Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cells ; 10(11)2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34831342

RESUMO

The regulation of the nucleocytoplasmic release of herpesviral capsids is defined by the process of nuclear egress. Due to their large size, nuclear capsids are unable to traverse via nuclear pores, so that herpesviruses evolved to develop a vesicular transport pathway mediating their transition through both leaflets of the nuclear membrane. This process involves regulatory proteins, which support the local distortion of the nuclear envelope. For human cytomegalovirus (HCMV), the nuclear egress complex (NEC) is determined by the pUL50-pUL53 core that initiates multicomponent assembly with NEC-associated proteins and capsids. Hereby, pUL50 serves as a multi-interacting determinant that recruits several viral and cellular factors by direct and indirect contacts. Recently, we generated an ORF-UL50-deleted recombinant HCMV in pUL50-complementing cells and obtained first indications of putative additional functions of pUL50. In this study, we produced purified ΔUL50 particles under both complementing (ΔUL50C) and non-complementing (ΔUL50N) conditions and performed a phenotypical characterization. Findings were as follows: (i) ΔUL50N particle preparations exhibited a clear replicative defect in qPCR-based infection kinetics compared to ΔUL50C particles; (ii) immuno-EM analysis of ΔUL50C did not reveal major changes in nuclear distribution of pUL53 and lamin A/C; (iii) mass spectrometry-based quantitative proteomics showed a large concordance of protein contents in the NIEP fractions of ΔUL50C and ΔUL50N particles, but virion fraction was close to the detection limit for ΔUL50N; (iv) confocal imaging of viral marker proteins of immediate early (IE) and later phases of ΔUL50N infection indicated a very low number of cells showing an onset of viral lytic protein expression; and, finally (v) quantitative measurements of encapsidated genomes provided evidence for a substantial reduction in the DNA contents in ΔUL50N compared to ΔUL50C particles. In summary, the results point to a complex and important regulatory role of the HCMV nuclear egress protein pUL50 in the maturation of infectious virus.


Assuntos
Núcleo Celular/metabolismo , Citomegalovirus/patogenicidade , Proteínas Virais/metabolismo , Capsídeo/metabolismo , Capsídeo/ultraestrutura , Linhagem Celular , Citomegalovirus/genética , Citomegalovirus/ultraestrutura , Empacotamento do DNA/genética , Fibroblastos/metabolismo , Fibroblastos/virologia , Regulação Viral da Expressão Gênica , Genes Precoces , Genoma Viral , Humanos , Cinética , Membrana Nuclear/metabolismo , Proteômica , Proteínas Virais/ultraestrutura , Vírion/metabolismo , Vírion/ultraestrutura , Replicação Viral/fisiologia
2.
Nat Commun ; 12(1): 6548, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34772936

RESUMO

Multi-subunit ring-ATPases carry out a myriad of biological functions, including genome packaging in viruses. Though the basic structures and functions of these motors have been well-established, the mechanisms of ATPase firing and motor coordination are poorly understood. Here, using single-molecule fluorescence, we determine that the active bacteriophage T4 DNA packaging motor consists of five subunits of gp17. By systematically doping motors with an ATPase-defective subunit and selecting single motors containing a precise number of active or inactive subunits, we find that the packaging motor can tolerate an inactive subunit. However, motors containing one or more inactive subunits exhibit fewer DNA engagements, a higher failure rate in encapsidation, reduced packaging velocity, and increased pausing. These findings suggest a DNA packaging model in which the motor, by re-adjusting its grip on DNA, can skip an inactive subunit and resume DNA translocation, suggesting that strict coordination amongst motor subunits of packaging motors is not crucial for function.


Assuntos
Adenosina Trifosfatases/metabolismo , Empacotamento do Genoma Viral/fisiologia , Adenosina Trifosfatases/genética , Bacteriófago T4/genética , Bacteriófago T4/metabolismo , Empacotamento do DNA/genética , Empacotamento do DNA/fisiologia , DNA Viral/genética , Empacotamento do Genoma Viral/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Montagem de Vírus/genética , Montagem de Vírus/fisiologia
3.
Nucleic Acids Res ; 49(15): 8684-8698, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34352078

RESUMO

Nucleoid-associated proteins (NAPs) are crucial in organizing prokaryotic DNA and regulating genes. Vital to these activities are complex nucleoprotein structures, however, how these form remains unclear. Integration host factor (IHF) is an Escherichia coli NAP that creates very sharp bends in DNA at sequences relevant to several functions including transcription and recombination, and is also responsible for general DNA compaction when bound non-specifically. We show that IHF-DNA structural multimodality is more elaborate than previously thought, and provide insights into how this drives mechanical switching towards strongly bent DNA. Using single-molecule atomic force microscopy and atomic molecular dynamics simulations we find three binding modes in roughly equal proportions: 'associated' (73° of DNA bend), 'half-wrapped' (107°) and 'fully-wrapped' (147°), only the latter occurring with sequence specificity. We show IHF bridges two DNA double helices through non-specific recognition that gives IHF a stoichiometry greater than one and enables DNA mesh assembly. We observe that IHF-DNA structural multiplicity is driven through non-specific electrostatic interactions that we anticipate to be a general NAP feature for physical organization of chromosomes.


Assuntos
DNA Bacteriano/genética , Fatores Hospedeiros de Integração/genética , Conformação de Ácido Nucleico , Nucleoproteínas/genética , Empacotamento do DNA/genética , DNA Bacteriano/ultraestrutura , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/ultraestrutura , Escherichia coli/genética , Fatores Hospedeiros de Integração/ultraestrutura , Microscopia de Força Atômica , Simulação de Dinâmica Molecular , Nucleoproteínas/ultraestrutura , Imagem Individual de Molécula
4.
Nat Commun ; 12(1): 4538, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315863

RESUMO

How the human cytomegalovirus (HCMV) genome-the largest among human herpesviruses-is packaged, retained, and ejected remains unclear. We present the in situ structures of the symmetry-mismatched portal and the capsid vertex-specific components (CVSCs) of HCMV. The 5-fold symmetric 10-helix anchor-uncommon among known portals-contacts the portal-encircling DNA, which is presumed to squeeze the portal as the genome packaging proceeds. We surmise that the 10-helix anchor dampens this action to delay the portal reaching a "head-full" packaging state, thus facilitating the large genome to be packaged. The 6-fold symmetric turret, latched via a coiled coil to a helix from a major capsid protein, supports the portal to retain the packaged genome. CVSCs at the penton vertices-presumed to increase inner capsid pressure-display a low stoichiometry, which would aid genome retention. We also demonstrate that the portal and capsid undergo conformational changes to facilitate genome ejection after viral cell entry.


Assuntos
Citomegalovirus/química , Citomegalovirus/genética , Empacotamento do DNA/genética , Genoma Viral , Capsídeo/química , Capsídeo/ultraestrutura , Proteínas do Capsídeo/metabolismo , Linhagem Celular , Citomegalovirus/ultraestrutura , DNA Viral/genética , DNA Viral/ultraestrutura , Humanos , Modelos Moleculares , Homologia Estrutural de Proteína , Vírion/química , Vírion/ultraestrutura
5.
J Mol Biol ; 432(14): 4139-4153, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32454153

RESUMO

Phage G has the largest capsid and genome of any known propagated phage. Many aspects of its structure, assembly, and replication have not been elucidated. Herein, we present the dsDNA-packed and empty phage G capsid at 6.1 and 9 Šresolution, respectively, using cryo-EM for structure determination and mass spectrometry for protein identification. The major capsid protein, gp27, is identified and found to share the HK97-fold universally conserved in all previously solved dsDNA phages. Trimers of the decoration protein, gp26, sit on the 3-fold axes and are thought to enhance the interactions of the hexameric capsomeres of gp27, for other phages encoding decoration proteins. Phage G's decoration protein is longer than what has been reported in other phages, and we suspect the extra interaction surface area helps stabilize the capsid. We identified several additional capsid proteins, including a candidate for the prohead protease responsible for processing gp27. Furthermore, cryo-EM reveals a range of partially full, condensed DNA densities that appear to have no contact with capsid shell. Three analyses confirm that the phage G host is a Lysinibacillus, and not Bacillus megaterium: identity of host proteins in our mass spectrometry analyses, genome sequence of the phage G host, and host range of phage G.


Assuntos
Bacteriófagos/ultraestrutura , Proteínas do Capsídeo/genética , DNA Viral/ultraestrutura , Conformação de Ácido Nucleico , Bacteriófagos/genética , Microscopia Crioeletrônica , Empacotamento do DNA/genética , DNA Viral/genética , Humanos , Montagem de Vírus/genética
7.
Nanomedicine ; 25: 102170, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32035271

RESUMO

The connector channel of bacteriophage phi29 DNA packaging motor has been inserted into the lipid bilayer membrane and has shown potential for the sensing of DNA, RNA, chemicals, peptides, and antibodies. Properties such as high solubility and large channel size have made phi29 channel an advantageous system for those applications; however, previously studied lipid membranes have short lifetimes, and they are frangible and unstable under voltages higher than 200 mV. Thus, the application of this lipid membrane platform for clinical applications is challenging. Here we report the insertion of the connector into the stable polymer membrane in MinION flow cell that contains 2048 wells for high-throughput sensing by the liposome-polymer fusion process. The successful insertion of phi29 connector was confirmed by a unique gating phenomenon. Peptide translocation through the inserted phi29 connector was also observed, revealing the potential of applying phi29 connector for high-throughput peptide sensing.


Assuntos
Técnicas Biossensoriais , DNA Viral/química , Peptídeos/isolamento & purificação , Polímeros/química , Bacteriófagos/química , Bacteriófagos/genética , Empacotamento do DNA/genética , DNA Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala , Bicamadas Lipídicas/química , Lipossomos/química , Membranas Artificiais , Conformação de Ácido Nucleico , Peptídeos/química , Peptídeos/genética
8.
J Am Chem Soc ; 141(40): 15804-15817, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31553590

RESUMO

Cellular delivery of biomacromolecules is vital to medical research and therapeutic development. Cationic polymers are promising and affordable candidate vehicles for these precious payloads. However, the impact of polycation architecture and solution assembly on the biological mechanisms and efficacy of these vehicles has not been clearly defined. In this study, four polymers containing the same cationic poly(2-(dimethylamino)ethyl methacrylate) (D) block but placed in different architectures have been synthesized, characterized, and compared for cargo binding and biological performance. The D homopolymer and its diblock copolymer poly(ethylene glycol)-block-poly(2-(dimethylamino) ethyl methacrylate) (OD) readily encapsulate pDNA to form polyplexes. Two amphiphilic block polymer variants, poly(2-(dimethylamino)ethyl methacrylate)-block-poly(n-butyl methacrylate) (DB) and poly(ethylene glycol)-block-poly(2-(dimethylamino)ethyl methacrylate)-block-poly(n-butyl methacrylate) (ODB), self-assemble into micelles, which template pDNA winding around the cationic corona to form micelleplexes. Micelleplexes were found to have superior delivery efficiency compared to polyplexes and detailed physicochemical and biological characterizations were performed to pinpoint the mechanisms by testing hypotheses related to cellular internalization, intracellular trafficking, and pDNA unpackaging. For the first time, we find that the higher concentration of amines housed in micelleplexes stimulates both cellular internalization and potential endosomal escape, and the physical motif of pDNA winding into micelleplexes, reminiscent of DNA compaction by histones in chromatin, preserves the pDNA secondary structure in its native B form. This likely allows greater payload accessibility for protein expression with micelleplexes compared to polyplexes, which tightly condense pDNA and significantly distort its helicity. This work provides important guidance for the design of successful biomolecular delivery systems via optimizing the physicochemical properties.


Assuntos
Empacotamento do DNA/genética , DNA/genética , Técnicas de Transferência de Genes , Metacrilatos/química , Nylons/química , Polieletrólitos/química , Polietilenoglicóis/química , Sobrevivência Celular , Endocitose/efeitos dos fármacos , Células HEK293 , Células HeLa , Humanos , Micelas , Estrutura Molecular , Polieletrólitos/toxicidade , Transfecção
9.
Nucleic Acids Res ; 47(18): 9818-9828, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31396619

RESUMO

Packaging of phage phi29 genome requires the ATPase gp16 and prohead RNA (pRNA). The highly conserved pRNA forms the interface between the connector complex and gp16. Understanding how pRNA interacts with gp16 under packaging conditions can shed light on the molecular mechanism of the packaging motor. Here, we present 3D models of the pRNA-gp16 complex and its conformation change in response to ATP or ADP binding. Using a combination of crystallography, small angle X-ray scattering and chemical probing, we find that the pRNA and gp16 forms a 'Z'-shaped complex, with gp16 specifically binds to pRNA domain II. The whole complex closes in the presence of ATP, and pRNA domain II rotates open as ATP hydrolyzes, before resetting after ADP is released. Our results suggest that pRNA domain II actively participates in the packaging process.


Assuntos
Fagos Bacilares/genética , Empacotamento do DNA/genética , RNA Viral/genética , Proteínas Virais/genética , Difosfato de Adenosina/genética , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/genética , Sítios de Ligação , Cristalografia por Raios X , DNA Viral/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Conformação de Ácido Nucleico , RNA Viral/química , Espalhamento a Baixo Ângulo , Transdução de Sinais/genética , Proteínas Virais/química , Montagem de Vírus/genética
10.
J Virol ; 93(22)2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31462565

RESUMO

We present the genome sequences of Salmonella enterica tailed phages Sasha, Sergei, and Solent. These phages, along with Salmonella phages 9NA, FSL_SP-062, and FSL_SP-069 and the more distantly related Proteus phage PmiS-Isfahan, have similarly sized genomes of between 52 and 57 kbp in length that are largely syntenic. Their genomes also show substantial genome mosaicism relative to one another, which is common within tailed phage clusters. Their gene content ranges from 80 to 99 predicted genes, of which 40 are common to all seven and form the core genome, which includes all identifiable virion assembly and DNA replication genes. The total number of gene types (pangenome) in the seven phages is 176, and 59 of these are unique to individual phages. Their core genomes are much more closely related to one another than to the genome of any other known phage, and they comprise a well-defined cluster within the family Siphoviridae To begin to characterize this group of phages in more experimental detail, we identified the genes that encode the major virion proteins and examined the DNA packaging of the prototypic member, phage 9NA. We show that it uses a pac site-directed headful packaging mechanism that results in virion chromosomes that are circularly permuted and about 13% terminally redundant. We also show that its packaging series initiates with double-stranded DNA cleavages that are scattered across a 170-bp region and that its headful measuring device has a precision of ±1.8%.IMPORTANCE The 9NA-like phages are clearly highly related to each other but are not closely related to any other known phage type. This work describes the genomes of three new 9NA-like phages and the results of experimental analysis of the proteome of the 9NA virion and DNA packaging into the 9NA phage head. There is increasing interest in the biology of phages because of their potential for use as antibacterial agents and for their ecological roles in bacterial communities. 9NA-like phages that infect two bacterial genera have been identified to date, and related phages infecting additional Gram-negative bacterial hosts are likely to be found in the future. This work provides a foundation for the study of these phages, which will facilitate their study and potential use.


Assuntos
Empacotamento do DNA/genética , Fagos de Salmonella/genética , Salmonella/virologia , Empacotamento do DNA/fisiologia , Replicação do DNA , DNA Viral/genética , Genoma/genética , Genoma Viral/genética , Genômica/métodos , Filogenia , Salmonella/genética , Salmonella/metabolismo , Siphoviridae/genética , Siphoviridae/metabolismo , Proteínas Virais/genética , Vírion/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA