RESUMO
PURPOSE: The cooverexpression of epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) observed in many human tumors and their synergistic interaction in the transformation of cells make these receptors important targets for the development of new targeted therapeutics. Targeting of EGFR and HER2 simultaneously has been pursued as a strategy with which to potentially increase efficiency and selectivity in therapy of certain cancers. This study was set to construct a bispecific energized fusion protein (Ec-LDP-Hr-AE) consisting of two oligopeptides against EGFR and HER2, and lidamycin, and investigate its antitumor efficacy. EXPERIMENTAL DESIGN: In vitro experiments measured the binding and internalization of bispecific Ec-LDP-Hr fusion protein. The potency of energized fusion proteins was also done in which the bispecific Ec-LDP-Hr-AE was compared with lidamycin (LDM) and its monospecific counterparts, Ec-LDP-AE and LDP-Hr-AE. In vivo, Ec-LDP-Hr-AE was given i.v. to nude mice bearing human ovarian carcinoma SK-OV-3 xenografts. RESULTS: Binding and internalization studies showed that bispecific fusion protein Ec-LDP-Hr bound to carcinoma cells specifically and then were internalized into the cytoplasm. Bispecific Ec-LDP-Hr-AE was more potent and selective in its cytotoxicity against different carcinoma cell lines than corresponding momospecific agents and LDM in vitro. In addition, Ec-LDP-Hr-AE significantly inhibited the growth of SK-OV-3 xenografts in nude mouse model. In vivo imaging study showed that FITC-labeled Ec-LDP-Hr was targeted and accumulated in the tumors. CONCLUSION: A ligand-based and an antibody-based oligopeptide fused to the enediyne antibiotic LDM created a new bispecific fusion protein with low molecular weight and more potent in vitro and in vivo antitumor activity (than momospecific fusion proteins).
Assuntos
Antineoplásicos/uso terapêutico , Enedi-Inos/química , Receptores ErbB/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Oligopeptídeos/uso terapêutico , Receptor ErbB-2/antagonistas & inibidores , Proteínas Recombinantes de Fusão/uso terapêutico , Sequência de Aminoácidos , Animais , Anticorpos/química , Anticorpos/farmacologia , Anticorpos/uso terapêutico , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Enedi-Inos/imunologia , Enedi-Inos/farmacologia , Enedi-Inos/uso terapêutico , Receptores ErbB/imunologia , Feminino , Humanos , Ligantes , Camundongos , Camundongos Nus , Dados de Sequência Molecular , Neoplasias/patologia , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Receptor ErbB-2/imunologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/farmacologia , Especificidade por Substrato , Resultado do Tratamento , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Tumor-targeted delivery of a potent cytotoxic agent, calicheamicin, using its immunoconjugates is a clinically validated therapeutic strategy. Rituximab is a human CD20-specific chimeric antibody extensively used in B-NHL therapy. We investigated whether conjugation to calicheamicin can improve the anti-tumor activity of rituximab against human B-cell lymphoma (BCL) xenografts in preclinical models. BCL cells were cultured with rituximab or its calicheamicin conjugates and their in vitro growth was monitored. BCL cells were injected s.c. to establish localized xenografts in nude mice or i.v. to establish disseminated BCL in severe combined immunodeficient (scid) mice. I.p. treatment with rituximab or its calicheamicin conjugates was initiated and its effect on s.c. BCL growth or survival of mice with disseminated BCL was monitored. Conjugation of calicheamicin to rituximab vastly enhanced its growth inhibitory activity against BCL in vitro. Conjugation to calicheamicin had no deleterious effect on the effector functional activity of rituximab. Calicheamicin conjugated to rituximab with an acid-labile linker exhibited greater anti-tumor activity against s.c. BCL xenografts and improved survival of mice with disseminated BCL over that of unconjugated rituximab. Anti-tumor activities of rituximab conjugated to calicheamicin via an acid-stable linker were similar to that of unconjugated rituximab. Superior anti-tumor efficacy exhibited by a calicheamicin immunoconjugate of rituximab with an acid-labile linker over that of rituximab demonstrates the therapeutic potential of CD20-specific antibody-targeted chemotherapy strategy in the treatment of B-NHL.