio LIM/metabolismo , Proteínas com Homeodomínio LIM/genética , Neurogênese/fisiologia , Proteínas do Tecido Nervoso
9.
Nat Genet ; 56(4): 686-696, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467791

RESUMO

To regulate expression, enhancers must come in proximity to their target gene. However, the relationship between the timing of enhancer-promoter (E-P) proximity and activity remains unclear, with examples of uncoupled, anticorrelated and correlated interactions. To assess this, we selected 600 characterized enhancers or promoters with tissue-specific activity in Drosophila embryos and performed Capture-C in FACS-purified myogenic or neurogenic cells during specification and tissue differentiation. This enabled direct comparison between E-P proximity and activity transitioning from OFF-to-ON and ON-to-OFF states across developmental conditions. This showed remarkably similar E-P topologies between specified muscle and neuronal cells, which are uncoupled from activity. During tissue differentiation, many new distal interactions emerge where changes in E-P proximity reflect changes in activity. The mode of E-P regulation therefore appears to change as embryogenesis proceeds, from largely permissive topologies during cell-fate specification to more instructive regulation during terminal tissue differentiation, when E-P proximity is coupled to activation.


Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Animais , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Regiões Promotoras Genéticas/genética , Drosophila/genética , Diferenciação Celular/genética
11.
Nat Genet ; 56(4): 675-685, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38509385

RESUMO

Remote enhancers are thought to interact with their target promoters via physical proximity, yet the importance of this proximity for enhancer function remains unclear. Here we investigate the three-dimensional (3D) conformation of enhancers during mammalian development by generating high-resolution tissue-resolved contact maps for nearly a thousand enhancers with characterized in vivo activities in ten murine embryonic tissues. Sixty-one percent of developmental enhancers bypass their neighboring genes, which are often marked by promoter CpG methylation. The majority of enhancers display tissue-specific 3D conformations, and both enhancer-promoter and enhancer-enhancer interactions are moderately but consistently increased upon enhancer activation in vivo. Less than 14% of enhancer-promoter interactions form stably across tissues; however, these invariant interactions form in the absence of the enhancer and are likely mediated by adjacent CTCF binding. Our results highlight the general importance of enhancer-promoter physical proximity for developmental gene activation in mammals.


Assuntos
Elementos Facilitadores Genéticos , Mamíferos , Animais , Camundongos , Elementos Facilitadores Genéticos/genética , Regiões Promotoras Genéticas/genética , Ativação Transcricional/genética , Mamíferos/genética , Cromatina/genética
13.
Nat Genet ; 56(4): 663-674, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38454021

RESUMO

The transcription factor MYC is overexpressed in most cancers, where it drives multiple hallmarks of cancer progression. MYC is known to promote oncogenic transcription by binding to active promoters. In addition, MYC has also been shown to invade distal enhancers when expressed at oncogenic levels, but this enhancer binding has been proposed to have low gene-regulatory potential. Here, we demonstrate that MYC directly regulates enhancer activity to promote cancer type-specific gene programs predictive of poor patient prognosis. MYC induces transcription of enhancer RNA through recruitment of RNA polymerase II (RNAPII), rather than regulating RNAPII pause-release, as is the case at promoters. This process is mediated by MYC-induced H3K9 demethylation and acetylation by GCN5, leading to enhancer-specific BRD4 recruitment through its bromodomains, which facilitates RNAPII recruitment. We propose that MYC drives prognostic cancer type-specific gene programs through induction of an enhancer-specific epigenetic switch, which can be targeted by BET and GCN5 inhibitors.


Assuntos
Neoplasias , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Proteínas Nucleares/genética , Prognóstico , Elementos Facilitadores Genéticos/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Epigênese Genética , Neoplasias/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular/genética
14.
Cell Rep ; 43(4): 113983, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38517895

RESUMO

Transcriptional silencing in Saccharomyces cerevisiae involves the generation of a chromatin state that stably represses transcription. Using multiple reporter assays, a diverse set of upstream activating sequence enhancers and core promoters were investigated for their susceptibility to silencing. We show that heterochromatin stably silences only weak and stress-induced regulatory elements but is unable to stably repress housekeeping gene regulatory elements, and the partial repression of these elements did not result in bistable expression states. Permutation analysis of enhancers and promoters indicates that both elements are targets of repression. Chromatin remodelers help specific regulatory elements to resist repression, most probably by altering nucleosome mobility and changing transcription burst duration. The strong enhancers/promoters can be repressed if silencer-bound Sir1 is increased. Together, our data suggest that the heterochromatic locus has been optimized to stably silence the weak mating-type gene regulatory elements but not strong housekeeping gene regulatory sequences.


Assuntos
Regulação Fúngica da Expressão Gênica , Inativação Gênica , Heterocromatina , Regiões Promotoras Genéticas , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Heterocromatina/metabolismo , Heterocromatina/genética , Regiões Promotoras Genéticas/genética , Elementos Facilitadores Genéticos/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Sequências Reguladoras de Ácido Nucleico/genética , Nucleossomos/metabolismo , Nucleossomos/genética
15.
J Cell Mol Med ; 28(4): e18142, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38372567

RESUMO

We identified and characterized multiple cell-type selective enhancers of the CFTR gene promoter in previous work and demonstrated active looping of these elements to the promoter. Here we address the impact of genomic spacing on these enhancer:promoter interactions and on CFTR gene expression. Using CRISPR/Cas9, we generated clonal cell lines with deletions between the -35 kb airway enhancer and the CFTR promoter in the 16HBE14o- airway cell line, or between the intron 1 (185 + 10 kb) intestinal enhancer and the promoter in the Caco2 intestinal cell line. The effect of these deletions on CFTR transcript abundance, as well as the 3D looping structure of the locus was investigated in triplicate clones of each modification. Our results indicate that both small and larger deletions upstream of the promoter can perturb CFTR expression and -35 kb enhancer:promoter interactions in the airway cells, though the larger deletions are more impactful. In contrast, the small intronic deletions have no effect on CFTR expression and intron 1 enhancer:promoter interactions in the intestinal cells, whereas larger deletions do. Clonal variation following a specific CFTR modification is a confounding factor particularly in 16HBE14o- cells.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Regulação da Expressão Gênica , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células CACO-2 , Elementos Facilitadores Genéticos/genética , Genômica , Cromatina
16.
PLoS Comput Biol ; 20(2): e1011873, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38335222

RESUMO

Super enhancers (SE), large genomic elements that activate transcription and drive cell identity, have been found with cancer-specific gene regulation in human cancers. Recent studies reported the importance of understanding the cooperation and function of SE internal components, i.e., the constituent enhancers (CE). However, there are no pan-cancer studies to identify cancer-specific SE signatures at the constituent level. Here, by revisiting pan-cancer SE activities with H3K27Ac ChIP-seq datasets, we report fingerprint SE signatures for 28 cancer types in the NCI-60 cell panel. We implement a mixture model to discriminate active CEs from inactive CEs by taking into consideration ChIP-seq variabilities between cancer samples and across CEs. We demonstrate that the model-based estimation of CE states provides improved functional interpretation of SE-associated regulation. We identify cancer-specific CEs by balancing their active prevalence with their capability of encoding cancer type identities. We further demonstrate that cancer-specific CEs have the strongest per-base enhancer activities in independent enhancer sequencing assays, suggesting their importance in understanding critical SE signatures. We summarize fingerprint SEs based on the cancer-specific statuses of their component CEs and build an easy-to-use R package to facilitate the query, exploration, and visualization of fingerprint SEs across cancers.


Assuntos
Neoplasias , Super Intensificadores , Humanos , Epigenômica , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica , Neoplasias/genética
17.
Plant Cell ; 36(5): 1985-1999, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38374801

RESUMO

Potato (Solanum tuberosum) is the third most important food crop in the world. Potato tubers must be stored at cold temperatures to minimize sprouting and losses due to disease. However, cold temperatures strongly induce the expression of the potato vacuolar invertase gene (VInv) and cause reducing sugar accumulation. This process, referred to as "cold-induced sweetening," is a major postharvest problem for the potato industry. We discovered that the cold-induced expression of VInv is controlled by a 200 bp enhancer, VInvIn2En, located in its second intron. We identified several DNA motifs in VInvIn2En that bind transcription factors involved in the plant cold stress response. Mutation of these DNA motifs abolished VInvIn2En function as a transcriptional enhancer. We developed VInvIn2En deletion lines in both diploid and tetraploid potato using clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 (Cas9)-mediated gene editing. VInv transcription in cold-stored tubers was significantly reduced in the deletion lines. Interestingly, the VInvIn2En sequence is highly conserved among distantly related Solanum species, including tomato (Solanum lycopersicum) and other non-tuber-bearing species. We conclude that the VInv gene and the VInvIn2En enhancer have adopted distinct roles in the cold stress response in tubers of tuber-bearing Solanum species.


Assuntos
Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Íntrons , Solanum tuberosum , beta-Frutofuranosidase , Solanum tuberosum/genética , Solanum tuberosum/enzimologia , Íntrons/genética , beta-Frutofuranosidase/genética , beta-Frutofuranosidase/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Elementos Facilitadores Genéticos/genética , Vacúolos/metabolismo , Edição de Genes , Plantas Geneticamente Modificadas , Tubérculos/genética , Tubérculos/enzimologia , Sistemas CRISPR-Cas
18.
Cell Rep ; 43(2): 113693, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38271204

RESUMO

Changes in gene regulation have been linked to the expansion of the human cerebral cortex and to neurodevelopmental disorders, potentially by altering neural progenitor proliferation. However, the effects of genetic variation within regulatory elements on neural progenitors remain obscure. We use sgRNA-Cas9 screens in human neural stem cells (hNSCs) to disrupt 10,674 genes and 26,385 conserved regions in 2,227 enhancers active in the developing human cortex and determine effects on proliferation. Genes with proliferation phenotypes are associated with neurodevelopmental disorders and show biased expression in specific fetal human brain neural progenitor populations. Although enhancer disruptions overall have weaker effects than gene disruptions, we identify enhancer disruptions that severely alter hNSC self-renewal. Disruptions in human accelerated regions, implicated in human brain evolution, also alter proliferation. Integrating proliferation phenotypes with chromatin interactions reveals regulatory relationships between enhancers and their target genes contributing to neurogenesis and potentially to human cortical evolution.


Assuntos
Células-Tronco Neurais , RNA Guia de Sistemas CRISPR-Cas , Humanos , Elementos Facilitadores Genéticos/genética , Células-Tronco Neurais/metabolismo , Cromatina/metabolismo , Córtex Cerebral/metabolismo
19.
Nat Genet ; 56(2): 306-314, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38238628

RESUMO

Although promoters and their enhancers are frequently contained within a topologically associating domain (TAD), some developmentally important genes have their promoter and enhancers within different TADs. Hypotheses about molecular mechanisms enabling cross-TAD interactions remain to be assessed. To test these hypotheses, we used optical reconstruction of chromatin architecture to characterize the conformations of the Pitx1 locus on single chromosomes in developing mouse limbs. Our data support a model in which neighboring boundaries are stacked as a result of loop extrusion, bringing boundary-proximal cis-elements into contact. This stacking interaction also contributes to the appearance of architectural stripes in the population average maps. Through molecular dynamics simulations, we found that increasing boundary strengths facilitates the formation of the stacked boundary conformation, counter-intuitively facilitating border bypass. This work provides a revised view of the TAD borders' function, both facilitating and preventing cis-regulatory interactions, and introduces a framework to distinguish border-crossing from border-respecting enhancer-promoter pairs.


Assuntos
Cromatina , Elementos Facilitadores Genéticos , Animais , Camundongos , Elementos Facilitadores Genéticos/genética , Cromatina/genética , Cromossomos , Regiões Promotoras Genéticas/genética , Elementos Isolantes
20.
Nature ; 626(7997): 151-159, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38233525

RESUMO

Enhancers control the location and timing of gene expression and contain the majority of variants associated with disease1-3. The ZRS is arguably the most well-studied vertebrate enhancer and mediates the expression of Shh in the developing limb4. Thirty-one human single-nucleotide variants (SNVs) within the ZRS are associated with polydactyly4-6. However, how this enhancer encodes tissue-specific activity, and the mechanisms by which SNVs alter the number of digits, are poorly understood. Here we show that the ETS sites within the ZRS are low affinity, and identify a functional ETS site, ETS-A, with extremely low affinity. Two human SNVs and a synthetic variant optimize the binding affinity of ETS-A subtly from 15% to around 25% relative to the strongest ETS binding sequence, and cause polydactyly with the same penetrance and severity. A greater increase in affinity results in phenotypes that are more penetrant and more severe. Affinity-optimizing SNVs in other ETS sites in the ZRS, as well as in ETS, interferon regulatory factor (IRF), HOX and activator protein 1 (AP-1) sites within a wide variety of enhancers, cause gain-of-function gene expression. The prevalence of binding sites with suboptimal affinity in enhancers creates a vulnerability in genomes whereby SNVs that optimize affinity, even slightly, can be pathogenic. Searching for affinity-optimizing SNVs in genomes could provide a mechanistic approach to identify causal variants that underlie enhanceropathies.


Assuntos
Elementos Facilitadores Genéticos , Extremidades , Polidactilia , Proteínas Proto-Oncogênicas c-ets , Humanos , Elementos Facilitadores Genéticos/genética , Extremidades/embriologia , Extremidades/patologia , Mutação com Ganho de Função , Proteínas de Homeodomínio/metabolismo , Fatores Reguladores de Interferon/metabolismo , Especificidade de Órgãos/genética , Penetrância , Fenótipo , Polidactilia/embriologia , Polidactilia/genética , Polidactilia/patologia , Polimorfismo de Nucleotídeo Único , Ligação Proteica , Proteínas Proto-Oncogênicas c-ets/metabolismo , Fator de Transcrição AP-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA