Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 15028, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32958954

RESUMO

Vitamin E (VitE) deficiency results in embryonic lethality. Knockdown of the gene ttpa encoding for the VitE regulatory protein [α-tocopherol transfer protein (α-TTP)] in zebrafish embryos causes death within 24 h post-fertilization (hpf). To test the hypothesis that VitE, not just α-TTP, is necessary for nervous system development, adult 5D strain zebrafish, fed either VitE sufficient (E+) or deficient (E-) diets, were spawned to obtain E+ and E- embryos, which were subjected to RNA in situ hybridization and RT-qPCR. Ttpa was expressed ubiquitously in embryos up to 12 hpf. Early gastrulation (6 hpf) assessed by goosecoid expression was unaffected by VitE status. By 24 hpf, embryos expressed ttpa in brain ventricle borders, which showed abnormal closure in E- embryos. They also displayed disrupted patterns of paired box 2a (pax2a) and SRY-box transcription factor 10 (sox10) expression in the midbrain-hindbrain boundary, spinal cord and dorsal root ganglia. In E- embryos, the collagen sheath notochord markers (col2a1a and col9a2) appeared bent. Severe developmental errors in E- embryos were characterized by improper nervous system patterning of the usually carefully programmed transcriptional signals. Histological analysis also showed developmental defects in the formation of the fore-, mid- and hindbrain and somites of E- embryos at 24 hpf. Ttpa expression profile was not altered by the VitE status demonstrating that VitE itself, and not ttpa, is required for development of the brain and peripheral nervous system in this vertebrate embryo model.


Assuntos
Embrião não Mamífero/anormalidades , Sistema Nervoso/embriologia , Vitamina E/fisiologia , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Animais , Encéfalo/embriologia , Proteínas de Transporte/genética , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/inervação , Gastrulação/efeitos dos fármacos , Gastrulação/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Fator de Transcrição PAX2/genética , Fatores de Transcrição SOXE/genética , Vitamina E/farmacologia , Deficiência de Vitamina E/embriologia
2.
Sci Rep ; 8(1): 2917, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29440757

RESUMO

Primodos was a hormone pregnancy test used between 1958-1978 that has been implicated with causing a range of birth defects ever since. Though Primodos is no longer used, it's components, Norethisterone acetate and Ethinyl estradiol, are used in other medications today including treatments for endometriosis and contraceptives. However, whether Primodos caused birth defects or not remains controversial, and has been little investigated. Here we used the developing zebrafish embryo, a human cell-line and mouse retinal explants to investigate the actions of the components of Primodos upon embryonic and tissue development. We show that Norethisterone acetate and Ethinyl estradiol cause embryonic damage in a dose and time responsive manner. The damage occurs rapidly after drug exposure, affecting multiple organ systems. Moreover, we found that the Norethisterone acetate and Ethinyl estradiol mixture can affect nerve outgrowth and blood vessel patterning directly and accumulates in the forming embryo for at least 24 hrs. These data demonstrate that Norethisterone acetate and Ethinyl estradiol are potentially teratogenic, depending on dose and embryonic stage of development in the zebrafish. Further work in mammalian model species are now required to build on these findings and determine if placental embryos also are affected by synthetic sex hormones and their mechanisms of action.


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Etinilestradiol/toxicidade , Hormônios/química , Acetato de Noretindrona/toxicidade , Testes de Gravidez/efeitos adversos , Testes de Toxicidade , Peixe-Zebra/embriologia , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Interações Medicamentosas , Embrião não Mamífero/citologia , Embrião não Mamífero/inervação , Desenvolvimento Embrionário/efeitos dos fármacos , Etinilestradiol/análise , Humanos , Camundongos , Sistema Nervoso/efeitos dos fármacos , Sistema Nervoso/crescimento & desenvolvimento , Acetato de Noretindrona/análise , Fatores de Tempo
3.
PLoS One ; 10(8): e0134915, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26252385

RESUMO

Organismal growth regulation requires the interaction of multiple metabolic, hormonal and neuronal pathways. While the molecular basis for many of these are well characterized, less is known about the developmental origins of growth regulatory structures and the mechanisms governing control of feeding and satiety. For these reasons, new tools and approaches are needed to link the specification and maturation of discrete cell populations with their subsequent regulatory roles. In this study, we characterize a rhomboid enhancer element that selectively labels four Drosophila embryonic neural precursors. These precursors give rise to the hypopharyngeal sensory organ of the peripheral nervous system and a subset of neurons in the deutocerebral region of the embryonic central nervous system. Post embryogenesis, the rhomboid enhancer is active in a subset of cells within the larval pharyngeal epithelium. Enhancer-targeted toxin expression alters the morphology of the sense organ and results in impaired larval growth, developmental delay, defective anterior spiracle eversion and lethality. Limiting the duration of toxin expression reveals differences in the critical periods for these effects. Embryonic expression causes developmental defects and partially penetrant pre-pupal lethality. Survivors of embryonic expression, however, ultimately become viable adults. In contrast, post-embryonic toxin expression results in fully penetrant lethality. To better define the larval growth defect, we used a variety of assays to demonstrate that toxin-targeted larvae are capable of locating, ingesting and clearing food and they exhibit normal food search behaviors. Strikingly, however, following food exposure these larvae show a rapid decrease in consumption suggesting a satiety-like phenomenon that correlates with the period of impaired larval growth. Together, these data suggest a critical role for these enhancer-defined lineages in regulating feeding, growth and viability.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/fisiologia , Elementos Facilitadores Genéticos/genética , Comportamento Alimentar , Proteínas de Membrana/genética , Neurônios/metabolismo , Envelhecimento/fisiologia , Animais , Toxina Diftérica/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Embrião não Mamífero/inervação , Cabeça , Hipofaringe/metabolismo , Larva/crescimento & desenvolvimento , Proteínas de Membrana/metabolismo , Fragmentos de Peptídeos/metabolismo , Resposta de Saciedade , Órgãos dos Sentidos/metabolismo , Fatores de Tempo
4.
Genesis ; 52(3): 208-21, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25368883

RESUMO

Summary:Urchin embryos continue to prove useful as a means of studying embryonic signaling and gene regulatory networks, which together control early development. Recent progress in understanding the molecular mechanisms underlying the patterning of ectoderm has renewed interest in urchin neurogenesis. We have employed an emerging model of neurogenesis that appears to be broadly shared by metazoans as a framework for this review. We use the model to provide context and summarize what is known about neurogenesis in urchin embryos. We review morphological features of the differentiation phase of neurogenesis and summarize current understanding of neural specification and regulation of proneural networks. Delta-Notch signaling is a common feature of metazoan neurogenesis that produces committed progenitors and it appears to be a critical phase of neurogenesis in urchin embryos. Descriptions of the differentiation phase of neurogenesis indicate a stereotypic sequence of neural differentiation and patterns of axonal growth. Features of neural differentiation are consistent with localized signals guiding growth cones with trophic, adhesive, and tropic cues. Urchins are a facile, postgenomic model with the potential of revealing many shared and derived features of deuterostome neurogenesis.


Assuntos
Neurogênese/fisiologia , Ouriços-do-Mar/embriologia , Animais , Embrião não Mamífero/inervação , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Biológicos , Neurogênese/genética , Especificidade de Órgãos , Receptores Notch/genética , Receptores Notch/metabolismo , Ouriços-do-Mar/genética
5.
Int J Dev Biol ; 57(9-10): 787-92, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24307304

RESUMO

Kidins220 (Kinase D interacting substrate of 220 kDa)/ARMS (Ankyrin Repeat-rich Membrane Spanning) is a conserved scaffold protein that acts as a downstream substrate for protein kinase D and mediates multiple receptor signalling pathways. Despite the dissecting of the function of this protein in mammals, using both in vitro and in vivo studies, a detailed characterization of its gene expression during early phases of embryogenesis has not been described yet. Here, we have used Xenopus laevis as a vertebrate model system to analyze the gene expression and the protein localization of Kidins220/ARMS. We found its expression was dynamically regulated during development. Kidins220/ARMS mRNA was expressed from neurula to larval stage in different embryonic regions including the nervous system, eye, branchial arches, heart and somites. Similar to the transcript, the protein was present in multiple embryonic domains including the central nervous system, cranial nerves, motor nerves, intersomitic junctions, retinal ganglion cells, lens, otic vesicle, heart and branchial arches. In particular, in some regions such as the retina and somites, the protein displayed a differential localization pattern in stage 42 embryos when compared to the earlier examined stages. Taken together our results suggest that this multidomain protein is involved in distinct spatio-temporal differentiative events.


Assuntos
Repetição de Anquirina/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Sistema Nervoso/embriologia , Neurogênese/genética , Proteínas de Peixe-Zebra/genética , Animais , Embrião não Mamífero/embriologia , Embrião não Mamífero/inervação , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Coração/embriologia , Coração/inervação , Proteínas de Membrana/biossíntese , Proteínas de Membrana/farmacocinética , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/farmacocinética , Sistema Nervoso/metabolismo , Neurulação/genética , Proteína Quinase C/metabolismo , Estrutura Terciária de Proteína , RNA Mensageiro/biossíntese , Xenopus laevis , Proteínas de Peixe-Zebra/biossíntese , Proteínas de Peixe-Zebra/farmacocinética
6.
PLoS One ; 8(2): e55541, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23383335

RESUMO

The evolutionary origin of novelties is a central problem in biology. At a cellular level this requires, for example, molecularly resolving how brainstem motor neurons change their innervation target from muscle fibers (branchial motor neurons) to neural crest-derived ganglia (visceral motor neurons) or ear-derived hair cells (inner ear and lateral line efferent neurons). Transplantation of various tissues into the path of motor neuron axons could determine the ability of any motor neuron to innervate a novel target. Several tissues that receive direct, indirect, or no motor innervation were transplanted into the path of different motor neuron populations in Xenopus laevis embryos. Ears, somites, hearts, and lungs were transplanted to the orbit, replacing the eye. Jaw and eye muscle were transplanted to the trunk, replacing a somite. Applications of lipophilic dyes and immunohistochemistry to reveal motor neuron axon terminals were used. The ear, but not somite-derived muscle, heart, or liver, received motor neuron axons via the oculomotor or trochlear nerves. Somite-derived muscle tissue was innervated, likely by the hypoglossal nerve, when replacing the ear. In contrast to our previous report on ear innervation by spinal motor neurons, none of the tissues (eye or jaw muscle) was innervated when transplanted to the trunk. Taken together, these results suggest that there is some plasticity inherent to motor innervation, but not every motor neuron can become an efferent to any target that normally receives motor input. The only tissue among our samples that can be innervated by all motor neurons tested is the ear. We suggest some possible, testable molecular suggestions for this apparent uniqueness.


Assuntos
Embrião não Mamífero/inervação , Neurônios Motores/fisiologia , Transplante de Tecidos/métodos , Animais , Orelha/inervação , Proteínas de Fluorescência Verde/metabolismo , Coração/inervação , Imuno-Histoquímica , Pulmão/inervação , Microscopia Confocal , Somitos/inervação , Xenopus laevis
7.
Development ; 140(5): 1111-22, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23404108

RESUMO

The neurohypophysis is a crucial component of the hypothalamo-pituitary axis, serving as the site of release of hypothalamic neurohormones into a plexus of hypophyseal capillaries. The growth of hypothalamic axons and capillaries to the forming neurohypophysis in embryogenesis is therefore crucial to future adult homeostasis. Using ex vivo analyses in chick and in vivo analyses in mutant and transgenic zebrafish, we show that Fgf10 and Fgf3 secreted from the forming neurohypophysis exert direct guidance effects on hypothalamic neurosecretory axons. Simultaneously, they promote hypophyseal vascularisation, exerting early direct effects on endothelial cells that are subsequently complemented by indirect effects. Together, our studies suggest a model for the integrated neurohemal wiring of the hypothalamo-neurohypophyseal axis.


Assuntos
Fator 10 de Crescimento de Fibroblastos/fisiologia , Fator 3 de Crescimento de Fibroblastos/fisiologia , Neovascularização Fisiológica/genética , Neuro-Hipófise/irrigação sanguínea , Neuro-Hipófise/inervação , Proteínas de Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados , Axônios/metabolismo , Axônios/fisiologia , Células Cultivadas , Embrião de Galinha/irrigação sanguínea , Embrião de Galinha/inervação , Embrião de Galinha/metabolismo , Embrião não Mamífero/irrigação sanguínea , Embrião não Mamífero/inervação , Embrião não Mamífero/metabolismo , Fator 10 de Crescimento de Fibroblastos/genética , Fator 10 de Crescimento de Fibroblastos/metabolismo , Fator 3 de Crescimento de Fibroblastos/genética , Fator 3 de Crescimento de Fibroblastos/metabolismo , Sistema Hipotálamo-Hipofisário/irrigação sanguínea , Sistema Hipotálamo-Hipofisário/embriologia , Sistema Hipotálamo-Hipofisário/metabolismo , Modelos Biológicos , Neovascularização Fisiológica/fisiologia , Neuro-Hipófise/embriologia , Vertebrados/embriologia , Vertebrados/genética , Vertebrados/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
8.
PLoS One ; 8(1): e54071, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23349787

RESUMO

During embryogenesis motor axons navigate to their target muscles, where individual motor axons develop complex branch morphologies. The mechanisms that control axonal branching morphogenesis have been studied intensively, yet it still remains unclear when branches begin to form or how branch locations are determined. Live cell imaging of individual zebrafish motor axons reveals that the first axonal branches are generated at the ventral extent of the myotome via bifurcation of the growth cone. Subsequent branches are generated by collateral branching restricted to their synaptic target field along the distal portion of the axon. This precisely timed and spatially restricted branching process is disrupted in turnout mutants we identified in a forward genetic screen. Molecular genetic mapping positioned the turnout mutation within a 300 kb region encompassing eight annotated genes, however sequence analysis of all eight open reading frames failed to unambiguously identify the turnout mutation. Chimeric analysis and single cell labeling reveal that turnout function is required cell non-autonomously for intraspinal motor axon guidance and peripheral branch formation. turnout mutant motor axons form the first branch on time via growth cone bifurcation, but unlike wild-type they form collateral branches precociously, when the growth cone is still navigating towards the ventral myotome. These precocious collateral branches emerge along the proximal region of the axon shaft typically devoid of branches, and they develop into stable, permanent branches. Furthermore, we find that null mutants of the guidance receptor plexin A3 display identical motor axon branching defects, and time lapse analysis reveals that precocious branch formation in turnout and plexin A3 mutants is due to increased stability of otherwise short-lived axonal protrusions. Thus, plexin A3 dependent intrinsic and turnout dependent extrinsic mechanisms suppress collateral branch morphogenesis by destabilizing membrane protrusions before the growth cone completes navigation into the synaptic target field.


Assuntos
Axônios/fisiologia , Neurônios Motores/fisiologia , Receptores de Superfície Celular/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Axônios/metabolismo , Embrião não Mamífero/embriologia , Embrião não Mamífero/inervação , Embrião não Mamífero/metabolismo , Matriz Extracelular/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica , Microscopia Confocal , Morfogênese/genética , Neurônios Motores/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/embriologia , Músculo Esquelético/inervação , Músculo Esquelético/metabolismo , Mutação , Neurogênese/genética , Receptores de Superfície Celular/genética , Sinapses/metabolismo , Sinapses/fisiologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
9.
J Exp Biol ; 215(Pt 22): 3881-94, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22855620

RESUMO

In teleost fish, O(2) chemoreceptors of the gills (neuroepithelial cells or NECs) initiate cardiorespiratory reflexes during hypoxia. In developing zebrafish, hyperventilatory and behavioural responses to hypoxia are observed before development of gill NECs, indicating that extrabranchial chemoreceptors mediate these responses in embryos. We have characterised a population of cells of the skin in developing zebrafish that resemble O(2)-chemoreceptive gill NECs. Skin NECs were identified by serotonin immunolabelling and were distributed over the entire skin surface. These cells contained synaptic vesicles and were associated with nerve fibres. Skin NECs were first evident in embryos 24-26 h post-fertilisation (h.p.f.), and embryos developed a behavioural response to hypoxia between 24 and 48 h.p.f. The total number of NECs declined with age from approximately 300 cells per larva at 3 days post-fertilisation (d.p.f.) to ~120 cells at 7 d.p.f., and were rarely observed in adults. Acclimation to hypoxia (30 mmHg) or hyperoxia (300 mmHg) resulted in delayed or accelerated development, respectively, of peak resting ventilatory frequency and produced changes in the ventilatory response to hypoxia. In hypoxia-acclimated larvae, the temporal pattern of skin NECs was altered such that the number of cells did not decrease with age. By contrast, hyperoxia produced a more rapid decline in NEC number. The neurotoxin 6-hydroxydopamine degraded catecholaminergic nerve terminals that made contact with skin NECs and eliminated the hyperventilatory response to hypoxia. These results indicate that skin NECs are sensitive to changes in O(2) and suggest that they may play a role in initiating responses to hypoxia in developing zebrafish.


Assuntos
Forma Celular , Células Neuroepiteliais/citologia , Oxigênio/farmacologia , Serotonina/metabolismo , Pele/citologia , Pele/inervação , Peixe-Zebra/embriologia , Aclimatação/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Contagem de Células , Hipóxia Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Embrião não Mamífero/citologia , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/inervação , Embrião não Mamífero/metabolismo , Imunofluorescência , Hiperóxia/patologia , Microscopia Confocal , Fibras Nervosas/efeitos dos fármacos , Fibras Nervosas/metabolismo , Células Neuroepiteliais/efeitos dos fármacos , Células Neuroepiteliais/metabolismo , Oxidopamina , Pressão Parcial , Descanso , Pele/efeitos dos fármacos , Pele/embriologia , Vesículas Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/metabolismo
10.
PLoS One ; 6(12): e28970, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22194964

RESUMO

BACKGROUND: It has been shown that species separated by relatively short evolutionary distances may have extreme variations in egg size and shape. Those variations are expected to modify the polarized morphogenetic gradients that pattern the dorso-ventral axis of embryos. Currently, little is known about the effects of scaling over the embryonic architecture of organisms. We began examining this problem by asking if changes in embryo size in closely related species of Drosophila modify all three dorso-ventral germ layers or only particular layers, and whether or not tissue patterning would be affected at later stages. PRINCIPAL FINDINGS: Here we report that changes in scale affect predominantly the mesodermal layer at early stages, while the neuroectoderm remains constant across the species studied. Next, we examined the fate of somatic myoblast precursor cells that derive from the mesoderm to test whether the assembly of the larval body wall musculature would be affected by the variation in mesoderm specification. Our results show that in all four species analyzed, the stereotyped organization of the body wall musculature is not disrupted and remains the same as in D. melanogaster. Instead, the excess or shortage of myoblast precursors is compensated by the formation of individual muscle fibers containing more or less fused myoblasts. CONCLUSIONS: Our data suggest that changes in embryonic scaling often lead to expansions or retractions of the mesodermal domain across Drosophila species. At later stages, two compensatory cellular mechanisms assure the formation of a highly stereotyped larval somatic musculature: an invariable selection of 30 muscle founder cells per hemisegment, which seed the formation of a complete array of muscle fibers, and a variable rate in myoblast fusion that modifies the number of myoblasts that fuse to individual muscle fibers.


Assuntos
Padronização Corporal , Drosophilidae/anatomia & histologia , Drosophilidae/embriologia , Mesoderma/embriologia , Músculos/embriologia , Mioblastos/citologia , Animais , Axônios/metabolismo , Evolução Biológica , Blastoderma/citologia , Blastoderma/embriologia , Tamanho Corporal , Contagem de Células , Fusão Celular , Núcleo Celular/metabolismo , Drosophilidae/citologia , Drosophilidae/genética , Embrião não Mamífero/anatomia & histologia , Embrião não Mamífero/citologia , Embrião não Mamífero/inervação , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva/crescimento & desenvolvimento , Larva/metabolismo , Mesoderma/citologia , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Músculos/inervação , Mioblastos/metabolismo , Especificidade da Espécie
11.
Int J Dev Biol ; 54(10): 1443-51, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21302254

RESUMO

Previous comparative and developmental studies have suggested that the cholinergic inner ear efferent system derives from developmentally redirected facial branchial motor neurons that innervate the vertebrate ear hair cells instead of striated muscle fibers. Transplantation of Xenopus laevis ears into the path of spinal motor neuron axons could show whether spinal motor neurons could reroute to innervate the hair cells as efferent fibers. Such transplantations could also reveal whether ear development could occur in a novel location including afferent and efferent connections with the spinal cord. Ears from stage 24-26 embryos were transplanted from the head to the trunk and allowed to mature to stage 46. Of 109 transplanted ears, 73 developed with otoconia. The presence of hair cells was confirmed by specific markers and by general histology of the ear, including TEM. Injections of dyes ventral to the spinal cord revealed motor innervation of hair cells. This was confirmed by immunohistochemistry and by electron microscopy structural analysis, suggesting that some motor neurons rerouted to innervate the ear. Also, injection of dyes into the spinal cord labeled vestibular ganglion cells in transplanted ears indicating that these ganglion cells connected to the spinal cord. These nerves ran together with spinal nerves innervating the muscles, suggesting that fasciculation with existing fibers is necessary. Furthermore, ear removal had little effect on development of cranial and lateral line nerves. These results indicate that the ear can develop normally, in terms of histology, in a new location, complete with efferent and afferent innervations to and from the spinal cord.


Assuntos
Orelha Interna/inervação , Orelha , Neurônios Motores/fisiologia , Medula Espinal/embriologia , Vias Aferentes/embriologia , Vias Aferentes/crescimento & desenvolvimento , Animais , Orelha/embriologia , Orelha/inervação , Orelha/cirurgia , Vias Eferentes/embriologia , Vias Eferentes/crescimento & desenvolvimento , Embrião não Mamífero/inervação , Embrião não Mamífero/cirurgia , Células Ciliadas Auditivas , Microscopia Eletrônica , Membrana dos Otólitos/embriologia , Medula Espinal/crescimento & desenvolvimento , Medula Espinal/fisiologia , Nervos Espinhais/embriologia , Nervos Espinhais/crescimento & desenvolvimento , Coloração e Rotulagem , Xenopus laevis
12.
Mol Cell Endocrinol ; 312(1-2): 53-60, 2009 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-19464344

RESUMO

The KAL-1 gene underlies the X-linked form of Kallmann syndrome (KS), a neurological disorder that impairs the development of the olfactory and GnRH systems. KAL-1 encodes anosmin-1, a cell matrix protein that shows cell adhesion, neurite outgrowth, and axon-guidance and -branching activities. We used zebrafish embryos as model to better understand the role of this protein during olfactory system (OS) development. First, we detected the protein in olfactory sensory neurons from 22 h post-fertilization (hpf) onward, i.e. prior their pioneer axons reached presumptive olfactory bulbs (OBs). We found that anosmin-1a depletion impaired the fasciculation of olfactory axons and their terminal targeting within OBs. Last, we showed that kal1a inactivation induced a severe decrease in the number of GABAergic and dopaminergic OB neurons. Though the phenotypes induced following anosmin-1a depletion in zebrafish embryos did not match precisely the defects observed in KS patients, our results provide the first demonstration of a direct requirement for anosmin-1 in OS development in vertebrates and stress the role of OB innervation on OB neuron differentiation.


Assuntos
Axônios/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Bulbo Olfatório/embriologia , Neurônios Receptores Olfatórios/embriologia , Proteínas de Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados/embriologia , Animais Geneticamente Modificados/metabolismo , Encéfalo/embriologia , Encéfalo/metabolismo , Encéfalo/patologia , Embrião não Mamífero/inervação , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Processamento de Imagem Assistida por Computador , Hibridização in Situ Fluorescente , Interneurônios/metabolismo , Interneurônios/patologia , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/genética , Bulbo Olfatório/metabolismo , Bulbo Olfatório/patologia , Mucosa Olfatória/embriologia , Mucosa Olfatória/metabolismo , Mucosa Olfatória/patologia , Condutos Olfatórios/embriologia , Condutos Olfatórios/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Oligodesoxirribonucleotídeos Antissenso/metabolismo , Transporte Proteico , Células Receptoras Sensoriais/classificação , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/patologia , Fatores de Tempo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
13.
Development ; 135(22): 3707-17, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18927150

RESUMO

We used non-invasive muscle imaging to study the onset of motor activity and emergence of coordinated movement in Drosophila embryos. Earliest movements are myogenic, and neurally controlled muscle contractions first appear with the onset of bursting activity 17 hours after egg laying. Initial episodes of activity are poorly organised and coordinated crawling sequences only begin to appear after a further hour of bursting. Thus, network performance improves during this first period of activity. The embryo continues to exhibit bursts of crawling-like sequences until shortly before hatching, while other reflexes also mature. Bursting does not begin as a reflex response to sensory input but appears to reflect the onset of spontaneous activity in the motor network. It does not require GABA-mediated transmission, and, by using a light-activated channel to excite the network, we demonstrate activity-dependent depression that may cause burst termination.


Assuntos
Drosophila melanogaster/embriologia , Embrião não Mamífero/embriologia , Embrião não Mamífero/inervação , Movimento/fisiologia , Músculos/embriologia , Músculos/inervação , Animais , Cinética , Larva , Contração Muscular , Músculos/fisiologia , Transmissão Sináptica
14.
J Neurochem ; 105(3): 690-702, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18088365

RESUMO

Neuropeptides in the stomatogastric ganglion (STG) and the brain of adult and late embryonic Homarus americanus were compared using a multi-faceted mass spectral strategy. Overall, 29 neuropeptides from 10 families were identified in the brain and/or the STG of the lobster. Many of these neuropeptides are reported for the first time in the embryonic lobster. Neuropeptide extraction followed by liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry enabled confident identification of 24 previously characterized peptides in the adult brain and 13 peptides in the embryonic brain. Two novel peptides (QDLDHVFLRFa and GPPSLRLRFa) were de novo sequenced. In addition, a comparison of adult to embryonic brains revealed the presence of an incompletely processed form of Cancer borealis tachykinin-related peptide 1a (CabTRP 1a, APSGFLGMRG) only in the embryonic brain. A comparison of adult to embryonic STGs revealed that QDLDHVFLRFa was present in the embryonic STG but absent in the adult STG, and CabTRP 1a exhibited the opposite trend. Relative quantification of neuropeptides in the STG revealed that three orcokinin family peptides (NFDEIDRSGFGF, NFDEIDRSGFGFV, and NFDEIDRSGFGFN), a B-type allatostatin (STNWSSLRSAWa), and an orcomyotropin-related peptide (FDAFTTGFGHS) exhibited higher signal intensities in the adult relative to the embryonic STG. RFamide (Arg-Phe-amide) family peptide (DTSTPALRLRFa), [Val(1)]SIFamide (VYRKPPFNGSIFa), and orcokinin-related peptide (VYGPRDIANLY) were more intense in the embryonic STG spectra than in the adult STG spectra. Collectively, this study expands our current knowledge of the H. americanus neuropeptidome and highlights some intriguing expression differences that occur during development.


Assuntos
Encéfalo/metabolismo , Gânglios dos Invertebrados/metabolismo , Nephropidae/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Envelhecimento/metabolismo , Sequência de Aminoácidos/fisiologia , Animais , Encéfalo/citologia , Encéfalo/embriologia , Diferenciação Celular/fisiologia , Cromatografia Líquida de Alta Pressão , Embrião não Mamífero/inervação , Gânglios dos Invertebrados/citologia , Trato Gastrointestinal/inervação , Espectrometria de Massas , Nephropidae/citologia , Nephropidae/embriologia , Neuropeptídeos/análise , Neuropeptídeos/química , Filogenia
15.
Proc Natl Acad Sci U S A ; 104(17): 7092-7, 2007 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-17438294

RESUMO

Mutations in the human laminin alpha2 (LAMA2) gene result in the most common form of congenital muscular dystrophy (MDC1A). There are currently three models for the molecular basis of cellular pathology in MDC1A: (i) lack of LAMA2 leads to sarcolemmal weakness and failure, followed by cellular necrosis, as is the case in Duchenne muscular dystrophy (DMD); (ii) loss of LAMA2-mediated signaling during the development and maintenance of muscle tissue results in myoblast proliferation and fusion defects; (iii) loss of LAMA2 from the basement membrane of the Schwann cells surrounding the peripheral nerves results in a lack of motor stimulation, leading to effective denervation atrophy. Here we show that the degenerative muscle phenotype in the zebrafish dystrophic mutant, candyfloss (caf) results from mutations in the laminin alpha2 (lama2) gene. In vivo time-lapse analysis of mechanically loaded fibers and membrane permeability assays suggest that, unlike DMD, fiber detachment is not initially associated with sarcolemmal rupture. Early muscle formation and myoblast fusion are normal, indicating that any deficiency in early Lama2 signaling does not lead to muscle pathology. In addition, innervation by the primary motor neurons is unaffected, and fiber detachment stems from muscle contraction, demonstrating that muscle atrophy through lack of motor neuron activity does not contribute to pathology in this system. Using these and other analyses, we present a model of lama2 function where fiber detachment external to the sarcolemma is mechanically induced, and retracted fibers with uncompromised membranes undergo subsequent apoptosis.


Assuntos
Matriz Extracelular/metabolismo , Laminina/deficiência , Distrofia Muscular Animal/congênito , Proteínas Mutantes/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/anormalidades , Adesividade/efeitos dos fármacos , Alelos , Sequência de Aminoácidos , Animais , Sequência de Bases , Morte Celular/efeitos dos fármacos , Códon sem Sentido/genética , Embrião não Mamífero/citologia , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/inervação , Embrião não Mamífero/ultraestrutura , Matriz Extracelular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Junções Intercelulares/efeitos dos fármacos , Junções Intercelulares/ultraestrutura , Laminina/química , Laminina/genética , Laminina/metabolismo , Dados de Sequência Molecular , Atividade Motora/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/patologia , Oligonucleotídeos Antissenso/farmacologia , Fases de Leitura Aberta/genética , Sarcolema/efeitos dos fármacos , Sarcolema/patologia , Homologia de Sequência de Aminoácidos , Peixe-Zebra/embriologia
16.
J Neurosci ; 24(30): 6639-49, 2004 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-15282266

RESUMO

Cyclic nucleotide levels within extending growth cones influence how navigating axons respond to guidance cues. Pharmacological alteration of cAMP or cGMP signaling in vitro dramatically modulates how growth cones respond to attractants and repellents, although how these second messengers function in the context of guidance cue signaling cascades in vivo is poorly understood. We report here that the Drosophila receptor-type guanylyl cyclase Gyc76C is required for semaphorin-1a (Sema-1a)-plexin A repulsive axon guidance of motor axons in vivo. Our genetic analyses define a neuronal requirement for Gyc76C in axonal repulsion. Additionally, we find that the integrity of the Gyc76C catalytic cyclase domain is critical for Gyc76C function in Sema-1a axon repulsion. Our results support a model in which cGMP production by Gyc76C facilitates Sema-1a-plexin A-mediated defasciculation of motor axons, allowing for the generation of neuromuscular connectivity in the developing Drosophila embryo.


Assuntos
Axônios/fisiologia , GMP Cíclico/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/embriologia , Cones de Crescimento/fisiologia , Guanilato Ciclase/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Receptores de Superfície Celular/fisiologia , Sistemas do Segundo Mensageiro/fisiologia , Semaforinas/fisiologia , Sequência de Aminoácidos , Animais , Axônios/ultraestrutura , GMP Cíclico/biossíntese , Proteínas de Ligação a DNA/fisiologia , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Embrião não Mamífero/inervação , Feminino , Cones de Crescimento/ultraestrutura , Guanilato Ciclase/genética , Masculino , Dados de Sequência Molecular , Neurônios Motores/fisiologia , Neurônios Motores/ultraestrutura , Fenótipo , Estrutura Terciária de Proteína , Receptores de Superfície Celular/genética
18.
J Neurosci ; 23(13): 5897-905, 2003 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-12843294

RESUMO

Gs(alpha) is a subunit of the heterotrimeric G-protein complex, expressed ubiquitously in all types of cells, including neurons. Drosophila larvae, which have mutations in the Gs(alpha) gene, are lethargic, suggesting an impairment of neuronal functions. In this study, we examined synaptic transmission at the neuromuscular synapse in Gs(alpha)-null (dgsR60) embryos shortly before they hatched. At low-frequency nerve stimulation, synaptic transmission in mutant embryos was not very different from that in controls. In contrast, facilitation during tetanic stimulation was minimal in dgsR60, and no post-tetanic potentiation was observed. Miniature synaptic currents (mSCs) were slightly smaller in amplitude and less frequent in dgsR60 embryos in normal-K+ saline. In high-K+ saline, mSCs with distinctly large amplitude occurred frequently in controls at late embryonic stages, whereas those mSCs were rarely observed in dgsR60 embryos, suggesting a developmental defect in the mutant. Using the Gal4-UAS expression system, we found that these phenotypes in dgsR60 were caused predominantly by lack of Gs(alpha) in presynaptic neurons and not in postsynaptic muscles. To test whether Gs(alpha) couples presynaptic modulator receptors to adenylyl cyclase (AC), we examined the responses of two known G-protein-coupled receptors in dgsR60 embryos. Both metabotropic glutamate and octopamine receptor responses were indistinguishable from those of controls, indicating that these receptors are not linked to AC by Gs(alpha). We therefore suggest that synaptic transmission is compromised in dgsR60 embryos because of presynaptic defects in two distinct processes; one is uncoupling between the yet-to-be-known modulator receptor and AC activation, and the other is a defect in synapse formation.


Assuntos
Embrião não Mamífero/fisiologia , Subunidades alfa Gs de Proteínas de Ligação ao GTP/deficiência , Terminações Pré-Sinápticas/fisiologia , Transmissão Sináptica/fisiologia , Adenilil Ciclases/metabolismo , Animais , Cálcio/metabolismo , Drosophila , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Estimulação Elétrica , Embrião não Mamífero/inervação , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Expressão Gênica , Mutação , Junção Neuromuscular/fisiologia , Técnicas de Patch-Clamp , Terminações Pré-Sinápticas/metabolismo , Subunidades Proteicas/deficiência , Subunidades Proteicas/genética , Receptores de Amina Biogênica/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Transmissão Sináptica/genética , Transgenes
19.
J Neurosci ; 23(11): 4625-34, 2003 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-12805302

RESUMO

GABAergic inhibition in Drosophila, as in other insects and mammals, is important for regulation of activity in the CNS. However, the functional properties of synaptic GABA receptors in Drosophila have not been described. Here, we report that spontaneous GABAergic postsynaptic currents (sPSCs) in cultured embryonic Drosophila neurons are mediated by picrotoxin-sensitive chloride-conducting receptors. A rapid increase in spontaneous firing in response to bath application of picrotoxin demonstrates that these GABA receptors mediate inhibition in the neuronal networks formed in culture. Many of the spontaneous GABAergic synaptic currents are sodium action potential independent [miniature IPSCs (mIPSCs)] but are regulated by external calcium levels. The large variation in mIPSC frequency, amplitude, and kinetics properties between neurons suggests heterogeneity in GABA receptor number, location, and/or subtype. A decrease in the mean mIPSC decay time constant between 2 and 5 d, in the absence of a correlated change in rise time, demonstrates that the functional properties of the synaptic GABA receptors are regulated during maturation in vitro. Finally, neurons from the GABA receptor subunit mutant Rdl exhibit reduced sensitivity to picrotoxin blockade of the mIPSCs and resistance to picrotoxin-induced increases in spontaneous firing frequency. This demonstrates that Rdl containing GABA receptors play a direct role in mediating synaptic inhibition in Drosophila neural circuits formed in culture.


Assuntos
Proteínas de Drosophila , Inibição Neural/fisiologia , Neurônios/fisiologia , Receptores de GABA-A/metabolismo , Receptores de GABA/metabolismo , Transmissão Sináptica/fisiologia , Animais , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Separação Celular , Células Cultivadas , Canais de Cloreto/metabolismo , Cloretos/metabolismo , Drosophila , Embrião não Mamífero/inervação , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Antagonistas GABAérgicos/farmacologia , Inibição Neural/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Técnicas de Patch-Clamp , Picrotoxina/farmacologia , Subunidades Proteicas/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Fatores de Tempo , Ácido gama-Aminobutírico/metabolismo
20.
J Neurosci ; 23(9): 3752-60, 2003 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-12736346

RESUMO

Little has been understood about the underlying mechanisms that generate the morphological diversity of dendritic trees. Dendritic arborization neurons in Drosophila provide an excellent model system to tackle this question, and they are classified into classes I-IV in order of increasing arbor complexity. Here we have developed transgenic green fluorescent protein markers for class I or class IV cells, which allowed time-lapse recordings of dendritic birth in the embryo, its maturation processes in the larva, and lesion-induced reactions. The two classes used distinct strategies of dendritic emergence from the cell body and branching, which contributed to differences in their basic arbor patterns. In contrast to the class I cells examined, one cell of class IV, which was a focus in this study, continued to elaborate branches throughout larval stages, and it was much more capable of responding to the severing of branches. We also investigated the cellular basis of field formation between adjacent class IV cells. Our results support the fact that class-specific inhibitory interaction is necessary and sufficient for tiling and confirmed that this intercellular communication was at work at individual dendrodendritic interfaces. Finally, this inhibitory signaling appeared to play a central role when arbors of adjacent cells started meeting midway between the cells and until the body wall became partitioned into abutting, minimal-overlapping territories.


Assuntos
Dendritos/fisiologia , Neurônios Aferentes/classificação , Neurônios Aferentes/fisiologia , Animais , Animais Geneticamente Modificados , Comunicação Celular/fisiologia , Dendritos/ultraestrutura , Dopamina/biossíntese , Drosophila , Embrião não Mamífero/citologia , Embrião não Mamífero/inervação , Elementos Facilitadores Genéticos , Proteínas de Fluorescência Verde , Larva/citologia , Lasers , Proteínas Luminescentes/biossíntese , Proteínas Luminescentes/genética , Inibição Neural/fisiologia , Neurônios Aferentes/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA