Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.868
Filtrar
1.
Food Res Int ; 186: 114338, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729719

RESUMO

Women with the extremely prevalent polycystic ovary syndromegather multiple cardiovascular risk factors and chronic subclinical inflammation. Interactions between diet, adiposity, and gut microbiota modulate intestinal permeabilityand bacterial product translocation, and may contribute to the chronic inflammation process associated with the polycystic ovary syndrome. In the present study, we aimed to address the effects of obesity, functional hyperandrogenism, and diverse oral macronutrients on intestinal permeabilityby measuring circulating markers of gut barrier dysfunction and endotoxemia. Participants included 17 non-hyperandrogenic control women, 17 women with polycystic ovary syndrome, and 19 men that were submitted to glucose, lipid, and protein oral loads. Lipopolysaccharide-binding protein, plasma soluble CD14, succinate, zonulin family peptide, and glucagon-like peptide-2 were determined at fasting and after oral challenges. Macronutrient challenges induced diverse changes on circulating intestinal permeabilitybiomarkers in the acute postprancial period, with lipids and proteins showing the most unfavorable and favorable effects, respectively. Particularly, lipopolysaccharide-binding protein, zonulin family peptide, and glucagon-like peptide-2 responses were deregulated by the presence of obesity after glucose and lipid challenges. Obese subjects showed higher fasting intestinal permeabilitybiomarkers levels than non-obese individuals, except for plasma soluble CD14. The polycystic ovary syndromeexacerbated the effect of obesity further increasing fasting glucagon-like peptide-2, lipopolysaccharide-binding protein, and succinate concentrations. We observed specific interactions of the polycystic ovary syndromewith obesity in the postprandial response of succinate, zonulin family peptide, and glucagon-like peptide-2. In summary, obesity and polycystic ovary syndromemodify the effect of diverse macronutrients on the gut barrier, and alsoinfluence intestinal permeabilityat fasting,contributing to the morbidity of functional hyperandrogenism by inducing endotoxemia and subclinical chronic inflammation.


Assuntos
Jejum , Peptídeo 2 Semelhante ao Glucagon , Obesidade , Permeabilidade , Síndrome do Ovário Policístico , Humanos , Síndrome do Ovário Policístico/metabolismo , Feminino , Adulto , Jejum/sangue , Masculino , Peptídeo 2 Semelhante ao Glucagon/sangue , Mucosa Intestinal/metabolismo , Microbioma Gastrointestinal , Nutrientes , Adulto Jovem , Haptoglobinas/metabolismo , Endotoxemia , Receptores de Lipopolissacarídeos/sangue , Proteínas de Fase Aguda/metabolismo , Biomarcadores/sangue , Glicoproteínas de Membrana/sangue , Glicoproteínas de Membrana/metabolismo , Gorduras na Dieta , Glucose/metabolismo , Função da Barreira Intestinal , Proteínas de Transporte , Precursores de Proteínas
2.
Wiad Lek ; 77(3): 497-505, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38691792

RESUMO

OBJECTIVE: Aim: The aim of this research is to clarify the potential effect of CDDO-EA against experimentally sepsis induced lung injury in mice. PATIENTS AND METHODS: Materials and Methods: Mice have divided into four groups: Sham group CLP group, Vehicle-treatment group, CDDO-EA-treated group: mice in this group received CDDO-EA 2mg/kg intraperitoneally, 1hr before CLP, then the animals were sacrificed 24hr after CLP. After exsAngpuinations, tissue samples of lung were collected, followed by markers measurement including, TNF-α, IL-1ß, VEGF, MPO, caspase11, Angp-1and Angp-2 by ELISA, gene expression of TIE2 and VE-cadherin by qRT-PCR, in addition to histopathological study. RESULTS: Results: A significant elevation (p<0.05) in TNF-α, IL-1ß, MPO, ANGP-2, VEGF, CASPASE 11 in CLP and vehicle groups when compared with sham group. CDDO-EA group showed significantly lower levels p<0.05, level of ANGP-1 was significantly lower p<0.05 in the CLP and vehicle groups as compared with the sham group. Quantitative real-time PCR demonstrated a significant decrement in mRNA expression of TIE2&ve-cadherin genes p<0.05 in sepsis & vehicle. CONCLUSION: Conclusions: CDDO-EA has lung protective effects due to its anti-inflammatory and antiAngpiogenic activity, additionally, CDDO-EA showes a lung protective effect as they affect tissue mRNA expression of TIE2 and cadherin gene. Furthermore, CDDO-EA attenuate the histopathological changes that occur during polymicrobial sepsis thereby lung protection effect.


Assuntos
Lesão Pulmonar Aguda , Modelos Animais de Doenças , Endotoxemia , Sepse , Animais , Camundongos , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Endotoxemia/metabolismo , Sepse/complicações , Sepse/metabolismo , Masculino , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Pulmão/patologia , Pulmão/metabolismo , Interleucina-1beta/metabolismo
3.
Drug Des Devel Ther ; 18: 1349-1368, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38681208

RESUMO

Background: Sepsis is recognized as a multiorgan and systemic damage caused by dysregulated host response to infection. Its acute systemic inflammatory response highly resembles that of lipopolysaccharide (LPS)-induced endotoxemia. Propofol and dexmedetomidine are two commonly used sedatives for mechanical ventilation in critically ill patients and have been reported to alleviate cognitive impairment in many diseases. In this study, we aimed to explore and compare the effects of propofol and dexmedetomidine on the encephalopathy induced by endotoxemia and to investigate whether ferroptosis is involved, finally providing experimental evidence for multi-drug combination in septic sedation. Methods: A total of 218 C57BL/6J male mice (20-25 g, 6-8 weeks) were used. Morris water maze (MWM) tests were performed to evaluate whether propofol and dexmedetomidine attenuated LPS-induced cognitive deficits. Brain injury was evaluated using Nissl and Fluoro-Jade C (FJC) staining. Neuroinflammation was assessed by dihydroethidium (DHE) and DCFH-DA staining and by measuring the levels of three cytokines. The number of Iba1+ and GFAP+ cells was used to detect the activation of microglia and astrocytes. To explore the involvement of ferroptosis, the levels of ptgs2 and chac1; the content of iron, malondialdehyde (MDA), and glutathione (GSH); and the expression of ferroptosis-related proteins were investigated. Conclusion: The single use of propofol and dexmedetomidine mitigated LPS-induced cognitive impairment, while the combination showed poor performance. In alleviating endotoxemic neural loss and degeneration, the united sedative group exhibited the most potent capability. Both propofol and dexmedetomidine inhibited neuroinflammation, while propofol's effect was slightly weaker. All sedative groups reduced the neural apoptosis, inhibited the activation of microglia and astrocytes, and relieved neurologic ferroptosis. The combined group was most prominent in combating genetic and biochemical alterations of ferroptosis. Fpn1 may be at the core of endotoxemia-related ferroptosis activation.


Assuntos
Dexmedetomidina , Endotoxemia , Ferroptose , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Propofol , Dexmedetomidina/farmacologia , Animais , Propofol/farmacologia , Ferroptose/efeitos dos fármacos , Camundongos , Masculino , Endotoxemia/tratamento farmacológico , Endotoxemia/metabolismo , Endotoxemia/induzido quimicamente , Lipopolissacarídeos/farmacologia , Relação Dose-Resposta a Droga , Encefalopatias/tratamento farmacológico , Encefalopatias/metabolismo , Encefalopatias/patologia , Hipnóticos e Sedativos/farmacologia
4.
Cell Mol Life Sci ; 81(1): 176, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598021

RESUMO

Inflammation is a mediator of a number of chronic pathologies. We synthesized the diethyl (9Z,12Z)-octadeca-9,12-dien-1-ylphosphonate, called NKS3, which decreased lipopolysaccharide (LPS)-induced mRNA upregulation of proinflammatory cytokines (IL-1ß, IL-6 and TNF-α) not only in primary intraperitoneal and lung alveolar macrophages, but also in freshly isolated mice lung slices. The in-silico studies suggested that NKS3, being CD36 agonist, will bind to GPR120. Co-immunoprecipitation and proximity ligation assays demonstrated that NKS3 induced protein-protein interaction of CD36 with GPR120in RAW 264.7 macrophage cell line. Furthermore, NKS3, via GPR120, decreased LPS-induced activation of TAB1/TAK1/JNK pathway and the LPS-induced mRNA expression of inflammatory markers in RAW 264.7 cells. In the acute lung injury model, NKS3 decreased lung fibrosis and inflammatory cytokines (IL-1ß, IL-6 and TNF-α) and nitric oxide (NO) production in broncho-alveolar lavage fluid. NKS3 exerted a protective effect on LPS-induced remodeling of kidney and liver, and reduced circulating IL-1ß, IL-6 and TNF-α concentrations. In a septic shock model, NKS3 gavage decreased significantly the LPS-induced mortality in mice. In the last, NKS3 decreased neuroinflammation in diet-induced obese mice. Altogether, these results suggest that NKS3 is a novel anti-inflammatory agent that could be used, in the future, for the treatment of inflammation-associated pathologies.


Assuntos
Endotoxemia , Animais , Camundongos , Endotoxemia/induzido quimicamente , Interleucina-6/genética , Lipopolissacarídeos/toxicidade , Fator de Necrose Tumoral alfa , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Inflamação , Antígenos CD36/genética , Citocinas/genética , Interleucina-1beta/genética , RNA Mensageiro , Ácidos Graxos
5.
Biol Pharm Bull ; 47(3): 549-555, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38432910

RESUMO

Severe infection pathogenicity is induced by processes such as pathogen exposure, immune cell activation, inflammatory cytokine production, and vascular hyperpermeability. Highly effective drugs, such as antipathogenic agents, steroids, and antibodies that suppress cytokine function, have been developed to treat the first three processes. However, these drugs cannot completely suppress severe infectious diseases, such as coronavirus disease 2019 (COVID-19). Therefore, developing novel drugs that inhibit vascular hyperpermeability is crucial. This review summarizes the mechanisms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced vascular hyperpermeability and identifies inhibitors that increase endothelial cell (EC) junction-related proteins and determines their efficacy in COVID-19 and endotoxemia models. Analyzing the effects of SARS-CoV-2 on vascular permeability revealed that SARS-CoV-2 suppresses Claudin-5 (CLDN5) expression, which is responsible for adhesion between ECs, thereby increasing vascular permeability. Inhibiting CLDN5 function in mice induced vascular hyperpermeability and pulmonary edema. In contrast, Enhancing CLDN5 expression suppressed SARS-CoV-2-induced endothelial hyperpermeability, suggesting that SARS-CoV-2-induced vascular hyperpermeability contributes to pathological progression, which can be suppressed by upregulating EC junction proteins. Based on these results, we focused on Roundabout4 (Robo4), another EC-specific protein that stabilizes EC junctions. EC-specific Robo4 overexpression suppressed vascular hyperpermeability and mortality in lipopolysaccharide-treated mice. An ALK1 inhibitor (a molecule that increases Robo4 expression), suppressed vascular hyperpermeability and mortality in lipopolysaccharide- and SARS-CoV-2-treated mice. These results indicate that Robo4 expression-increasing drugs suppress vascular permeability and pathological phenotype in COVID-19 and endotoxemia models.


Assuntos
COVID-19 , Doenças Transmissíveis , Endotoxemia , Animais , Camundongos , Permeabilidade Capilar , Endotoxemia/tratamento farmacológico , Lipopolissacarídeos , SARS-CoV-2 , Claudina-5 , Citocinas , Receptores de Superfície Celular
6.
Int J Mol Sci ; 25(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474087

RESUMO

Metabolic syndrome (MetS) is a combination of metabolic disorders that concurrently act as factors promoting systemic pathologies such as atherosclerosis or diabetes mellitus. It is now believed to encompass six main interacting conditions: visceral fat, imbalance of lipids (dyslipidemia), hypertension, insulin resistance (with or without impairing both glucose tolerance and fasting blood sugar), and inflammation. In the last 10 years, there has been a progressive interest through scientific research investigations conducted in the field of metabolomics, confirming a trend to evaluate the role of the metabolome, particularly the intestinal one. The intestinal microbiota (IM) is crucial due to the diversity of microorganisms and their abundance. Consequently, IM dysbiosis and its derivate toxic metabolites have been correlated with MetS. By intervening in these two factors (dysbiosis and consequently the metabolome), we can potentially prevent or slow down the clinical effects of the MetS process. This, in turn, may mitigate dysregulations of intestinal microbiota axes, such as the lung axis, thereby potentially alleviating the negative impact on respiratory pathology, such as the chronic obstructive pulmonary disease. However, the biomolecular mechanisms through which the IM influences the host's metabolism via a dysbiosis metabolome in both normal and pathological conditions are still unclear. In this study, we seek to provide a description of the knowledge to date of the IM and its metabolome and the factors that influence it. Furthermore, we analyze the interactions between the functions of the IM and the pathophysiology of major metabolic diseases via local and systemic metabolome's relate endotoxemia.


Assuntos
Endotoxemia , Síndrome Metabólica , Humanos , Disbiose , Prebióticos , Intestinos
7.
Int J Biol Macromol ; 264(Pt 1): 130500, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428770

RESUMO

BACKGROUND: Endotoxemia is a severe and dangerous clinical syndrome that results in elevated morbidity, especially in intensive care units. Neonates are particularly susceptible to endotoxemia due to their immature immune systems. There are few effective treatments for neonatal endotoxemia. One group of compounds with potential in the treatment of neonatal inflammatory diseases such as endotoxemia is the flavonoids, mainly due to their antioxidant and anti-inflammatory properties. Among these, naringenin (NGN) is a citrus flavonoid which has already been reported to have anti-inflammatory, antioxidant, anti-nociceptive and anti-cancer effects. Unfortunately, its clinical application is limited by its low solubility and bioavailability. However, cyclodextrins (CDs) have been widely used to improve the solubility of nonpolar drugs and enhance the bioavailability of these natural products. OBJECTIVE: We, therefore, aimed to investigate the effects of NGN non-complexed and complexed with hydroxypropyl-ß-cyclodextrin (HPßCD) on neonatal endotoxemia injuries in a rodent model and describe the probable molecular mechanisms involved in NGN activities. METHOD: We used exposure to a bacterial lipopolysaccharide (LPS) to induce neonatal endotoxemia in the mice. RESULTS: It was found that NGN (100 mg/kg i.p.) exposure during the neonatal period reduced leukocyte migration and decreased pro-inflammatory cytokine (TNF-α, IL-1ß and IL-6) levels in the lungs, heart, kidneys or cerebral cortex. In addition, NGN upregulated IL-10 production in the lungs and kidneys of neonate mice. The administration of NGN also enhanced antioxidant enzyme catalase and SOD activity, reduced lipid peroxidation and protein carbonylation and increased the reduced sulfhydryl groups in an organ-dependent manner, attenuating the oxidative damage caused by LPS exposure. NGN decreased ERK1/2, p38MAPK and COX-2 activation in the lungs of neonate mice. Moreover, NGN complexed with HPßCD was able to increase the animal survival rate. CONCLUSION: NGN attenuated inflammatory and oxidative damage in the lungs, heart and kidneys caused by neonatal endotoxemia through the MAPK signaling pathways regulation. Our results show that NGN has beneficial effects against neonatal endotoxemia and could be useful in the treatment of neonatal inflammatory injuries.


Assuntos
Citrus , Endotoxemia , Flavanonas , Camundongos , Animais , Flavonoides/uso terapêutico , 2-Hidroxipropil-beta-Ciclodextrina/farmacologia , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Endotoxemia/induzido quimicamente , Endotoxemia/tratamento farmacológico , Lipopolissacarídeos/uso terapêutico , Anti-Inflamatórios/farmacologia
8.
Nutr Res ; 124: 94-110, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430822

RESUMO

Anti-inflammatory activities of catechin-rich green tea extract (GTE) in obese rodents protect against metabolic endotoxemia by decreasing intestinal permeability and absorption of gut-derived endotoxin. However, translation to human health has not been established. We hypothesized that GTE would reduce endotoxemia by decreasing gut permeability and intestinal and systemic inflammation in persons with metabolic syndrome (MetS) compared with healthy persons. A randomized, double-blind, placebo-controlled, crossover trial in healthy adults (n = 19, 34 ± 2 years) and adults with MetS (n = 21, 40 ± 3 years) examined 4-week administration of a decaffeinated GTE confection (890 mg/d total catechins) on serum endotoxin, intestinal permeability, gut and systemic inflammation, and cardiometabolic parameters. Compared with the placebo, the GTE confection decreased serum endotoxin (P = .023) in both healthy persons and those with MetS, while increasing concentrations of circulating catechins (P < .0001) and γ-valerolactones (P = .0001). Fecal calprotectin (P = .029) and myeloperoxidase (P = .048) concentrations were decreased by GTE regardless of health status. Following the ingestion of gut permeability probes, urinary lactose/mannitol (P = .043) but not sucralose/erythritol (P > .05) was decreased by GTE regardless of health status. No between-treatment differences (P > .05) were observed for plasma aminotransferases, blood pressure, plasma lipids, or body mass nor were plasma tumor necrosis factor-α, interleukin-6, or the ratio of lipopolysaccharide-binding protein/soluble cluster of differentiation-14 affected. However, fasting glucose in both study groups was decreased (P = .029) by the GTE confection compared with within-treatment arm baseline concentrations. These findings demonstrate that catechin-rich GTE is effective to decrease circulating endotoxin and improve glycemic control in healthy adults and those with MetS, likely by reducing gut inflammation and small intestinal permeability but without affecting systemic inflammation.


Assuntos
Proteínas de Fase Aguda , Glicemia , Proteínas de Transporte , Catequina , Estudos Cross-Over , Endotoxinas , Inflamação , Glicoproteínas de Membrana , Síndrome Metabólica , Permeabilidade , Extratos Vegetais , Chá , Humanos , Síndrome Metabólica/tratamento farmacológico , Método Duplo-Cego , Endotoxinas/sangue , Adulto , Masculino , Feminino , Extratos Vegetais/farmacologia , Chá/química , Catequina/farmacologia , Catequina/análogos & derivados , Catequina/administração & dosagem , Inflamação/tratamento farmacológico , Inflamação/sangue , Glicemia/metabolismo , Glicemia/efeitos dos fármacos , Endotoxemia/tratamento farmacológico , Jejum , Pessoa de Meia-Idade , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Camellia sinensis/química
9.
Res Vet Sci ; 171: 105205, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479101

RESUMO

Sepsis/endotoxemia associates with coagulation abnormalities. We showed previously that exogenous choline treatment reversed the changes in platelet count and function as well as prevented disseminated intravascular coagulation (DIC) in endotoxemic dogs. The aim of this follow-up study was to evaluate the effect of treatment with choline or cytidine-5'-diphosphocholine (CDP-choline), a choline donor, on endotoxin-induced hemostatic alterations using thromboelastography (TEG). Dogs were randomized to six groups and received intravenously (iv) saline, choline (20 mg/kg) or CDP-choline (70 mg/kg) in the control groups, whereas endotoxin (0.1 mg/kg, iv) was used alone or in combination with choline or CDP-choline at the same doses in the treatment groups. TEG variables including R- and K-time (clot formation), maximum amplitude (MA) and α-angle (clot stability), G value (clot elasticity), and EPL, A, and LY30 (fibrinolysis), as well as overall assessment of coagulation (coagulation index - CI), were measured before and at 0.5-48 h after the treatments. TEG parameters did not change significantly in the control groups, except for CI parameter after choline administration. Endotoxemia resulted in increased R-time and A value (P < 0.05), decreased K-time (P < 0.05), α-angle (P < 0.001) and CI values (P < 0.01) at different time points. Treatment with either choline or CDP-choline attenuated or prevented completely the alterations in TEG parameters in endotoxemic dogs with CDP-choline being more effective. These results confirm and extend the effectiveness of choline or CDP-choline in endotoxemia by further demonstrating their efficacy in attenuating or preventing the altered viscoelastic properties of blood clot measured by TEG.


Assuntos
Colina , Citidina Difosfato Colina , Doenças do Cão , Endotoxemia , Animais , Cães , Colina/uso terapêutico , Citidina Difosfato Colina/uso terapêutico , Doenças do Cão/tratamento farmacológico , Endotoxemia/tratamento farmacológico , Endotoxemia/veterinária , Endotoxinas/efeitos adversos , Seguimentos , Hemostáticos , Tromboelastografia/veterinária , Tromboelastografia/métodos
10.
Int Immunopharmacol ; 132: 111890, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38547772

RESUMO

The diverse beneficial effects of adiponectin-receptor signaling, including its impact on the regulation of inflammatory processes in vivo, have resulted in development of adiponectin receptor agonists as a treatment for metabolic disorders. However, there are no established non-invasive bioassays for detection of adiponectin target engagement in humans or animal models. Here, we designed an assay using small amounts of blood to assess adiponectin action. Specifically, we tested effects of the small 10-amino acid peptide adiponectin receptor agonist, ALY688, in a sublethal LPS endotoxemia model in mice. LPS-induced pro-inflammatory cytokine levels in serum were significantly reduced in mice treated with ALY688, assessed via multiplex ELISA in flow cytometry. Furthermore, ALY688 alone significantly induced TGF-ß release in serum 1 h after treatment and was elevated for up to 24 h. Additionally, using a flow-cytometry panel for detection of changes in circulating immune cell phenotypes, we observed a significant increase in absolute T cell counts in mice after ALY688 treatment. To assess changes in intracellular signaling effectors downstream of adiponectin, phospho-flow cytometry was conducted. There was a significant increase in phosphorylation of AMPK and p38-MAPK in mice after ALY688 treatment. We then used human donor immune cells (PBMCs) treated with ALY688 ex vivo and observed elevation of AMPK and p38-MAPK phosphorylation from baseline in response to ALY688. Together, these results indicate we can detect adiponectin action on immune cells in vivo by assessing adiponectin signaling pathway for AMPK and p38-MAPK, as well as pro-inflammatory cytokine levels. This new approach provides a blood-based bioassay for screening adiponectin action.


Assuntos
Adiponectina , Citocinas , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Animais , Adiponectina/sangue , Adiponectina/metabolismo , Humanos , Transdução de Sinais/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Camundongos , Masculino , Citocinas/metabolismo , Citocinas/sangue , Bioensaio/métodos , Endotoxemia/imunologia , Endotoxemia/metabolismo , Receptores de Adiponectina/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Modelos Animais de Doenças , Feminino
11.
Intern Emerg Med ; 19(3): 713-720, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38409619

RESUMO

Pathophysiology of portal vein thrombosis (PVT) in cirrhosis is still not entirely understood. Elevated levels of lipopolysaccharides (LPS) in portal circulation are significantly associated with hypercoagulation, increased platelet activation and endothelial dysfunction. The aim of the study was to investigate if LPS was associated with reduced portal venous flow, the third component of Virchow's triad, and the underlying mechanism. Serum nitrite/nitrate, as a marker of nitric oxide (NO) generation, and LPS were measured in the portal and systemic circulation of 20 patients with cirrhosis undergoing transjugular intrahepatic portosystemic shunt (TIPS) procedure; portal venous flow velocity (PVV) was also measured in each patient and correlated with NO and LPS levels. Serum nitrite/nitrate and LPS were significantly higher in the portal compared to systemic circulation; a significant correlation was found between LPS and serum nitrite/nitrate (R = 0.421; p < 0.01). Median PVV before and after TIPS was 15 cm/s (6-40) and 31 cm/s (14-79), respectively. Correlation analysis of PVV with NO and LPS showed a statistically significant negative correlation of PVV with portal venous NO concentration (R = - 0.576; p = 0.020), but not with LPS. In vitro study with endothelial cells showed that LPS enhanced endothelial NO biosynthesis, which was inhibited by L-NAME, an inhibitor of NO synthase, or TAK-242, an inhibitor of TLR4, the LPS receptor; this effect was accomplished by up-regulation of eNOS and iNOS. The study shows that in cirrhosis, endotoxemia may be responsible for reduced portal venous flow via overgeneration of NO and, therefore, contribute to the development of PVT.


Assuntos
Endotoxemia , Cirrose Hepática , Óxido Nítrico , Veia Porta , Humanos , Masculino , Feminino , Cirrose Hepática/complicações , Cirrose Hepática/sangue , Cirrose Hepática/fisiopatologia , Projetos Piloto , Endotoxemia/fisiopatologia , Endotoxemia/sangue , Pessoa de Meia-Idade , Óxido Nítrico/sangue , Óxido Nítrico/análise , Veia Porta/fisiopatologia , Idoso , Adulto , Lipopolissacarídeos/farmacologia , Derivação Portossistêmica Transjugular Intra-Hepática
12.
Cells ; 13(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38391927

RESUMO

Patients admitted to the intensive care unit (ICU) often experience endotoxemia, nosocomial infections and sepsis. Polymorphonuclear and monocytic myeloid-derived suppressor cells (PMN-MDSCs and M-MDSCs) can have an important impact on the development of infectious diseases, but little is known about their potential predictive value in critically ill patients. Here, we used unsupervised flow cytometry analyses to quantify MDSC-like cells in healthy subjects challenged with endotoxin and in critically ill patients admitted to intensive care units and at risk of developing infections. Cells phenotypically similar to PMN-MDSCs and M-MDSCs increased after endotoxin challenge. Similar cells were elevated in patients at ICU admission and normalized at ICU discharge. A subpopulation of M-MDSC-like cells expressing intermediate levels of CD15 (CD15int M-MDSCs) was associated with overall mortality (p = 0.02). Interestingly, the high abundance of PMN-MDSCs and CD15int M-MDSCs was a good predictor of mortality (p = 0.0046 and 0.014), with area under the ROC curve for mortality of 0.70 (95% CI = 0.4-1.0) and 0.86 (0.62-1.0), respectively. Overall, our observations support the idea that MDSCs represent biomarkers for sepsis and that flow cytometry monitoring of MDSCs may be used to risk-stratify ICU patients for targeted therapy.


Assuntos
Endotoxemia , Células Supressoras Mieloides , Humanos , Estado Terminal , Prognóstico , Cuidados Críticos , Endotoxinas
13.
Food Funct ; 15(5): 2733-2750, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38380649

RESUMO

Background: Interesterification is an industrial processing technique used widely where hard fats are essential for functionality and consumer acceptability, e.g. margarines and lower fat spreads. Objective: The aim of this study was to compare acute cardiovascular effects of functionally equivalent spreads (similar solid fat content) made with interesterified (IE) or non-IE palm-based fats, or spreadable butter. Methods: A randomised, controlled, 4-armed crossover, double-blind study (25 men, 25 women; 35-75 years; healthy; mean BMI 24.5, SD 3.8), compared effects of mixed nutrient meals containing 50 g fat from functionally equivalent products [IE spread, non-IE spread and spreadable butter (SB), with rapeseed oil (RO) as a reference treatment: with 16.7%, 27.9%, 19.3% and 4% palmitic acid, respectively] on 8 h postprandial changes in plasma triacylglycerol (TAG) and endothelial dysfunction (flow-mediated dilatation; FMD). Circulating reactive oxygen species (estimated using a neutrophil oxidative burst assay), glucose, insulin, NEFA, lipoprotein particle profiles, inflammatory markers (glycoprotein acetylation (Glyc-A) and IL-6), and biomarkers of endotoxemia were measured. Results: Postprandial plasma TAG concentrations after test meals were similar. However following RO versus the 3 spreads, there were significantly higher postprandial apolipoprotein B concentrations, and small HDL and LDL particle concentrations, and lower postprandial extra-large, large, and medium HDL particle concentrations, as well as smaller average HDL and LDL particle sizes. There were no differences following IE compared to the other spreads. Postprandial FMD% did not decrease after high-fat test meals, and there were no differences between treatments. Postprandial serum IL-6 increased similarly after test meals, but RO provoked a greater increase in postprandial concentrations of glycoprotein acetyls (GlycA), as well as 8 h sCD14, an endotoxemia marker. All other postprandial outcomes were not different between treatments. Conclusions: In healthy adults, a commercially-available IE-based spread did not evoke a different postprandial triacylglycerol, lipoprotein subclass, oxidative stress, inflammatory or endotoxemic response to functionally-equivalent, but compositionally-distinct alternative spreads. Clinical trial registry number: NCT03438084 (https://ClinicalTrials.gov).


Assuntos
Endotoxemia , Ácido Palmítico , Adulto , Masculino , Humanos , Feminino , Gorduras na Dieta , Interleucina-6 , Triglicerídeos , Manteiga , Lipoproteínas , Glicoproteínas , Período Pós-Prandial , Estudos Cross-Over
14.
Theranostics ; 14(4): 1561-1582, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38389837

RESUMO

Rationale: The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) promotes pathological mitochondrial fission during septic acute kidney injury. The mitochondrial open reading frame of the 12S rRNA type-c (MOTS-c) is a mitochondria-derived peptide that exhibits anti-inflammatory properties during cardiovascular illnesses. We explored whether endotoxemia-induced myocardial microvascular injury involved DNA-PKcs and MOTS-c dysregulation. Methods: To induce endotoxemia in vivo, endothelial cell-specific DNA-PKcs-knockout mice were injected intraperitoneally with a single dose of lipopolysaccharide (10 mg/kg) and evaluated after 72 h. Results: Lipopolysaccharide exposure increased DNA-PKcs activity in cardiac microvascular endothelial cells, while pharmacological inhibition or endothelial cell-specific genetic ablation of DNA-PKcs reduced lipopolysaccharide-induced myocardial microvascular dysfunction. Proteomic analyses showed that endothelial DNA-PKcs ablation primarily altered mitochondrial protein expression. Verification assays confirmed that DNA-PKcs drastically repressed MOTS-c transcription by inducing mtDNA breaks via pathological mitochondrial fission. Inhibiting MOTS-c neutralized the endothelial protective effects of DNA-PKcs ablation, whereas MOTS-c supplementation enhanced endothelial barrier function and myocardial microvascular homeostasis under lipopolysaccharide stress. In molecular studies, MOTS-c downregulation disinhibited c-Jun N-terminal kinase (JNK), allowing JNK to phosphorylate profilin-S173. Inhibiting JNK or transfecting cells with a profilin phosphorylation-defective mutant improved endothelial barrier function by preventing F-actin depolymerization and lamellipodial degradation following lipopolysaccharide treatment. Conclusions: DNA-PKcs inactivation during endotoxemia could be a worthwhile therapeutic strategy to restore MOTS-c expression, prevent JNK-induced profilin phosphorylation, improve F-actin polymerization, and enhance lamellipodial integrity, ultimately ameliorating endothelial barrier function and reducing myocardial microvascular injury.


Assuntos
Endotoxemia , Traumatismos Cardíacos , Animais , Camundongos , Actinas , Domínio Catalítico , DNA , Proteína Quinase Ativada por DNA , Células Endoteliais , Lipopolissacarídeos , Sistema de Sinalização das MAP Quinases , Profilinas , Proteômica , Pseudópodes
15.
Front Immunol ; 15: 1308915, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38348045

RESUMO

Background: Sepsis-induced acute lung injury (ALI) poses a significant threat to human health. Endothelial cells, especially pulmonary capillaries, are the primary barriers against sepsis in the lungs. Therefore, investigating endothelial cell function is essential to understand the pathophysiological processes of sepsis-induced ALI. Methods: We downloaded single-cell RNA-seq expression data from GEO with accession number GSE207651. The mice underwent cecal ligation and puncture (CLP) surgery, and lung tissue samples were collected at 0, 24, and 48 h. The cells were annotated using the CellMarker database and FindAllMarkers functions. GO enrichment analyses were performed using the Metascape software. Gene set enrichment Analysis (GSEA) and variation Analysis (GSVA) were performed to identify differential signaling pathways. Differential expression genes were collected with the "FindMarkers" function. The R package AUCell was used to score individual cells for pathway activities. The Cellchat package was used to explore intracellular communication. Results: Granulocytes increased significantly as the duration of endotoxemia increased. However, the number of T cells, NK cells, and B cells declined. Pulmonary capillary cells were grouped into three sub-clusters. Capillary-3 cells were enriched in the sham group, but declined sharply in the CLP.24 group. Capillary-1 cells peaked in the CLP.24 group, while Capillary-2 cells were enriched in the CLP.48 group. Furthermore, we found that Cd74+ Capillary-3 cells mainly participated in immune interactions. Plat+ Capillary-1 and Clec1a+ Capillary-2 are involved in various physiological processes. Regarding cell-cell interactions, Plat+ Capillary-1 plays the most critical role in granulocyte adherence to capillaries during ALI. Cd74+ Capillary cells expressing high levels of major histocompatibility complex (MHC) and mainly interacted with Cd8a+ T cells in the sham group. Conclusion: Plat+ capillaries are involved in the innate immune response through their interaction with neutrophils via ICAM-1 adhesion during endotoxemia, while Cd74+ capillaries epxressed high level of MHC proteins play a role in adaptive immune response through their interaction with T cells. However, it remains unclear whether the function of Cd74+ capillaries leans towards immunity or tolerance, and further studies are needed to confirm this.


Assuntos
Lesão Pulmonar Aguda , Endotoxemia , Sepse , Camundongos , Animais , Humanos , RNA/metabolismo , Capilares/metabolismo , Células Endoteliais/metabolismo , Endotoxemia/metabolismo , Pulmão/metabolismo , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo , Sepse/complicações , Sepse/genética
16.
Res Vet Sci ; 170: 105187, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38422840

RESUMO

To assess the effects of the acute inflammatory response (AIR) induced by Escherichia coli lipopolysaccharide (LPS) on plasma and tissue disposition of florfenicol (FFC) and its metabolite florfenicol amine (FFC-a), after its intramuscular (IM) administration, twenty-two New Zealand rabbits were randomly distributed in two experimental groups: Group 1 (LPS) was treated with three intravenous doses of 2 µg LPS/kg bw, before an intramuscular dose of 20 mg/kg FFC twenty-four h after the first LPS or SS injection; Group 2 (Control) was treated with saline solution (SS) in equivalent volumes as LPS-treated group. Blood samples were collected before (T0) and at different times after FFC administration. Acute inflammatory response was assessed in a parallel study where significant increases in body temperature, C-reactive protein concentrations and leukopenia were observed in the group treated with LPS. In another two groups of rabbits, 4 h after FFC treatment, rabbits were euthanized and tissue samples were collected for analysis of FFC and FFC-a concentrations. Pharmacokinetic parameters of FFC that showed significantly higher values in LPS-treated rabbits compared with control rabbits were absorption half-life, area under the curve, mean residence time and clearance /F (Cl/F). Elimination half-life and mean residence time of FFC-a were significantly higher in LPS-treated rabbits, whereas the metabolite ratio of FFC-a decreased significantly. Significant differences in tissue distribution of FFC and FFC-a were observed in rabbits treated with LPS. Modifications in plasma and tissue disposition of FFC and FFC-a were attributed mainly to haemodynamic modifications induced by the AIR through LPS administration.


Assuntos
Endotoxemia , Tianfenicol , Tianfenicol/análogos & derivados , Coelhos , Animais , Lipopolissacarídeos , Antibacterianos , Endotoxemia/induzido quimicamente , Endotoxemia/tratamento farmacológico , Endotoxemia/veterinária , Escherichia coli/metabolismo , Tianfenicol/farmacocinética , Inflamação/veterinária , Meia-Vida , Injeções Intramusculares/veterinária
17.
ACS Nano ; 18(3): 2131-2148, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38198697

RESUMO

Endotoxemia is a life-threatening multiple organ failure disease caused by bacterial endotoxin infection. Unfortunately, current single-target therapy strategies have failed to prevent the progression of endotoxemia. Here, we reported that alanine fullerene redox modulator (AFRM) remodeled the intestinal microenvironment for multiple targets endotoxemia mitigation by suppressing inflammatory macrophages, inhibiting macrophage pyroptosis, and repairing epithelial cell barrier integrity. Specifically, AFRM exhibited broad-spectrum and self-cascade redox regulation properties with superoxide dismutase (SOD)-like enzyme, peroxidase (POD)-like enzyme activity, and hydroxyl radical (•OH) scavenging ability. Guided by proteomics, we demonstrated that AFRM regulated macrophage redox homeostasis and down-regulated LPS/TLR4/NF-κB and MAPK/ERK signaling pathways to suppress inflammatory hyperactivation. Of note, AFRM could attenuate inflammation-induced macrophage pyroptosis via inhibiting the activation of gasdermin D (GSDMD). In addition, our results revealed that AFRM could restore extracellular matrix and cell-tight junction proteins and protect the epithelial cell barrier integrity by regulating extracellular redox homeostasis. Consequently, AFRM inhibited systemic inflammation and potentiated intestinal epithelial barrier damage repair during endotoxemia in mice. Together, our work suggested that fullerene based self-cascade redox modulator has the potential in the management of endotoxemia through synergistically remodeling the inflammation and epithelial barriers in the intestinal microenvironment.


Assuntos
Endotoxemia , Fulerenos , Camundongos , Animais , Endotoxemia/induzido quimicamente , Endotoxemia/metabolismo , Intestinos , NF-kappa B/metabolismo , Inflamação , Oxirredução , Lipopolissacarídeos/farmacologia
18.
J Neuroinflammation ; 21(1): 3, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178134

RESUMO

BACKGROUND: The involvement of the autonomic nervous system in the regulation of inflammation is an emerging concept with significant potential for clinical applications. Recent studies demonstrate that stimulating the vagus nerve activates the cholinergic anti-inflammatory pathway that inhibits pro-inflammatory cytokines and controls inflammation. The α7 nicotinic acetylcholine receptor (α7nAChR) on macrophages plays a key role in mediating cholinergic anti-inflammatory effects through a downstream intracellular mechanism involving inhibition of NF-κB signaling, which results in suppression of pro-inflammatory cytokine production. However, the role of the α7nAChR in the regulation of other aspects of the immune response, including the recruitment of monocytes/macrophages to the site of inflammation remained poorly understood. RESULTS: We observed an increased mortality in α7nAChR-deficient mice (compared with wild-type controls) in mice with endotoxemia, which was paralleled with a significant reduction in the number of monocyte-derived macrophages in the lungs. Corroborating these results, fluorescently labeled α7nAChR-deficient monocytes adoptively transferred to WT mice showed significantly diminished recruitment to the inflamed tissue. α7nAChR deficiency did not affect monocyte 2D transmigration across an endothelial monolayer, but it significantly decreased the migration of macrophages in a 3D fibrin matrix. In vitro analysis of major adhesive receptors (L-selectin, ß1 and ß2 integrins) and chemokine receptors (CCR2 and CCR5) revealed reduced expression of integrin αM and αX on α7nAChR-deficient macrophages. Decreased expression of αMß2 was confirmed on fluorescently labeled, adoptively transferred α7nAChR-deficient macrophages in the lungs of endotoxemic mice, indicating a potential mechanism for α7nAChR-mediated migration. CONCLUSIONS: We demonstrate a novel role for the α7nAChR in mediating macrophage recruitment to inflamed tissue, which indicates an important new aspect of the cholinergic regulation of immune responses and inflammation.


Assuntos
Endotoxemia , Receptor Nicotínico de Acetilcolina alfa7 , Camundongos , Animais , Receptor Nicotínico de Acetilcolina alfa7/genética , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Macrófagos/metabolismo , Inflamação/metabolismo , Citocinas/metabolismo , Endotoxemia/metabolismo , Colinérgicos/metabolismo
19.
J Neuroinflammation ; 21(1): 9, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178237

RESUMO

Sepsis is a life-threatening state that arises due to a hyperactive inflammatory response stimulated by infection and rarely other insults (e.g., non-infections tissue injury). Although changes in several proinflammatory cytokines and signals are documented in humans and small animal models, far less is known about responses within affected tissues of large animal models. We sought to understand the changes that occur during the initial stages of inflammation by administering intravenous lipopolysaccharide (LPS) to Yorkshire pigs and assessing transcriptomic alterations in the brain, kidney, and whole blood. Robust transcriptional alterations were found in the brain, with upregulated responses enriched in inflammatory pathways and downregulated responses enriched in tight junction and blood vessel functions. Comparison of the inflammatory response in the pig brain to a similar mouse model demonstrated some overlapping changes but also numerous differences, including oppositely dysregulated genes between species. Substantial changes also occurred in the kidneys following LPS with several enriched upregulated pathways (cytokines, lipids, unfolded protein response, etc.) and downregulated gene sets (tube morphogenesis, glomerulus development, GTPase signal transduction, etc.). We also found significant dysregulation of genes in whole blood that fell into several gene ontology categories (cytokines, cell cycle, neutrophil degranulation, etc.). We observed a strong correlation between the brain and kidney responses, with significantly shared upregulated pathways (cytokine signaling, cell death, VEGFA pathways) and downregulated pathways (vasculature and RAC1 GTPases). In summary, we have identified a core set of shared genes and pathways in a pig model of systemic inflammation.


Assuntos
Endotoxemia , Humanos , Camundongos , Suínos , Animais , Endotoxemia/induzido quimicamente , Lipopolissacarídeos/toxicidade , Citocinas/metabolismo , Rim/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Encéfalo/metabolismo
20.
Int Immunopharmacol ; 128: 111497, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38241842

RESUMO

Sepsis is recognized as a potentially fatal condition characterized by acute organ dysfunction resulting from an imbalanced immune response to infection. Acute liver injury (ALI) arises as an inflammatory outcome of immune response dysregulation associated with sepsis. Kupffer cells, which are liver-specific macrophages, are known to have a significant impact on ALI, although the precise regulatory mechanism remains unclear. Numerous studies have showcased the regulatory impact of long non-coding RNAs (lncRNAs) on the progression of diverse ailments, yet their precise regulatory mechanisms remain predominantly unexplored. In this study, a novel long non-coding RNA (lncRNA), referred to as lncRNA 220, was discovered using high-throughput sequencing. The expression of lncRNA 220 was found to be significantly elevated in the livers of mice with lipopolysaccharide (LPS)-induced endotoxemia, specifically during the 8-hour time period. Furthermore, in Kupffer cells treated with LPS, lncRNA 220 was observed to inhibit apoptosis and autophagy by activating the PI3K-AKT-mTORC1 pathway. This effect was achieved through the reduction of X-box protein 1 unspliced (Xbp1u) mRNA stability and suppression of its translation in the context of endoplasmic reticulum stress (ERS). Ultimately, this intervention mitigated the progression of LPS-induced ALI. To summarize, our study establishes lncRNA 220 as a newly identified regulator that suppresses apoptosis and autophagy in Kupffer cells subjected to LPS treatment, indicating its potential as a molecular target for ALI in endotoxemic mice.


Assuntos
Endotoxemia , RNA Longo não Codificante , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , RNA Longo não Codificante/genética , Lipopolissacarídeos , Fosfatidilinositol 3-Quinases/metabolismo , Células de Kupffer/metabolismo , Autofagia , Apoptose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA