Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
1.
Anticancer Drugs ; 33(1): 48-60, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34620742

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in liver cancer. Circular RNA_0090049 (circ_0090049) has been shown to be involved in the advance of HCC. However, the interaction between circ_0090049 and microRNA (miRNA) in HCC has not been studied. Quantitative real-time PCR was used to detect the expression of related genes. Through detection of cell proliferation, migration, invasion, and rate of tumor sphere formation, the capping experiment was carried out to verify the regulatory relationship between miRNA and circ_0090049 or circ_0090049 and ubiquitin-conjugating enzyme E2 T (UBE2T). The expression of related proteins was detected by Western blotting. The interaction of miRNA with circ_0090049 or UBE2T was notarized by Dual-luciferase reporter assay. Xenotransplantation experiments confirmed the function of circ_0090049 in vivo. Circ_0090049 and UBE2T were upregulated in liver cancer. Silencing circ_0090049 reduced the proliferation, migration, invasion, and tumor spheroid formation rate of Huh7 and HCCLM3 cells. MiR-605-5p and miR-548c-3p were identified as targets of circ_0090049, and UBE2T was the target of miR-605-5p and miR-548c-3p. Anti-miR-605-5p, anti-miR-548c-3p or UBE2T overexpression restored the inhibitory effect of circ_0090049 knockdown on HCC cells. Animal experiments confirmed the antitumor effect of silence circ_0090049. Circ_0090049 regulates the expression of UBE2T by regulating miR-605-5p or miR-548c-3p, thereby promoting the development of HCC cells.


Assuntos
Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , MicroRNAs/metabolismo , RNA Circular/metabolismo , Animais , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Feminino , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Endogâmicos BALB C , RNA Interferente Pequeno/metabolismo , Enzimas de Conjugação de Ubiquitina/fisiologia , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Arthritis Rheumatol ; 74(1): 163-173, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34279042

RESUMO

OBJECTIVE: Genetic variants spanning UBE2L3 are associated with increased expression of the UBE2L3-encoded E2 ubiquitin-conjugating enzyme H7 (UbcH7), which facilitates activation of proinflammatory NF-κB signaling and susceptibility to autoimmune diseases. We undertook this study to delineate how genetic variants carried on the UBE2L3/YDJC autoimmune risk haplotype function to drive hypermorphic UBE2L3 expression. METHODS: We used bioinformatic analyses, electrophoretic mobility shift assays, and luciferase reporter assays to identify and functionally characterize allele-specific effects of risk variants positioned in chromatin accessible regions of immune cells. Chromatin conformation capture with quantitative polymerase chain reaction (3C-qPCR), chromatin immunoprecipitation (ChIP)-qPCR, and small interfering RNA (siRNA) knockdown assays were performed on patient-derived Epstein-Barr virus-transformed B cells homozygous for the UBE2L3/YDJC nonrisk or risk haplotype to determine if the risk haplotype increases UBE2L3 expression by altering the regulatory chromatin architecture in the region. RESULTS: Of the 7 prioritized variants, 5 demonstrated allele-specific increases in nuclear protein binding affinity and regulatory activity. High-throughput sequencing of chromosome conformation capture coupled with ChIP (HiChIP) and 3C-qPCR uncovered a long-range interaction between the UBE2L3 promoter (rs140490, rs140491, rs11089620) and the downstream YDJC promoter (rs3747093) that was strengthened in the presence of the UBE2L3/YDJC risk haplotype, and correlated with the loss of CCCTC-binding factor (CTCF) and gain of YY1 binding at the risk alleles. Depleting YY1 by siRNA disrupted the long-range interaction between the 2 promoters and reduced UBE2L3 expression. CONCLUSION: The UBE2L3/YDJC autoimmune risk haplotype increases UBE2L3 expression through strengthening a YY1-mediated interaction between the UBE2L3 and YDJC promoters.


Assuntos
Doenças Autoimunes/genética , Fator de Ligação a CCCTC/fisiologia , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/fisiologia , Fator de Transcrição YY1/fisiologia , Regulação da Expressão Gênica , Variação Genética , Haplótipos , Humanos , Fatores de Risco
3.
PLoS Biol ; 19(12): e3001474, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34879065

RESUMO

Endoplasmic reticulum-associated degradation (ERAD) is a protein quality control pathway of fundamental importance to cellular homeostasis. Although multiple ERAD pathways exist for targeting topologically distinct substrates, all pathways require substrate ubiquitination. Here, we characterize a key role for the UBE2G2 Binding Region (G2BR) of the ERAD accessory protein ancient ubiquitous protein 1 (AUP1) in ERAD pathways. This 27-amino acid (aa) region of AUP1 binds with high specificity and low nanomolar affinity to the backside of the ERAD ubiquitin-conjugating enzyme (E2) UBE2G2. The structure of the AUP1 G2BR (G2BRAUP1) in complex with UBE2G2 reveals an interface that includes a network of salt bridges, hydrogen bonds, and hydrophobic interactions essential for AUP1 function in cells. The G2BRAUP1 shares significant structural conservation with the G2BR found in the E3 ubiquitin ligase gp78 and in vitro can similarly allosterically activate ubiquitination in conjunction with ERAD E3s. In cells, AUP1 is uniquely required to maintain normal levels of UBE2G2; this is due to G2BRAUP1 binding to the E2 and preventing its rapid degradation. In addition, the G2BRAUP1 is required for both ER membrane recruitment of UBE2G2 and for its activation at the ER membrane. Thus, by binding to the backside of a critical ERAD E2, G2BRAUP1 plays multiple critical roles in ERAD.


Assuntos
Degradação Associada com o Retículo Endoplasmático/genética , Proteínas de Membrana/fisiologia , Enzimas de Conjugação de Ubiquitina/fisiologia , Sequência de Aminoácidos/genética , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Degradação Associada com o Retículo Endoplasmático/fisiologia , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/ultraestrutura , Ligação Proteica/genética , Domínios Proteicos/genética , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/ultraestrutura , Ubiquitinação
4.
Int J Med Sci ; 18(16): 3749-3758, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790050

RESUMO

The ubiquitin-conjugating enzyme (E2) is a critical component of the ubiquitin-proteasome system and regulates hepatocarcinogenesis by controlling protein degradation. Ubiquitin-conjugating enzyme E2 O (UBE2O), a member of the E2 family, functions as an oncogene in human cancers. Nevertheless, the role of UBE2O in hepatocellular carcinoma (HCC) remains unknown yet. Here, we demonstrated that the UBE2O level was markedly upregulated in HCC compared with adjacent noncancerous tissues. UBE2O overexpression was also confirmed in HCC cell lines. UBE2O overexpression was prominently associated with advanced tumor stage, high tumor grade, venous infiltration, and reduced HCC patients' survivals. UBE2O knockdown inhibited the migration, invasion, and proliferation of HCCLM3 cells. UBE2O overexpression enhanced the proliferation and mobility of Huh7 cells. Mechanistically, UBE2O mediated the ubiquitination and degradation of AMP-activated protein kinase α2 (AMPKα2) in HCC cells. UBE2O silencing prominently increased AMPKα2 level and reduced phosphorylated mechanistic target of rapamycin kinase (p-mTOR), MYC, Cyclin D1, HIF1α, and SREBP1 levels in HCCLM3 cells. UBE2O depletion markedly activated the AMPKα2/mTOR pathway in Huh7 cells. Moreover, AMPKα2 silencing reversed UBE2O downregulation-induced mTOR pathway inactivation. Rapamycin, an inhibitor of mTOR, remarkably abolished UBE2O-induced mTOR phosphorylation and HCC cell proliferation and mobility. To conclude, UBE2O was highly expressed in HCC and its overexpression conferred to the poor clinical outcomes of patients. UBE2O contributed to the malignant behaviors of HCC cells, including cell proliferation, migration, and invasion, by reducing AMPKα2 stability and activating the mTOR pathway.


Assuntos
Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Enzimas de Conjugação de Ubiquitina/fisiologia , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Adulto , Idoso , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
5.
J Zhejiang Univ Sci B ; 22(11): 959-965, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34783226

RESUMO

Lung cancer, which is exacerbated by environmental pollution and tobacco use, has become the most common cause of cancer-related deaths worldwide, with a five-year overall survival rate of only 19% (Siegel et al., 2020; Yang et al., 2020; Yu and Li, 2020). Nearly 85% of lung cancers are non-small cell lung cancers, of which lung adenocarcinoma is the most common subtype accounting for 50% of non-small cell lung cancer cases. At present, radiotherapy is the primary therapeutic modality for lung cancer at different stages, with significant prolongation of survival time (Hirsch et al., 2017; Bai et al., 2019; Shi et al., 2020). Irradiation can generate reactive oxygen species (ROS) through the radiolysis reaction of water and oxygen, cause DNA damage and oxidative stress, and subsequently result in cancer cell death (Kim et al., 2019). Nevertheless, radioresistance seriously hinders the success of treatment for lung cancer, owing to local recurrence and distant metastasis (Huang et al., 2021). Compared with small cell lung cancer, non-small cell lung cancer shows more tolerance to radiotherapy. Therefore, it is of great importance to decipher key mechanisms of radioresistance and identify effective molecular radiosensitizers to improve patient survival.


Assuntos
Apoptose , Neoplasias Pulmonares/radioterapia , Tolerância a Radiação , Enzimas de Conjugação de Ubiquitina/fisiologia , Células A549 , Animais , Feminino , Células HEK293 , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Camundongos , Espécies Reativas de Oxigênio/metabolismo
6.
J Pharmacol Sci ; 145(4): 327-334, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33712284

RESUMO

Ubiquitin/ISG15-conjugating enzyme E2 L6 (UBE2L6/Ube2l6) catalyzes protein ISGylation and ubiquitylation, post-translational modifications which regulate protein stability. Ube2l6 plays a role in promoting in vitro adipogenesis; however, its mechanism(s) of action and in vivo effects remain unknown. Here, we discovered that UBE2L6 levels were upregulated, and UBE2L6 and adipose triglyceride lipase (ATGL/Atgl) levels were negatively correlated, in white adipose tissue (WAT) from obese humans and obese mice. Therefore, we employed adipose-specific Ube2l6 knockout (Ube2l6AKO) mice and age-matched Ube2l6flox/flox controls to assess adipocyte Ube2l6's role in high-fat diet (HFD)-induced obesity, insulin resistance, and hepatic steatosis. HFD-fed Ube2l6AKO mice displayed lower subcutaneous and visceral WAT mass levels relative to controls. HFD-fed Ube2l6AKO mice also showed WAT adipocyte hypoplasia and hypotrophy as well as enhanced whole-body metabolic activity relative to controls. Furthermore, glucose intolerance, insulin resistance, compensatory hyperinsulinemia, hypercholesterolemia, and hepatic steatosis were lower in HFD-fed Ube2l6AKO mice as compared to controls. Mechanistically, we found that Atgl protein expression and Atgl-mediated lipolysis were negatively regulated by Ube2l6's promotion of Atgl protein ubiquitylation. Collectively, adipocyte Ube2l6 functions as a negative regulator of Atgl protein stability and, consequently, promotes HFD-induced obesity, insulin resistance, and hepatic steatosis.


Assuntos
Adipócitos/metabolismo , Adipogenia/genética , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/genética , Técnicas de Inativação de Genes , Resistência à Insulina/genética , Obesidade/etiologia , Obesidade/genética , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/fisiologia , Animais , Humanos , Lipase/genética , Lipase/metabolismo , Lipase/fisiologia , Camundongos , Ubiquitinação/efeitos dos fármacos
7.
BMC Cancer ; 21(1): 220, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33663405

RESUMO

BACKGROUND: High grade serous ovarian cancer (HGSOC) accounts for nearly 60% of total cases of epithelial ovarian cancer. It is the most aggressive subtype, which shows poor prognosis and low patient survival. For better management of HGSOC patients, new prognostic biomarkers are required to facilitate improved treatment strategies and ensure suitable healthcare decisions. METHODS: We performed genome wide expression analysis of HGSOC patient samples to identify differentially expressed genes (DEGs) using R based Limma package, Clust and other statistical tools. The identified DEGs were subjected to weighted gene co-expression network analysis (WGCNA) to identify co-expression patterns of relevant genes. Module trait and gene ontology analyses were performed to establish important gene co-expression networks and their biological functions. Overlapping the most relevant DEG cluster 4 with prominent WGCNA cyan module identified strongest correlation of UBE2Q1 with ovarian cancer and its prognostic significance on survival probability of ovarian cancer patients was investigated. The predictive value of UBE2Q1 as a potential biomarker was analysed by correlating its expression with 12-months relapse free survival of patients in response to platin/taxane, the standard first-line chemotherapy for ovarian cancer, and analysing area under the ROC curve. RESULTS: An integrated gene expression analysis and WGCNA, identified UBE2Q1 as a potential prognostic marker associated with poor relapse-free survival and response outcome to platin/taxane treatment of patients with high grade serous ovarian cancer. CONCLUSIONS: Our study identifies a potential UBE2Q1 - B4GALT3 functional axis in ovarian cancer, where only the E2 conjugating enzyme showed a poor prognostic impact on the disease.


Assuntos
Biologia Computacional/métodos , Cistadenocarcinoma Seroso/mortalidade , Neoplasias Ovarianas/mortalidade , Enzimas de Conjugação de Ubiquitina/genética , Neoplasias da Mama/mortalidade , Feminino , Galactosiltransferases/genética , Galactosiltransferases/fisiologia , Ontologia Genética , Redes Reguladoras de Genes , Humanos , Prognóstico , Enzimas de Conjugação de Ubiquitina/fisiologia
8.
Plant J ; 106(3): 706-719, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33570751

RESUMO

Phosphorus is a crucial macronutrient for plant growth and development. The mechanisms for maintaining inorganic phosphate (Pi) homeostasis in rice are not well understood. The ubiquitin-conjugating enzyme variant protein OsUEV1B was previously found to interact with OsUbc13 and mediate lysine63-linked polyubiquitination. In the present study, we found OsUEV1B was specifically inhibited by Pi deficiency, and was localized in the nucleus and cytoplasm. Both osuev1b mutant and OsUEV1B-RNA interference (RNAi) lines displayed serious symptoms of toxicity due to Pi overaccumulation. Some Pi starvation inducible and phosphate transporter genes were upregulated in osuev1b mutant and OsUEV1B-RNAi plants in association with enhanced Pi acquisition, and representative Pi starvation responses, including stimulation of acid phosphatase activity and root hair growth, were also activated in the presence of sufficient Pi. A yeast two-hybrid screen revealed an interaction between OsUEV1B and OsVDAC1, which was confirmed by bimolecular fluorescence complementation and firefly split-luciferase complementation assays. OsVDAC1 encoded a voltage-dependent anion channel protein localized in the mitochondria, and OsUbc13 was shown to interact with OsVDAC1 via yeast two-hybrid and bimolecular fluorescence complementation assays. Under sufficient Pi conditions, similar to osuev1b, a mutation in OsVDAC1 resulted in significantly greater Pi concentrations in the roots and second leaves, improved acid phosphatase activity, and enhanced expression of the Pi starvation inducible and phosphate transporter genes compared with wild-type DongJin, whereas overexpression of OsVDAC1 had the opposite effects. OsUEV1B or OsVDAC1 knockout reduced the mitochondrial membrane potential and adenosine triphosphate levels. Moreover, overexpression of OsVDAC1 in osuev1b partially restored its high Pi concentration to a level between those of osuev1b and DongJin. Our results indicate that OsUEV1B is required for rice phosphate homeostasis.


Assuntos
Homeostase , Oryza/metabolismo , Fosfatos/metabolismo , Proteínas de Plantas/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Núcleo Celular/enzimologia , Núcleo Celular/metabolismo , Citoplasma/enzimologia , Citoplasma/metabolismo , Oryza/enzimologia , Proteínas de Plantas/fisiologia , Raízes de Plantas/enzimologia , Raízes de Plantas/metabolismo , Brotos de Planta/enzimologia , Brotos de Planta/metabolismo , Enzimas de Conjugação de Ubiquitina/fisiologia
9.
Biomolecules ; 10(10)2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066455

RESUMO

Besides ubiquitin (Ub), humans have a set of ubiquitin-like proteins (UBLs) that can also covalently modify target proteins. To date, less is known about UBLs than Ub and even less is known about the UBL called ubiquitin-fold modifier 1 (UFM1). Currently, our understanding of protein modification by UFM1 (UFMylation) is like a jigsaw puzzle with many missing pieces, and in some cases it is not even clear whether these pieces of data are in the right place. Here we review the current data on UFM1 from structural biology to biochemistry and cell biology. We believe that the physiological significance of protein modification by UFM1 is currently underestimated and there is more to it than meets the eye.


Assuntos
Processamento de Proteína Pós-Traducional/fisiologia , Proteínas/metabolismo , Animais , Progressão da Doença , Humanos , Modelos Moleculares , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas/química , Ubiquitina/química , Ubiquitina/metabolismo , Enzimas Ativadoras de Ubiquitina/fisiologia , Enzimas de Conjugação de Ubiquitina/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Ubiquitinação/fisiologia
10.
Plant Sci ; 297: 110520, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32563459

RESUMO

Protein ubiquitination is critical for various biological processes in eukaryotes. A ubiquitin (Ub) chain can be linked through one of the seven lysine (K) residues or the N-terminus methionine of the Ub, and the Ub-conjugating enzymes called E2s play a critical role in determining the linkage specificity of Ub chains. Further, while K48-linked polyubiquitin chain is important for protein degradation, much less is known about the functions of other types of polyubiquitin chains in plants. We showed previously that UBC22 is unique in its ability to catalyze K11-dependent Ub dimer formation in vitro and ubc22 knockout mutants had defects in megasporogenesis. In this study, further analyses of the Arabidopsis ubc22 mutants revealed four subtypes of plants based on the phenotypic changes in vegetative growth. These four subtypes appeared consistently in the plants of three independent ubc22 mutants. Transcriptomic analysis showed that transcript levels of genes related to several pathways were altered differently in different subtypes of mutant plants. In one subtype, the mutant plants had increased expression of genes related to plant defenses and showed enhanced resistance to a necrotrophic plant pathogen. These results suggest multiple functions of UBC22 during plant development and stress response.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/enzimologia , Enzimas de Conjugação de Ubiquitina/fisiologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/imunologia , Proteínas de Arabidopsis/genética , Botrytis , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , DNA de Plantas/genética , Edição de Genes , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , RNA de Plantas/genética , Reação em Cadeia da Polimerase em Tempo Real , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitinação/genética
11.
Nat Chem Biol ; 16(3): 291-301, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31873223

RESUMO

DNA-damage repair is implemented by proteins that are coordinated by specialized molecular signals. One such signal in the Fanconi anemia (FA) pathway for the repair of DNA interstrand crosslinks is the site-specific monoubiquitination of FANCD2 and FANCI. The signal is mediated by a multiprotein FA core complex (FA-CC) however, the mechanics for precise ubiquitination remain elusive. We show that FANCL, the RING-bearing module in FA-CC, allosterically activates its cognate ubiqutin-conjugating enzyme E2 UBE2T to drive site-specific FANCD2 ubiquitination. Unlike typical RING E3 ligases, FANCL catalyzes ubiquitination by rewiring the intraresidue network of UBE2T to influence the active site. Consequently, a basic triad unique to UBE2T engages a structured acidic patch near the target lysine on FANCD2. This three-dimensional complementarity, between the E2 active site and substrate surface, induced by FANCL is central to site-specific monoubiquitination in the FA pathway. Furthermore, the allosteric network of UBE2T can be engineered to enhance FANCL-catalyzed FANCD2-FANCI di-monoubiquitination without compromising site specificity.


Assuntos
Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação L da Anemia de Fanconi/metabolismo , Regulação Alostérica/fisiologia , Sequência de Aminoácidos , Dano ao DNA , Reparo do DNA , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/fisiologia , Proteína do Grupo de Complementação L da Anemia de Fanconi/fisiologia , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/fisiologia , Humanos , Ligação Proteica , Especificidade por Substrato , Enzimas de Conjugação de Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/fisiologia , Ubiquitinação
12.
Clin Chim Acta ; 498: 126-134, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31445029

RESUMO

Despite the medical advances of the 21st century, the incidence of cancer continues to increase and the search for a universal cure remains a major health challenge. Our lack of understanding the complex pathophysiology of the tumor microenvironment has hindered the development and efficiency of anti-cancer therapeutic strategies. The tumor microenvironment, composed of multiple cellular and non-cellular components, enables tumor-promoting processes such as proliferation, angiogenesis, migration and invasion, metastasis, and drug resistance. The ubiquitin-mediated degradation system is involved in several physiologic processes including cell cycling, signal transduction, receptor downregulation, endocytosis and transcriptional regulation. Ubiquitination includes attachment of ubiquitin to target proteins via E1 (activating), E2 (conjugating) and E3 (ligating) enzymes. Several studies have shown that E2 enzymes are dysregulated in variety of cancers. Multiple investigations have demonstrated the involvement of E2s in various tumor-promoting processes including DNA repair, cell cycle progression, apoptosis and oncogenic signaling. E2 enzymes consist of 40 members that facilitate ubiquitin-substrate conjugation thereby modulating the stability and interaction of various proteins. As such, E2s are potential biomarkers as diagnostic, prognostic and therapeutic tools. In this review, we discuss the role of E2s in modulating various types of cancer.


Assuntos
Imunoterapia/métodos , Neoplasias/enzimologia , Enzimas de Conjugação de Ubiquitina/fisiologia , Biomarcadores Tumorais , Humanos , Neoplasias/terapia , Microambiente Tumoral , Ubiquitinação
13.
J Mol Neurosci ; 69(3): 391-398, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31267313

RESUMO

Glioblastoma (GBM) is the most aggressive astrocytoma. Despite maximum treatment, the GBM usually recurs and the patient survival is poor. Thus, understanding the molecular mechanism of GBM progression will be meaningful to ameliorate this situation. In this study, collapsin response mediator protein 2 (CRMP2) and Ubc9 protein levels were evaluated in three GBM cell lines. Sumoylated CRMP2 were enriched and immunoprecipitated using SUMO1 and IgG antibodies. CRMP2-K374A mutant was generated by site-direct mutagenesis. All indicated constructs were transfected into GL15 cells, and the corresponding proliferation-promoting effect was assessed through cell proliferation ratio. The t-CSM peptide was used to disturb Ubc9-CRMP2 interaction. CRMP2 is expressed in all tested GBM cell lines. The Ubc9 protein levels are positively correlated with CRMP2 level, and both can promote GBM cell proliferation. Blocking CRMP2 SUMOylation through SUMOylation-incompetent mutant or small peptide suppresses CRMP2-induced GBM cell proliferation. This study demonstrates that the CRMP2 SUMOylation exists widely in GBM cells and drives glioblastoma proliferation. CRMP2 SUMOylation inhibition can significantly suppress GBM proliferation in vitro.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Enzimas de Conjugação de Ubiquitina/antagonistas & inibidores , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Mutagênese Sítio-Dirigida , Proteínas do Tecido Nervoso/genética , Oligopeptídeos/farmacologia , Proteínas Recombinantes/metabolismo , Sumoilação/efeitos dos fármacos , Transfecção , Enzimas de Conjugação de Ubiquitina/fisiologia
14.
Nat Commun ; 10(1): 3296, 2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31341161

RESUMO

Ubiquitin (Ub) signaling requires the sequential interactions and activities of three enzymes, E1, E2, and E3. Cdc34 is an E2 that plays a key role in regulating cell cycle progression and requires unique structural elements to function. The molecular basis by which Cdc34 engages its E1 and the structural mechanisms by which its unique C-terminal extension functions in Cdc34 activity are unknown. Here, we present crystal structures of Cdc34 alone and in complex with E1, and a Cdc34~Ub thioester mimetic that represents the product of Uba1-Cdc34 Ub transthiolation. These structures reveal conformational changes in Uba1 and Cdc34 and a unique binding mode that are required for transthiolation. The Cdc34~Ub structure reveals contacts between the Cdc34 C-terminal extension and Ub that stabilize Cdc34~Ub in a closed conformation and are critical for Ub discharge. Altogether, our structural, biochemical, and cell-based studies provide insights into the molecular mechanisms by which Cdc34 function in cells.


Assuntos
Proteínas de Saccharomyces cerevisiae/química , Enzimas de Conjugação de Ubiquitina/química , Clonagem Molecular , Cristalografia por Raios X , Humanos , Domínios Proteicos , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/fisiologia , Enzimas Ativadoras de Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/fisiologia
15.
EMBO J ; 38(9)2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30936093

RESUMO

Membrane targeting of autophagy-related complexes is an important step that regulates their activities and prevents their aberrant engagement on non-autophagic membranes. ATG16L1 is a core autophagy protein implicated at distinct phases of autophagosome biogenesis. In this study, we dissected the recruitment of ATG16L1 to the pre-autophagosomal structure (PAS) and showed that it requires sequences within its coiled-coil domain (CCD) dispensable for homodimerisation. Structural and mutational analyses identified conserved residues within the CCD of ATG16L1 that mediate direct binding to phosphoinositides, including phosphatidylinositol 3-phosphate (PI3P). Mutating putative lipid binding residues abrogated the localisation of ATG16L1 to the PAS and inhibited LC3 lipidation. On the other hand, enhancing lipid binding of ATG16L1 by mutating negatively charged residues adjacent to the lipid binding motif also resulted in autophagy inhibition, suggesting that regulated recruitment of ATG16L1 to the PAS is required for its autophagic activity. Overall, our findings indicate that ATG16L1 harbours an intrinsic ability to bind lipids that plays an essential role during LC3 lipidation and autophagosome maturation.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Membrana Celular/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Animais , Proteínas Relacionadas à Autofagia/fisiologia , Células Cultivadas , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Endossomos/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Camundongos , Camundongos Knockout , Proteínas de Ligação a Fosfato/fisiologia , Enzimas de Conjugação de Ubiquitina/fisiologia , Proteínas rab de Ligação ao GTP/fisiologia
16.
Arterioscler Thromb Vasc Biol ; 39(3): 467-481, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30602302

RESUMO

Objective- Calcific aortic valve (AV) disease, characterized by AV sclerosis and calcification, is a major cause of death in the aging population; however, there are no effective medical therapies other than valve replacement. AV calcification preferentially occurs on the fibrosa side, exposed to disturbed flow (d-flow), whereas the ventricularis side exposed to predominantly stable flow remains protected by unclear mechanisms. Here, we tested the role of novel flow-sensitive UBE2C (ubiquitin E2 ligase C) and microRNA-483-3p (miR-483) in flow-dependent AV endothelial function and AV calcification. Approach and Results- Human AV endothelial cells and fresh porcine AV leaflets were exposed to stable flow or d-flow. We found that UBE2C was upregulated by d-flow in human AV endothelial cells in the miR-483-dependent manner. UBE2C mediated OS-induced endothelial inflammation and endothelial-mesenchymal transition by increasing the HIF-1α (hypoxia-inducible factor-1α) level. UBE2C increased HIF-1α by ubiquitinating and degrading its upstream regulator pVHL (von Hippel-Lindau protein). These in vitro findings were corroborated by immunostaining studies using diseased human AV leaflets. In addition, we found that reduction of miR-483 by d-flow led to increased UBE2C expression in human AV endothelial cells. The miR-483 mimic protected against endothelial inflammation and endothelial-mesenchymal transition in human AV endothelial cells and calcification of porcine AV leaflets by downregulating UBE2C. Moreover, treatment with the HIF-1α inhibitor (PX478) significantly reduced porcine AV calcification in static and d-flow conditions. Conclusions- These results suggest that miR-483 and UBE2C and pVHL are novel flow-sensitive anti- and pro-calcific AV disease molecules, respectively, that regulate the HIF-1α pathway in AV. The miR-483 mimic and HIF-1α pathway inhibitors may serve as potential therapeutics of calcific AV disease.


Assuntos
Estenose da Valva Aórtica/etiologia , Valva Aórtica/patologia , Calcinose/etiologia , Células Endoteliais/metabolismo , Hemorreologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , MicroRNAs/genética , Enzimas de Conjugação de Ubiquitina/biossíntese , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Animais , Valva Aórtica/metabolismo , Estenose da Valva Aórtica/metabolismo , Estenose da Valva Aórtica/patologia , Calcinose/metabolismo , Calcinose/patologia , Adesão Celular , Transdiferenciação Celular , Células Cultivadas , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Inflamação , MicroRNAs/agonistas , Monócitos/fisiologia , Compostos de Mostarda/farmacologia , Oligonucleotídeos/farmacologia , Técnicas de Cultura de Órgãos , Fenilpropionatos/farmacologia , Processamento de Proteína Pós-Traducional , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Reologia , Estresse Mecânico , Suínos , Enzimas de Conjugação de Ubiquitina/fisiologia , Ubiquitinação
17.
FEBS J ; 286(11): 2018-2034, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30468556

RESUMO

The ubiquitin-proteasome system is an important regulatory machinery involved in proteostasis and cellular signaling. Proteins are ubiquitinated via the concerted action of E1 ubiquitin-activating enzymes, E2 ubiquitin-conjugating enzymes, and E3 ubiquitin ligases. Although most of the studies to date focus on the significance of E3 ubiquitin ligases in disease development and therapeutic treatment, recent discoveries suggest that E2 ubiquitin-conjugating enzymes might also be potential drug targets. The ubiquitin-conjugating enzyme E2 O (UBE2O), an E3-independent E2 (i.e. an E2/E3 hybrid enzyme), can directly mediate the ubiquitination of many substrates. These include 5'-AMP-activated protein kinase catalytic subunit α2 (AMPKα2), tumor suppressor ubiquitin carboxyl-terminal hydrolase BAP1, mixed-lineage leukemia (MLL) protein, SMAD family member 6 (SMAD6), transcription factor c-Maf and aryl hydrocarbon receptor nuclear translocator-like protein 1 (ARNTL or BMAL1), and free ribosomal proteins, which are ubiquitinated in distinct ways, thereby associating UBE2O with a variety of biological functions. Furthermore, UBE2O is frequently amplified or mutated in multiple cancers, and its high expression is associated with low survival rate of gastric, lung, breast, and prostate cancer patients. However, the molecular mechanisms by which UBE2O contributes to tumor initiation and progression are not fully elucidated. This review focuses on emerging insights from genetics, biochemistry, and cell biology to explore the biological functions of UBE2O and its therapeutic potential.


Assuntos
Enzimas de Conjugação de Ubiquitina/fisiologia , Sequência de Aminoácidos , Anemia/metabolismo , Animais , Sequência Conservada , Descoberta de Drogas , Previsões , Humanos , Modelos Moleculares , Terapia de Alvo Molecular , Mutação de Sentido Incorreto , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/fisiologia , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Conformação Proteica , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Enzimas de Conjugação de Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitinação , Vertebrados/metabolismo
18.
Biochem Pharmacol ; 158: 327-338, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30449727

RESUMO

O6-Methylguanine-DNA methyltransferase (MGMT) is a DNA repair enzyme that removes the alkyl groups from the O6 position of guanine and is then degraded via ubiquitin-mediated degradation. Previous studies indicated that 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) facilitates the ubiquitination and degradation of MGMT in several types of cancer cells. However, the underlying mechanism of MGMT ubiquitination remains unclear. In this study, we demonstrated for the first time that ubiquitin-conjugating enzyme E2 B (UBE2B) is a novel regulator of MGMT ubiquitination mediated by BCNU in nasopharyngeal carcinoma (NPC) cells. The E3 ubiquitin ligase RAD18, a partner of UBE2B, is also involved in BCNU-mediated MGMT ubiquitination. Overexpression/knockdown of UBE2B enhanced/reduced BCNU-mediated MGMT ubiquitination. Surprisingly, UBE2B knockdown significantly increased BCNU cytotoxicity in NPC cells. Therefore, loss of UBE2B seems to disrupt ubiquitin-mediated degradation of alkylated MGMT. We found that UBE2B knockdown reduced MGMT activity, suggesting that loss of UBE2B leads to the accumulation of deactivated MGMT and suppresses MGMT protein turnover in BCNU-treated cells. These findings indicate that UBE2B modulates sensitivity to BCNU in NPC cells by regulating MGMT ubiquitination.


Assuntos
Carmustina/farmacologia , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/metabolismo , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Enzimas de Conjugação de Ubiquitina/fisiologia , Ubiquitinação/fisiologia , Antineoplásicos Alquilantes/farmacologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Ubiquitinação/efeitos dos fármacos
19.
Int J Mol Sci ; 19(10)2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30241349

RESUMO

Improving a plant's level of tolerance to oxidative stress can frequently also enhance its tolerance to several other abiotic stresses. Here, a screen of a japonica type rice T-DNA insertion mutant library identified a highly oxidative stress-sensitive mutant. The line exhibited premature leaf senescence, starting at the three-leaf stage, and the symptoms were particularly severe from the five-leaf stage onwards. The leaves progressively lost chlorophyll, suffered protein degradation and were compromised with respect to their photosynthetic activity; their leaf mesophyll and bulliform cells became shrunken, and several senescence-associated genes (SAGs), senescence-associated transcription factor genes (SATFs) and autophagy-related genes (ATGs) were progressively up-regulated. The product of the gene inactivated by the mutation, identified via positional cloning, was putatively a ubiquitin-conjugating enzyme. The gene was denoted here as RLS1 (reactive oxygen species-sensitive leaf senescence1). The phenotype of plants in which RLS1 was knocked down using RNA interference was comparable to that of the rls1 mutant. A comparative analysis of the knock-out line and the wild type leaves showed that the former accumulated more hydrogen peroxide and more malondialdehyde, expressed a heightened level of superoxide dismutase activity and a decreased level of catalase activity, and exhibited an altered transcriptional profile with respect to several SAGs, SATFs and ATGs, and that these effects were magnified when the plants were exposed to oxidative stress. The product of RLS1 is presumed to be a critical component of the rice oxidative stress response and is involved in ROS (reactive oxygen species)-mediated leaf senescence.


Assuntos
Oryza/fisiologia , Estresse Oxidativo/genética , Proteínas de Plantas/fisiologia , Enzimas de Conjugação de Ubiquitina/fisiologia , Autofagia/genética , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Oryza/genética , Oryza/crescimento & desenvolvimento , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo
20.
J Cell Sci ; 131(16)2018 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-30054382

RESUMO

Protein ubiquitylation regulates many cellular processes, including cell division. We report here a novel mutation altering the Saccharomyces cerevisiae E1 ubiquitin-activating enzyme (uba1-W928R) that suppresses the temperature sensitivity and chromosome loss phenotype of a well-characterized Aurora B mutant (ip1-2). The uba1-W928R mutation increases histone H3-S10 phosphorylation in the ipl1-2 strain, indicating that uba1-W928R acts by increasing Ipl1 activity and/or reducing the opposing protein phosphatase 1 (PP1; Glc7 in S. cerevisiae) phosphatase activity. Consistent with this hypothesis, Ipl1 protein levels and stability are elevated in the uba1-W928R mutant, likely mediated via the E2 enzymes Ubc4 and Cdc34. In contrast, the uba1-W928R mutation does not affect Glc7 stability, but exhibits synthetic lethality with several glc7 mutations. Moreover, uba1-W928R cells have an altered subcellular distribution of Glc7 and form nuclear Glc7 foci. These effects are likely mediated via the E2 enzymes Rad6 and Cdc34. Our new UBA1 allele reveals new roles for ubiquitylation in regulating the Ipl1-Glc7 balance in budding yeast. While ubiquitylation likely regulates Ipl1 protein stability via the canonical proteasomal degradation pathway, a non-canonical ubiquitin-dependent pathway maintains normal Glc7 localization and activity.This article has an associated First Person interview with the first author of the paper.


Assuntos
Aurora Quinase B/metabolismo , Proteína Fosfatase 1/metabolismo , Proteólise , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Enzimas de Conjugação de Ubiquitina/fisiologia , Ubiquitinação/fisiologia , Aurora Quinases/genética , Aurora Quinases/metabolismo , Organismos Geneticamente Modificados , Transporte Proteico , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina/metabolismo , Enzimas Ativadoras de Ubiquitina/genética , Enzimas Ativadoras de Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA