Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.939
Filtrar
1.
PLoS Comput Biol ; 20(5): e1012074, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38696532

RESUMO

We investigate the ability of the pairwise maximum entropy (PME) model to describe the spiking activity of large populations of neurons recorded from the visual, auditory, motor, and somatosensory cortices. To quantify this performance, we use (1) Kullback-Leibler (KL) divergences, (2) the extent to which the pairwise model predicts third-order correlations, and (3) its ability to predict the probability that multiple neurons are simultaneously active. We compare these with the performance of a model with independent neurons and study the relationship between the different performance measures, while varying the population size, mean firing rate of the chosen population, and the bin size used for binarizing the data. We confirm the previously reported excellent performance of the PME model for small population sizes N < 20. But we also find that larger mean firing rates and bin sizes generally decreases performance. The performance for larger populations were generally not as good. For large populations, pairwise models may be good in terms of predicting third-order correlations and the probability of multiple neurons being active, but still significantly worse than small populations in terms of their improvement over the independent model in KL-divergence. We show that these results are independent of the cortical area and of whether approximate methods or Boltzmann learning are used for inferring the pairwise couplings. We compared the scaling of the inferred couplings with N and find it to be well explained by the Sherrington-Kirkpatrick (SK) model, whose strong coupling regime shows a complex phase with many metastable states. We find that, up to the maximum population size studied here, the fitted PME model remains outside its complex phase. However, the standard deviation of the couplings compared to their mean increases, and the model gets closer to the boundary of the complex phase as the population size grows.


Assuntos
Entropia , Modelos Neurológicos , Neurônios , Animais , Neurônios/fisiologia , Córtex Cerebral/fisiologia , Potenciais de Ação/fisiologia , Biologia Computacional , Simulação por Computador
2.
Anal Chim Acta ; 1308: 342659, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38740459

RESUMO

BACKGROUND: Kanamycin is an antibiotic that can easily cause adverse side effects if used improperly. Due to the extremely low concentrations of kanamycin in food, quantitative detection of kanamycin becomes a challenge. As one of the DNA self-assembly strategies, entropy-driven strand displacement reaction (EDSDR) does not require enzymes or hairpins to participate in the reaction, which greatly reduces the instability of detection results. Therefore, it is a very beneficial attempt to construct a highly sensitive and specific fluorescence detection method based on EDSDR that can detect kanamycin easily and quickly while ensuring that the results are effective and stable. RESULTS: We created an enzyme-free fluorescent aptamer sensor with high specificity and sensitivity for detecting kanamycin in milk by taking advantage of EDSDR and the high specific binding between the target and its aptamer. The specific binding can result in the release of the promoter chain, which then sets off the pre-planned EDSDR cycle. Fluorescent label modification on DNA combined with the fluorescence quenching-recovery mechanism gives the sensor impressive fluorescence response capabilities. The research results showed that within the concentration range of 0.1 nM-50 nM, there was a good relationship between the fluorescence intensity of the solution and the concentration of kanamycin. Specificity experiments and actual sample detection experiments confirmed that the biosensor could achieve highly sensitive and specific detection of trace amounts of kanamycin in food, with a detection limit of 0.053 nM (S/N = 3). SIGNIFICANCE: To our knowledge, this is the first strategy to combine EDSDR with fluorescence to detect kanamycin in food. Accurate results can be obtained in as little as 90 min with no enzymes or hairpins involved in the reaction. Furthermore, our enzyme-free biosensing method is straightforward, highly sensitive, and extremely specific. It has many possible applications, including monitoring antibiotic residues and food safety.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Entropia , Corantes Fluorescentes , Canamicina , Leite , Canamicina/análise , Canamicina/química , Aptâmeros de Nucleotídeos/química , Leite/química , Corantes Fluorescentes/química , Técnicas Biossensoriais/métodos , Espectrometria de Fluorescência , Limite de Detecção , Animais , Antibacterianos/análise , Antibacterianos/química , Contaminação de Alimentos/análise
3.
Artigo em Inglês | MEDLINE | ID: mdl-38683718

RESUMO

Sleep is vital to our daily activity. Lack of proper sleep can impair functionality and overall health. While stress is known for its detrimental impact on sleep quality, the precise effect of pre-sleep stress on subsequent sleep structure remains unknown. This study introduced a novel approach to study the pre-sleep stress effect on sleep structure, specifically slow-wave sleep (SWS) deficiency. To achieve this, we selected forehead resting EEG immediately before and upon sleep onset to extract stress-related neurological markers through power spectra and entropy analysis. These markers include beta/delta correlation, alpha asymmetry, fuzzy entropy (FuzzEn) and spectral entropy (SpEn). Fifteen subjects were included in this study. Our results showed that subjects lacking SWS often exhibited signs of stress in EEG, such as an increased beta/delta correlation, higher alpha asymmetry, and increased FuzzEn in frontal EEG. Conversely, individuals with ample SWS displayed a weak beta/delta correlation and reduced FuzzEn. Finally, we employed several supervised learning models and found that the selected neurological markers can predict subsequent SWS deficiency. Our investigation demonstrated that the classifiers could effectively predict varying levels of slow-wave sleep (SWS) from pre-sleep EEG segments, achieving a mean balanced accuracy surpassing 0.75. The SMOTE-Tomek resampling method could improve the performance to 0.77. This study suggests that stress-related neurological markers derived from pre-sleep EEG can effectively predict SWS deficiency. Such information can be integrated with existing sleep-improving techniques to provide a personalized sleep forecasting and improvement solution.


Assuntos
Algoritmos , Eletroencefalografia , Entropia , Sono de Ondas Lentas , Humanos , Eletroencefalografia/métodos , Masculino , Feminino , Sono de Ondas Lentas/fisiologia , Adulto , Adulto Jovem , Estresse Psicológico/fisiopatologia , Ritmo alfa/fisiologia , Previsões , Ritmo beta/fisiologia , Ritmo Delta , Privação do Sono/fisiopatologia , Reprodutibilidade dos Testes
4.
Accid Anal Prev ; 202: 107560, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38677239

RESUMO

As the level of vehicle automation increases, drivers are more likely to engage in non-driving related tasks which take their hands, eyes, and/or mind away from the driving task. Consequently, there has been increased interest in creating Driver Monitoring Systems (DMS) that are valid and reliable for detecting elements of driver state. Workload is one element of driver state that has remained elusive within the literature. Whilst there has been promising work in estimating mental workload using gaze-based metrics, the literature has placed too much emphasis on point estimate differences. Whilst these are useful for establishing whether effects exist, they ignore the inherent variability within individuals and between different drivers. The current work builds on this by using a Bayesian distributional modelling approach to quantify the within and between participants variability in Information Theoretical gaze metrics. Drivers (N = 38) undertook two experimental drives in hands-off Level 2 automation with their hands and feet away from operational controls. During both drives, their priority was to monitor the road before a critical takeover. During one drive participants had to complete a secondary cognitive task (2-back) during the hands-off Level 2 automation. Changes in Stationary Gaze Entropy and Gaze Transition Entropy were assessed for conditions with and without the 2-back to investigate whether consistent differences between workload conditions could be found across the sample. Stationary Gaze Entropy proved a reliable indicator of mental workload; 92 % of the population were predicted to show a decrease when completing 2-back during hands-off Level 2 automated driving. Conversely, Gaze Transition Entropy showed substantial heterogeneity; only 66 % of the population were predicted to have similar decreases. Furthermore, age was a strong predictor of the heterogeneity of the average causal effect that high mental workload had on eye movements. These results indicate that, whilst certain elements of Information Theoretic metrics can be used to estimate mental workload by DMS, future research needs to focus on the heterogeneity of these processes. Understanding this heterogeneity has important implications toward the design of future DMS and thus the safety of drivers using automated vehicle functions. It must be ensured that metrics used to detect mental workload are valid (accurately detecting a particular driver state) as well as reliable (consistently detecting this driver state across a population).


Assuntos
Automação , Teorema de Bayes , Carga de Trabalho , Humanos , Masculino , Carga de Trabalho/psicologia , Feminino , Adulto , Adulto Jovem , Fixação Ocular , Tecnologia de Rastreamento Ocular , Pessoa de Meia-Idade , Condução de Veículo/psicologia , Entropia , Movimentos Oculares , Direção Distraída
5.
PLoS One ; 19(4): e0301349, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630729

RESUMO

The short-term prediction of single well production can provide direct data support for timely guiding the optimization and adjustment of oil well production parameters and studying and judging oil well production conditions. In view of the coupling effect of complex factors on the daily output of a single well, a short-term prediction method based on a multi-agent hybrid model is proposed, and a short-term prediction process of single well output is constructed. First, CEEMDAN method is used to decompose and reconstruct the original data set, and the sliding window method is used to compose the data set with the obtained components. Features of components by decomposition are described as feature vectors based on values of fuzzy entropy and autocorrelation coefficient, through which those components are divided into two groups using cluster algorithm for prediction with two sub models. Optimized online sequential extreme learning machine and the deep learning model based on encoder-decoder structure using self-attention are developed as sub models to predict the grouped data, and the final predicted production comes from the sum of prediction values by sub models. The validity of this method for short-term production prediction of single well daily oil production is verified. The statistical value of data deviation and statistical test methods are introduced as the basis for comparative evaluation, and comparative models are used as the reference model to evaluate the prediction effect of the above multi-agent hybrid model. Results indicated that the proposed hybrid model has performed better with MAE value of 0.0935, 0.0694 and 0.0593 in three cases, respectively. By comparison, the short-term prediction method of single well production based on multi-agent hybrid model has considerably improved the statistical value of prediction deviation of selected oil well data in different periods. Through statistical test, the multi-agent hybrid model is superior to the comparative models. Therefore, the short-term prediction method of single well production based on a multi-agent hybrid model can effectively optimize oilfield production parameters and study and judge oil well production conditions.


Assuntos
Algoritmos , Educação a Distância , Entropia , Inteligência , Previsões
6.
Anal Chem ; 96(18): 7274-7280, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38655584

RESUMO

Inspired by natural DNA networks, programmable artificial DNA networks have become an attractive tool for developing high-performance biosensors. However, there is still a lot of room for expansion in terms of sensitivity, atom economy, and result self-validation for current microRNA sensors. In this protocol, miRNA-122 as a target model, an ultrasensitive fluorescence (FL) and photoelectrochemical (PEC) dual-mode biosensing platform is developed using a programmable entropy-driven circuit (EDC) cascaded self-feedback DNAzyme network. The well-designed EDC realizes full utilization of the DNA strands and improves the atomic economy of the signal amplification system. The unique and rational design of the double-CdSe quantum-dot-released EDC substrate and the cascaded self-feedback DNAzyme amplification network significantly avoids high background signals and enhances sensitivity and specificity. Also, the enzyme-free, programmable EDC cascaded DNAzyme network effectively avoids the risk of signal leakage and enhances the accuracy of the sensor. Moreover, the introduction of superparamagnetic Fe3O4@SiO2-cDNA accelerates the rapid extraction of E2-CdSe QDs and E3-CdSe QDs, which greatly improves the timeliness of sensor signal reading. In addition to the strengths of linear range (6 orders of magnitude) and stability, the biosensor design with dual signal reading makes the test results self-confirming.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , Técnicas Eletroquímicas , DNA Catalítico/química , DNA Catalítico/metabolismo , Entropia , Pontos Quânticos/química , MicroRNAs/análise , Espectrometria de Fluorescência , Processos Fotoquímicos , Fluorescência , Humanos , Compostos de Cádmio/química , Compostos de Selênio/química , Limite de Detecção
7.
Anal Chem ; 96(19): 7609-7617, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38687631

RESUMO

MicroRNAs (miRNAs) play vital roles in biological activities, but their in vivo imaging is still challenging due to the low abundance and the lack of efficient fluorescent tools. RNA aptamers with high affinity and low background emerge for bioimaging yet suffering from low brightness. We introduce a rational design based on target-mediated entropy-driven toehold exchange (EDTE) to induce the release of RNA aptamer and subsequently light up corresponding fluorophore, which achieves selective imaging of miRNAs with good stability in both living cells and tumor-bearing mouse. Through tailoring recognition unit of the EDTE probes, highly sensitive imaging of different miRNAs including miRNA-125b and miRNA-21 is achieved, confirming its universal bioimaging applications. In comparison with the reported "one-to-one" model, the EDTE strategy shows a remarkable 4.6-time improvement in signal/noise ratio for intracellular imaging of the same miRNA. Particularly, it realizes sensitive imaging of miRNA in vivo, providing a promising tool in investigating functions and interactions of disease-associated miRNAs.


Assuntos
Aptâmeros de Nucleotídeos , Entropia , Corantes Fluorescentes , MicroRNAs , MicroRNAs/análise , MicroRNAs/metabolismo , Aptâmeros de Nucleotídeos/química , Animais , Corantes Fluorescentes/química , Camundongos , Humanos , Imagem Óptica , Camundongos Nus
8.
Sensors (Basel) ; 24(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38610534

RESUMO

This study explores the important role of assessing force levels in accurately controlling upper limb movements in human-computer interfaces. It uses a new method that combines entropy to improve the recognition of force levels. This research aims to differentiate between different levels of isometric contraction forces using electroencephalogram (EEG) signal analysis. It integrates eight different entropy measures: power spectrum entropy (PSE), singular spectrum entropy (SSE), logarithmic energy entropy (LEE), approximation entropy (AE), sample entropy (SE), fuzzy entropy (FE), alignment entropy (PE), and envelope entropy (EE). The findings emphasize two important advances: first, including a wide range of entropy features significantly improves classification efficiency; second, the fusion entropy method shows exceptional accuracy in classifying isometric contraction forces. It achieves an accuracy rate of 91.73% in distinguishing between 15% and 60% maximum voluntary contraction (MVC) forces, along with 69.59% accuracy in identifying variations across 15%, 30%, 45%, and 60% MVC. These results illuminate the efficacy of employing fusion entropy in EEG signal analysis for isometric contraction detection, heralding new opportunities for advancing motor control and facilitating fine motor movements through sophisticated human-computer interface technologies.


Assuntos
Eletroencefalografia , Contração Isométrica , Humanos , Entropia , Movimento , Reconhecimento Psicológico
9.
Sensors (Basel) ; 24(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38610549

RESUMO

Non-linear and dynamic systems analysis of human movement has recently become increasingly widespread with the intention of better reflecting how complexity affects the adaptability of motor systems, especially after a stroke. The main objective of this scoping review was to summarize the non-linear measures used in the analysis of kinetic, kinematic, and EMG data of human movement after stroke. PRISMA-ScR guidelines were followed, establishing the eligibility criteria, the population, the concept, and the contextual framework. The examined studies were published between 1 January 2013 and 12 April 2023, in English or Portuguese, and were indexed in the databases selected for this research: PubMed®, Web of Science®, Institute of Electrical and Electronics Engineers®, Science Direct® and Google Scholar®. In total, 14 of the 763 articles met the inclusion criteria. The non-linear measures identified included entropy (n = 11), fractal analysis (n = 1), the short-term local divergence exponent (n = 1), the maximum Floquet multiplier (n = 1), and the Lyapunov exponent (n = 1). These studies focused on different motor tasks: reaching to grasp (n = 2), reaching to point (n = 1), arm tracking (n = 2), elbow flexion (n = 5), elbow extension (n = 1), wrist and finger extension upward (lifting) (n = 1), knee extension (n = 1), and walking (n = 4). When studying the complexity of human movement in chronic post-stroke adults, entropy measures, particularly sample entropy, were preferred. Kinematic assessment was mainly performed using motion capture systems, with a focus on joint angles of the upper limbs.


Assuntos
Articulação do Cotovelo , Extremidade Superior , Adulto , Humanos , Punho , Bases de Dados Factuais , Entropia
10.
J Phys Chem Lett ; 15(15): 4047-4055, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38580324

RESUMO

Liquid-liquid phase separation (LLPS) plays a key role in the compartmentalization of cells via the formation of biomolecular condensates. Here, we combined atomistic molecular dynamics (MD) simulations and terahertz (THz) spectroscopy to determine the solvent entropy contribution to the formation of condensates of the human eye lens protein γD-Crystallin. The MD simulations reveal an entropy tug-of-war between water molecules that are released from the protein droplets and those that are retained within the condensates, two categories of water molecules that were also assigned spectroscopically. A recently developed THz-calorimetry method enables quantitative comparison of the experimental and computational entropy changes of the released water molecules. The strong correlation mutually validates the two approaches and opens the way to a detailed atomic-level understanding of the different driving forces underlying the LLPS.


Assuntos
Separação de Fases , Água , Humanos , Solventes , Entropia , Calorimetria
11.
Comput Methods Programs Biomed ; 249: 108145, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38582038

RESUMO

BACKGROUND AND OBJECTIVE: Obstetricians use Cardiotocography (CTG), which is the continuous recording of fetal heart rate and uterine contraction, to assess fetal health status. Deep learning models for intelligent fetal monitoring trained on extensively labeled and identically distributed CTG records have achieved excellent performance. However, creation of these training sets requires excessive time and specialist labor for the collection and annotation of CTG signals. Previous research has demonstrated that multicenter studies can improve model performance. However, models trained on cross-domain data may not generalize well to target domains due to variance in distribution among datasets. Hence, this paper conducted a multicenter study with Deep Semi-Supervised Domain Adaptation (DSSDA) for intelligent interpretation of antenatal CTG signals. This approach helps to align cross-domain distribution and transfer knowledge from a label-rich source domain to a label-scarce target domain. METHODS: We proposed a DSSDA framework that integrated Minimax Entropy and Domain Invariance (DSSDA-MMEDI) to reduce inter-domain gaps and thus achieve domain invariance. The networks were developed using GoogLeNet to extract features from CTG signals, with fully connected, softmax layers for classification. We designed a Dynamic Gradient-driven strategy based on Mutual Information (DGMI) to unify the losses from Minimax Entropy (MME), Domain Invariance (DI), and supervised cross-entropy during iterative learning. RESULTS: We validated our DSSDA model on two datasets collected from collaborating healthcare institutions and mobile terminals as the source and target domains, which contained 16,355 and 3,351 CTG signals, respectively. Compared to the results achieved with deep learning networks without DSSDA, DSSDA-MMEDI significantly improved sensitivity and F1-score by over 6%. DSSDA-MMEDI also outperformed other state-of-the-art DSSDA approaches for CTG signal interpretation. Ablation studies were performed to determine the unique contribution of each component in our DSSDA mechanism. CONCLUSIONS: The proposed DSSDA-MMEDI is feasible and effective for alignment of cross-domain data and automated interpretation of multicentric antenatal CTG signals with minimal annotation cost.


Assuntos
Cardiotocografia , Monitorização Fetal , Gravidez , Feminino , Humanos , Cardiotocografia/métodos , Entropia , Monitorização Fetal/métodos , Contração Uterina , Frequência Cardíaca Fetal/fisiologia
12.
PLoS One ; 19(4): e0301930, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635565

RESUMO

Rice, being a staple food in many countries, necessitates the identification of reliable suppliers to ensure a steady supply. Consequently, it is vital to establish trustworthy vendors for various types of this essential grain who can meet stringent product quality standards. This study aims to identify, analyze, rank, and select primary rice suppliers. The study emphasizes the importance of selecting and managing suitable providers to meet customer demands, proposes a ranking model for rice suppliers, and introduces developed fuzzy MCDM techniques. It proposes an integrated model for selecting rice suppliers, considering factors related to the processes before, during, and after selecting providers within a defined framework. The outcomes shows that rice supplier selection strategy can efficiently identify reliable rice suppliers, improve buyer value, reduce procurement risk, enhance efficiency, and establish strong supply chain relationships in complex decision-making processes. To assess suppliers, the study introduces two advanced integrated approaches and compares them. The fuzzy entropy weight method (EWM) was used to determine the criteria weights. The ranking of rice suppliers was achieved using a fuzzy multi-objective optimization based on ratio analysis (MOORA), fuzzy complex proportional assessment (COPRAS), and combinations of these two methods in different approaches. The methodology supports decision-makers in a rapidly evolving global environment by assisting importers, traders, suppliers, procurement, and logistics management, particularly for non-rice-cultivating countries in rice importation and supplier selection. The numerical analysis is grounded in a real-world case study of selecting rice suppliers in Jordan. The findings reveal that the various strategies yield both similar and different results. Furthermore, the integrated method is considered the most accurate for evaluating rice imports and suppliers, aligning closely with the reality of the current situation.


Assuntos
Oryza , Entropia , Comércio , Jordânia
13.
Phys Chem Chem Phys ; 26(15): 11880-11892, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38568008

RESUMO

Recent experiments have revealed that adenosine triphosphate (ATP) suppresses the fibrillation of amyloid peptides - a process closely linked to neurodegenerative diseases such as Alzheimer's and Parkinson's. Apart from the adsorption of ATP onto amyloid peptides, the molecular understanding is still limited, leaving the underlying mechanism for the fibrillation suppression by ATP largely unclear, especially in regards to the molecular energetics. Here we provide an explanation at the molecular scale by quantifying the free energies using all-atom molecular dynamics simulations. We found that the changes of the free energies due to the addition of ATP lead to a significant equilibrium shift towards monomeric peptides in agreement with experiments. Despite ATP being a highly charged species, the decomposition of the free energies reveals that the van der Waals interactions with the peptide are decisive in determining the relative stabilization of the monomeric state. While the phosphate moiety exhibits strong electrostatic interactions, the compensation by the water solvent results in a minor, overall Coulomb contribution. Our quantitative analysis of the free energies identifies which intermolecular interactions are responsible for the suppression of the amyloid fibril formation by ATP and offers a promising method to analyze the roles of similarly complex cosolvents in aggregation processes.


Assuntos
Amiloide , Peptídeos , Amiloide/química , Peptídeos/química , Água/química , Entropia , Solventes/química , Simulação de Dinâmica Molecular , Proteínas Amiloidogênicas , Peptídeos beta-Amiloides/química , Fragmentos de Peptídeos/química
14.
J Transl Med ; 22(1): 333, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576021

RESUMO

BACKGROUND: Disease progression in biosystems is not always a steady process but is occasionally abrupt. It is important but challenging to signal critical transitions in complex biosystems. METHODS: In this study, based on the theoretical framework of dynamic network biomarkers (DNBs), we propose a model-free method, edge-based relative entropy (ERE), to identify temporal key biomolecular associations/networks that may serve as DNBs and detect early-warning signals of the drastic state transition during disease progression in complex biological systems. Specifically, by combining gene‒gene interaction (edge) information with the relative entropy, the ERE method converts gene expression values into network entropy values, quantifying the dynamic change in a biomolecular network and indicating the qualitative shift in the system state. RESULTS: The proposed method was validated using simulated data and real biological datasets of complex diseases. The applications show that for certain diseases, the ERE method helps to reveal so-called "dark genes" that are non-differentially expressed but with high ERE values and of essential importance in both gene regulation and prognosis. CONCLUSIONS: The proposed method effectively identified the critical transition states of complex diseases at the network level. Our study not only identified the critical transition states of various cancers but also provided two types of new prognostic biomarkers, positive and negative edge biomarkers, for further practical application. The method in this study therefore has great potential in personalized disease diagnosis.


Assuntos
Dinitrofluorbenzeno/análogos & derivados , Entropia , Humanos , Biomarcadores , Prognóstico , Progressão da Doença
15.
PLoS One ; 19(4): e0301411, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626006

RESUMO

This study focuses on the objective assessment of sport development in socio-economic environments, considering the challenges faced by the industry. These challenges include disparities in regional investments, limited market participation, slow progress towards sports professionalization, and insufficient technological innovations. To tackle these challenges, we suggest implementing an integrated evaluation model that follows the DPSIR (Drivers, Pressures, States, Impacts, Responses) framework and incorporates comprehensive socioeconomic indicators. Subsequently, we utilized the Entropy power method and TOPSIS (Order Preference Technique for Similarity to an Ideal Solution, TOPSIS) analysis to comprehensively assess the progress of competitive sports development in 31 provinces and cities in China. Additionally, we recommended further developments in competitive sports and proposed precise strategies for promoting its growth. The framework and methodology developed in this paper provide an objective and scientifically based set of decision-making guidelines that can be adopted by government agencies and related industries in order to create successful plans that promote the sustainable growth of competitive sport. This is expected to bolster the nation's global influence, enhance social unity, and fuel economic expansion. The findings of this study offer policymakers valuable insights regarding competitive sports and can advance the development of the sports sector in China, thus making it a crucial driver of regional socio-economic progress.


Assuntos
Indústrias , Desenvolvimento Sustentável , China , Cidades , Entropia , Desenvolvimento Econômico
16.
Chaos ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38619248

RESUMO

The popularity of nonlinear analysis has been growing simultaneously with the technology of effort monitoring. Therefore, considering the simple methods of physiological data collection and the approaches from the information domain, we proposed integrating univariate and bivariate analysis for the rest and effort comparison. Two sessions separated by an intensive training program were studied. Nine subjects participated in the first session (S1) and seven in the second session (S2). The protocol included baseline (BAS), exercise, and recovery phase. During all phases, electrocardiogram (ECG) was recorded. For the analysis, we selected corresponding data lengths of BAS and exercise usually lasting less than 5 min. We found the utility of the differences between original data and their surrogates for sample entropy Sdiff and Kullback-Leibler divergence KLDdiff. Sdiff of heart rate variability was negative in BAS and exercise but its sensitivity for phases discrimination was not satisfactory. We studied the bivariate analysis of RR intervals and corresponding QT peaks by Interlayer Mutual Information (IMI) and average edge overlap (AVO) markers. While the IMI parameter decreases in exercise conditions, AVO increased in effort compared to BAS. These findings conclude that researchers should consider a bivariate analysis of extracted RR intervals and corresponding QT datasets, when only ECG is recorded during tests.


Assuntos
Eletrocardiografia , Descanso , Humanos , Coleta de Dados , Entropia , Frequência Cardíaca
17.
J Phys Chem B ; 128(15): 3598-3604, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38574232

RESUMO

We demonstrate that the binding affinity of a multichain protein-protein complex, insulin dimer, can be accurately predicted using a streamlined route of standard binding free-energy calculations. We find that chains A and C, which do not interact directly during binding, stabilize the insulin monomer structures and reduce the binding affinity of the two monomers, therefore enabling their reversible association. Notably, we confirm that although classical methods can estimate the binding affinity of the insulin dimer, conventional molecular dynamics, enhanced sampling algorithms, and classical geometrical routes of binding free-energy calculations may not fully capture certain aspects of the role played by the noninteracting chains in the binding dynamics. Therefore, this study not only elucidates the role of noninteracting chains in the reversible binding of the insulin dimer but also offers a methodological guide for investigating the reversible binding of multichain protein-protein complexes utilizing streamlined free-energy calculations.


Assuntos
Insulina , Simulação de Dinâmica Molecular , Entropia , Insulina/química , Ligação Proteica , Termodinâmica
18.
Biomed Phys Eng Express ; 10(4)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38636479

RESUMO

Cervical cancer is a prevalent malignant tumor within the female reproductive system and is regarded as a prominent cause of female mortality on a global scale. Timely and precise detection of various phases of cervical cancer holds the potential to substantially enhance both the rate of successful treatment and the duration of patient survival. Fluorescence spectroscopy is a highly sensitive method for detecting the biochemical changes that arise during cancer progression. In our study, fluorescence spectral data is collected from a diverse group of 110 subjects. The potential of the scattering transform technique for the purpose of cancer detection is explored. The processed signal undergoes an initial decomposition into scattering coefficients using the wavelet scattering transform (WST). Subsequently, the scattering coefficients are subjected to computation for fuzzy entropy, dispersion entropy, phase entropy, and spectral entropy, for effectively characterizing the fluorescence spectral signals. These combined features generated through the proposed approach are then fed to 1D convolutional neural network (CNN) classifier to classify them into normal, pre-cancerous, and cancerous categories, thereby evaluating the effectiveness of the proposed methodology. We obtained mean classification accuracy of 97% using 5-fold cross-validation. This demonstrates the potential of combining WST and entropic features for analyzing fluorescence spectroscopy signals using 1D CNN classifier that enables early cancer detection in contrast to prevailing diagnostic methods.


Assuntos
Entropia , Espectrometria de Fluorescência , Neoplasias do Colo do Útero , Análise de Ondaletas , Humanos , Neoplasias do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/diagnóstico por imagem , Feminino , Espectrometria de Fluorescência/métodos , Redes Neurais de Computação , Algoritmos , Adulto , Pessoa de Meia-Idade , Lógica Fuzzy
19.
PLoS One ; 19(4): e0302197, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38662755

RESUMO

Our study aims to investigate the interdependence between international stock markets and sentiments from financial news in stock forecasting. We adopt the Temporal Fusion Transformers (TFT) to incorporate intra and inter-market correlations and the interaction between the information flow, i.e. causality, of financial news sentiment and the dynamics of the stock market. The current study distinguishes itself from existing research by adopting Dynamic Transfer Entropy (DTE) to establish an accurate information flow propagation between stock and sentiments. DTE has the advantage of providing time series that mine information flow propagation paths between certain parts of the time series, highlighting marginal events such as spikes or sudden jumps, which are crucial in financial time series. The proposed methodological approach involves the following elements: a FinBERT-based textual analysis of financial news articles to extract sentiment time series, the use of the Transfer Entropy and corresponding heat maps to analyze the net information flows, the calculation of the DTE time series, which are considered as co-occurring covariates of stock Price, and TFT-based stock forecasting. The Dow Jones Industrial Average index of 13 countries, along with daily financial news data obtained through the New York Times API, are used to demonstrate the validity and superiority of the proposed DTE-based causality method along with TFT for accurate stock Price and Return forecasting compared to state-of-the-art time series forecasting methods.


Assuntos
Previsões , Investimentos em Saúde , Investimentos em Saúde/economia , Previsões/métodos , Humanos , Entropia , Modelos Econômicos , Comércio/tendências
20.
Sensors (Basel) ; 24(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38610331

RESUMO

Recent advancements in the Internet of Things (IoT) wearable devices such as wearable inertial sensors have increased the demand for precise human activity recognition (HAR) with minimal computational resources. The wavelet transform, which offers excellent time-frequency localization characteristics, is well suited for HAR recognition systems. Selecting a mother wavelet function in wavelet analysis is critical, as optimal selection improves the recognition performance. The activity time signals data have different periodic patterns that can discriminate activities from each other. Therefore, selecting a mother wavelet function that closely resembles the shape of the recognized activity's sensor (inertial) signals significantly impacts recognition performance. This study uses an optimal mother wavelet selection method that combines wavelet packet transform with the energy-to-Shannon-entropy ratio and two classification algorithms: decision tree (DT) and support vector machines (SVM). We examined six different mother wavelet families with different numbers of vanishing points. Our experiments were performed on eight publicly available ADL datasets: MHEALTH, WISDM Activity Prediction, HARTH, HARsense, DaLiAc, PAMAP2, REALDISP, and HAR70+. The analysis demonstrated in this paper can be used as a guideline for optimal mother wavelet selection for human activity recognition.


Assuntos
Internet das Coisas , Dispositivos Eletrônicos Vestíveis , Humanos , Algoritmos , Entropia , Atividades Humanas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA