Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 187: 114418, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763668

RESUMO

Interest in exploring alternative starch sources like finger millet is rising due to wide starch applications. However, native starch often lacks desired qualities, including rheological properties. Modification is thus necessary for specific end uses. Plasma treatment as a greener and sustainable method for starch modification was therefore, studied for its ability to impact rheological properties of finger millet starch (FMS). Considerable changes in the rheological properties on FMS was noted, a significant decrease and increase (p < 0.05) in the peak viscosity (from 3.35 to 0.553 Pa.s) and paste clarity respectively was observed, indicating occurrence of depolymerization. However, intermediate plasma-treated samples (200 V) observed a decrease in paste clarity attributed to aggregate formation and cross-linking. Cross-linking was also confirmed by findings of frequency sweep where a continuous decrease in G' values of plasma treated FMS gel was interrupted by sudden increase. Despite depolymerization causing alteration of rheological behaviour such as decrease in shear thinning properties, gel strength observed a contradictory increase. This was attributed to incorporation of functional group and absence of shear responsible for network formation giving higher gel strength to FMS gels. This is elaborated in detail in the study. The study thus concluded that cold plasma significantly impacted all the rheological properties of the FMS and hence can prove to be beneficial for modification of starch rheological parameters.


Assuntos
Eleusine , Géis , Gases em Plasma , Reologia , Amido , Amido/química , Gases em Plasma/química , Viscosidade , Eleusine/química , Géis/química , Pressão Atmosférica , Manipulação de Alimentos/métodos
2.
Plant Foods Hum Nutr ; 79(2): 482-488, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38748356

RESUMO

Hypertension remains a significant global health concern, contributing significantly to cardiovascular diseases and mortality rates. The inhibition of angiotensin-converting enzyme (ACE) plays a crucial role in alleviating high blood pressure. We investigated the potential of finger millets (Eleusine coracana) as a natural remedy for hypertension by isolating and characterizing its ACE-inhibitory compound. First, we evaluated the ACE-inhibitory activity of the finger millet ethanol extract and subsequently proceeded with solvent fractionation. Among the solvent fractions, the ethyl acetate fraction exhibited the highest ACE inhibitory activity and was further fractionated. Using preparative high-performance liquid chromatography, the ethyl acetate fraction was separated into four subfractions, with fraction 2 (F2) exhibiting the highest ACE inhibitory activity. Subsequent 1 H-nuclear magnetic resonance (NMR) and 13 C-NMR analyses confirmed that the isolated compound from F2 was catechin. Furthermore, molecular docking studies indicated that catechin has the potential to act as an ACE inhibitor. These findings suggest that finger millets, particularly as a source of catechin, have the potential to be used as a natural antihypertensive.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Anti-Hipertensivos , Eleusine , Simulação de Acoplamento Molecular , Extratos Vegetais , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/química , Eleusine/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/química , Cromatografia Líquida de Alta Pressão , Peptidil Dipeptidase A/metabolismo , Hipertensão/tratamento farmacológico , Espectroscopia de Ressonância Magnética
3.
Int J Biol Macromol ; 268(Pt 1): 131615, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631580

RESUMO

This research was conducted to evaluate the effects of cold plasma (CP) on finger millet starch (FMS). FMS was exposed to partially ionized gas at varying voltages (170, 200, and 230 Volt) for varied time (10, 20, and 30 mins). The impact of treatment was studied using physico-chemical, and functional properties, and the mechanisms of starch modification occurring were stated. A significant reduction in the degree of polymerization was noticed based on parameters like reducing sugar, amylose content, solubility, and molecular weight. However, in certain voltage and time combinations, crosslinking was also confirmed by analysis such as XRD, FTIR, DSC, etc. The properties of starch were altered such as remarkable increase in water solubility by 6.7 times for highest voltage and longest time (230 V/30 min) was registered. NMR data suggested valuable findings- oxidation of OH group at C6 position of starch led to formation of carbonyl group followed by carboxyl group. NMR also showed a decrease in OH protons confirming crosslinking and hence all these analyses helped to conclude findings about the quality changes using CP. It was observed that the highest voltage and considerably longer exposure time of 20 and 30 min induced significant changes in the FMS.


Assuntos
Amilose , Eleusine , Gases em Plasma , Solubilidade , Amido , Amido/química , Gases em Plasma/química , Eleusine/química , Amilose/química , Peso Molecular , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Environ Res ; 251(Pt 1): 118632, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38467361

RESUMO

Visual impairment due to corneal keratitis-causing bacteria is becoming a matter of health concern. The bacterial colonization and their resistance to multiple drugs need imperative attention. To overcome the issue of alternative remedial therapeutic agents, particularly for topical application, a study was carried out to synthesize calcium oxide nanoparticles (CaO NPs) using the biomaterial Eleusine coracana seed aqueous extract. The biosynthesized calcium oxide nanoparticles (CaO NPs) are non-toxic or less-toxic chemical precursors. Moreover, CaO NPs are eco-friendly and are used for several industrial, biomedical, and environmental applications. Biosynthesized CaO NPs were characterized using ultraviolet-visible spectroscopy, Fourier transform-infrared spectroscopy, scanning electron microscopy, and dynamic light scattering study. The synthesized CaO NPs exhibit with good anti-inflammatory activities with dose dependant (50-250 µg/mL). Moreover, Eleusine coracana-mediated CaO NPs significantly inhibited the multiple drug-resistant Gram-positive Staphylococci epidermidis and Enterococcus faecalis and Gram-negative Escherichia coli and Klebsiella pneumoniae that were isolated from the corneal ulcer. This study provides a potential therapeutic option for multiple drug-resistant corneal pathogens that cause vision impairment.


Assuntos
Antibacterianos , Compostos de Cálcio , Eleusine , Nanopartículas , Extratos Vegetais , Sementes , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Compostos de Cálcio/química , Compostos de Cálcio/farmacologia , Sementes/química , Nanopartículas/química , Antibacterianos/farmacologia , Eleusine/química , Óxidos/química , Óxidos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA