Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Alcohol ; 117: 27-41, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38508286

RESUMO

While DNA serves as the fundamental genetic blueprint for an organism, it is not a static entity. Gene expression, the process by which genetic information is utilized to create functional products like proteins, can be modulated by a diverse range of environmental factors. Epigenetic mechanisms, including DNA methylation, histone modification, and microRNAs, play a pivotal role in mediating the intricate interplay between the environment and gene expression. Intriguingly, alterations in the epigenome have the potential to be inherited across generations. Alcohol use disorder (AUD) poses significant health issues worldwide. Alcohol has the capability to induce changes in the epigenome, which can be inherited by offspring, thus impacting them even in the absence of direct alcohol exposure. This review delves into the impact of alcohol on the epigenome, examining how its effects vary based on factors such as the age of exposure (adolescence or adulthood), the duration of exposure (chronic or acute), and the specific sample collected (brain, blood, or sperm). The literature underscores that alcohol exposure can elicit diverse effects on the epigenome during different life stages. Furthermore, compelling evidence from human and animal studies demonstrates that alcohol induces alterations in epigenome content, affecting both the brain and blood. Notably, rodent studies suggest that these epigenetic changes can result in lasting phenotype alterations that extend across at least two generations. In conclusion, the comprehensive literature analysis supports the notion that alcohol exposure induces lasting epigenetic alterations, influencing the behavior and health of future generations. This knowledge emphasizes the significance of addressing the potential transgenerational effects of alcohol and highlights the importance of preventive measures to minimize the adverse impact on offspring.


Assuntos
Alcoolismo , Epigenoma , Animais , Feminino , Humanos , Masculino , Consumo de Bebidas Alcoólicas/genética , Consumo de Bebidas Alcoólicas/efeitos adversos , Alcoolismo/genética , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Metilação de DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Epigenoma/efeitos dos fármacos , Etanol/farmacologia , MicroRNAs/genética
2.
J Appl Toxicol ; 44(7): 965-977, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38419361

RESUMO

Triphenyl phosphate (TPhP) is an organophosphate flame retardant and plasticizer that is added to a wide variety of consumer and industrial products. It is also a ubiquitous environmental pollutant. Exposure to TPhP has been shown to alter gene expression in metabolic and estrogenic signaling pathways in in vitro and in vivo models of a variety of species, and as such, is considered to be an endocrine disrupting chemical. Exposure to endocrine disrupting chemicals is increasingly being associated with changes to the epigenome, especially during embryonic development. The aim of this study was to evaluate whether TPhP exposure in aquatic ecosystems has the ability to alter the epigenome in two immortal cell lines derived from trout (Oncorhynchus mykiss). This study assessed whether 24 h exposure to TPhP resulted in changes to histone modification and DNA methylation profiles in steelhead trout embryonic cells and rainbow trout gill epithelial cells. Results show that several epigenetic modifications on histone H3 and DNA methylation are altered in the embryonic cells following TPhP exposure, but not in the gill epithelial cells. Specifically, histone H3 acetylation, histone H3 mono-methylation and global DNA methylation were found to be reduced. The alterations of these epigenetic modification profiles in the embryonic cells suggest that exposure to TPhP during fetal development may alter gene expression in the developing embryo, likely in metabolic and estrogenic pathways. The impacts to the epigenome determined in this study may even carry multigenerational detrimental effects on human and ecosystem health, which requires further investigation.


Assuntos
Metilação de DNA , Retardadores de Chama , Oncorhynchus mykiss , Organofosfatos , Poluentes Químicos da Água , Animais , Retardadores de Chama/toxicidade , Oncorhynchus mykiss/embriologia , Oncorhynchus mykiss/genética , Metilação de DNA/efeitos dos fármacos , Organofosfatos/toxicidade , Poluentes Químicos da Água/toxicidade , Epigenoma/efeitos dos fármacos , Linhagem Celular , Disruptores Endócrinos/toxicidade , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Epigênese Genética/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Histonas/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo
3.
Cell Cycle ; 22(8): 870-905, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36648057

RESUMO

Disruption of the complex network that regulates redox homeostasis often underlies resistant phenotypes, which hinder effective and long-lasting cancer eradication. In addition, the RNA methylome-dependent control of gene expression also critically affects traits of cellular resistance to anti-cancer agents. However, few investigations aimed at establishing whether the epitranscriptome-directed adaptations underlying acquired and/or innate resistance traits in cancer could be implemented through the involvement of redox-dependent or -responsive signaling pathways. This is unexpected mainly because: i) the effectiveness of many anti-cancer approaches relies on their capacity to promote oxidative stress (OS); ii) altered redox milieu and reprogramming of mitochondrial function have been acknowledged as critical mediators of the RNA methylome-mediated response to OS. Here we summarize the current state of understanding on this topic, as well as we offer new perspectives that might lead to original approaches and strategies to delay or prevent the problem of refractory cancer and tumor recurrence.


Assuntos
Antineoplásicos , Neoplasias , Estresse Oxidativo , Processamento Pós-Transcricional do RNA , RNA , RNA/genética , RNA/metabolismo , Metilação/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia , Epigênese Genética/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Epigenoma/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Recidiva , Humanos , Animais , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
4.
Cancer Res ; 83(2): 167-169, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36651076

RESUMO

While the goal of most anticancer treatments is to kill cancer cells, some therapies halt cancer progression by inducing cancer cell differentiation. For example, retinoic acid induces neuroblastoma cell differentiation in vitro and is used as maintenance therapy for children with high-risk neuroblastoma. A new study by Jiang and colleagues has revealed the mitochondrial uncoupler niclosamide ethanolamine (NEN) induces neuroblastoma cell differentiation in vitro and slows neuroblastoma tumor growth in vivo. Mitochondrial uncoupler molecules alter cell metabolism by forcing cells to "burn" more nutrients, resulting in a switch from anabolic to catabolic metabolism. NEN-induced neuroblastoma cell differentiation was associated with disruption of Warburg metabolism, epigenetic remodeling, and downregulation of key oncogenic drivers of neuroblastoma development, including MYCN. NEN is currently used as an antiparasitic worm treatment and is safe to use in children but has poor pharmacokinetic properties. However, derivatives of NEN and structurally distinct uncouplers that have improved pharmacokinetic properties are in development. Results of this study ignite the idea that mitochondrial uncouplers could be used as differentiating agents and expand the pharmacotherapy toolkit to treat cancer, including neuroblastoma. See related article by Jiang et al., p. 181.


Assuntos
Antineoplásicos , Neuroblastoma , Humanos , Epigenoma/efeitos dos fármacos , Antineoplásicos/farmacologia , Tretinoína/farmacologia , Diferenciação Celular/efeitos dos fármacos , Niclosamida/farmacologia , Etanolamina/farmacologia , Etanolamina/uso terapêutico , Neuroblastoma/patologia
6.
J Clin Endocrinol Metab ; 107(1): 150-166, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34487152

RESUMO

CONTEXT: Chronic glucocorticoid (GC) overexposure, resulting from endogenous Cushing's syndrome (CS) or exogenous GC therapy, causes several adverse outcomes, including persistent central fat accumulation associated with a low-grade inflammation. However, no previous multiomics studies in visceral adipose tissue (VAT) from patients exposed to high levels of unsuppressed GC during active CS or after remission are available yet. OBJECTIVE: To determine the persistent VAT transcriptomic alterations and epigenetic fingerprints induced by chronic hypercortisolism. METHODS: We employed a translational approach combining high-throughput data on endogenous CS patients and a reversible CS mouse model. We performed RNA sequencing and chromatin immunoprecipitation sequencing on histone modifications (H3K4me3, H3K27ac, and H3K27me3) to identify persistent transcriptional and epigenetic signatures in VAT produced during active CS and maintained after remission. RESULTS: VAT dysfunction was associated with low-grade proinflammatory status, macrophage infiltration, and extracellular matrix remodeling. Most notably, chronic hypercortisolism caused a persistent circadian rhythm disruption in VAT through core clock genes modulation. Importantly, changes in the levels of 2 histone modifications associated to gene transcriptional activation (H3K4me3 and H3K27ac) correlated with the observed differences in gene expression during active CS and after CS remission. CONCLUSION: We identified for the first time the persistent transcriptional and epigenetic signatures induced by hypercortisolism in VAT, providing a novel integrated view of molecular components driving the long-term VAT impairment associated with CS.


Assuntos
Neoplasias das Glândulas Suprarrenais/complicações , Síndrome de Cushing/metabolismo , Glucocorticoides/efeitos adversos , Gordura Intra-Abdominal/imunologia , Obesidade Abdominal/genética , Administração Oral , Neoplasias das Glândulas Suprarrenais/diagnóstico , Neoplasias das Glândulas Suprarrenais/imunologia , Neoplasias das Glândulas Suprarrenais/urina , Adulto , Animais , Biópsia , Sequenciamento de Cromatina por Imunoprecipitação , Corticosterona/administração & dosagem , Corticosterona/efeitos adversos , Estudos Transversais , Síndrome de Cushing/imunologia , Síndrome de Cushing/patologia , Modelos Animais de Doenças , Epigenoma/efeitos dos fármacos , Epigenoma/imunologia , Feminino , Glucocorticoides/administração & dosagem , Glucocorticoides/metabolismo , Humanos , Hidrocortisona/metabolismo , Hidrocortisona/urina , Inflamação/induzido quimicamente , Inflamação/imunologia , Inflamação/metabolismo , Gordura Intra-Abdominal/metabolismo , Gordura Intra-Abdominal/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Obesidade Abdominal/imunologia , Obesidade Abdominal/patologia , RNA-Seq , Transcriptoma/efeitos dos fármacos , Transcriptoma/imunologia
7.
Cell Rep ; 37(3): 109836, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34686347

RESUMO

Clinical evidence suggests that rapid and sustained antidepressant action can be attained with a single exposure to psychedelics. However, the biological substrates and key mediators of psychedelics' enduring action remain unknown. Here, we show that a single administration of the psychedelic DOI produces fast-acting effects on frontal cortex dendritic spine structure and acceleration of fear extinction via the 5-HT2A receptor. Additionally, a single dose of DOI leads to changes in chromatin organization, particularly at enhancer regions of genes involved in synaptic assembly that stretch for days after the psychedelic exposure. These DOI-induced alterations in the neuronal epigenome overlap with genetic loci associated with schizophrenia, depression, and attention deficit hyperactivity disorder. Together, these data support that epigenomic-driven changes in synaptic plasticity sustain psychedelics' long-lasting antidepressant action but also warn about potential substrate overlap with genetic risks for certain psychiatric conditions.


Assuntos
Anfetaminas/farmacologia , Espinhas Dendríticas/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Epigenoma/efeitos dos fármacos , Lobo Frontal/efeitos dos fármacos , Alucinógenos/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Receptor 5-HT2A de Serotonina/efeitos dos fármacos , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Sinapses/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Espinhas Dendríticas/metabolismo , Epigenômica , Extinção Psicológica/efeitos dos fármacos , Medo/efeitos dos fármacos , Lobo Frontal/metabolismo , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor 5-HT2A de Serotonina/genética , Receptor 5-HT2A de Serotonina/metabolismo , Sinapses/metabolismo , Fatores de Tempo
8.
J Toxicol Environ Health A ; 84(24): 1004-1019, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34459362

RESUMO

Cigarette smoking is a major cause of lung cancer. Although tobacco smoking-induced genotoxicity has been well established, there is apparent lack of abundance functional epigenetic effects reported On cigarette smoke-induced lung carcinogenesis. The aim of this study was to determine effects of intratracheal administration of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) utilizing target gene expression DNA methylation patterns in lung tissues of mice following twice weekly for 8 weeks treatment. An unbiased approach where genomic regions was undertaken to assess early methylation changes within mouse pulmonary tissues. A methylated-CpG island recovery assay (MIRA) was performed to map the DNA methylome in lung tissues, with the position of methylated DNA determined using a Genome Analyzer (MIRA-SEQ). Alterations in epigenetic-regulated target genes were confirmed with quantitative reverse transcription-PCR, which revealed 35 differentially hypermethylated genes including Cdkn1C, Hsf4, Hnf1a, Cdx1, and Hoxa5 and 30 differentially hypomethylated genes including Ddx4, Piwi1, Mdm2, and Pce1 in NNK-exposed lung tissue compared with controls. The main pathway of these genes for mediating biological information was analyzed using the Kyoto Encyclopedia of Genes and Genomes database. Among them, Rssf1 and Mdm2 were closely associated with NNK-induced lung carcinogenesis. Taken together, our data provide valuable resources for detecting cigarette smoke-induced lung carcinogenesis.


Assuntos
Carcinogênese/induzido quimicamente , Carcinógenos/toxicidade , Epigênese Genética/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Nitrosaminas/toxicidade , Animais , Biomarcadores Tumorais/genética , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Carcinógenos/análise , Metilação de DNA/efeitos dos fármacos , Epigenoma/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Nitrosaminas/análise , Fumar Tabaco/efeitos adversos
9.
Genes (Basel) ; 12(7)2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34356111

RESUMO

Prenatal alcohol exposure is one of the most significant causes of developmental disability in the Western world. Maternal alcohol consumption during pregnancy leads to an increased risk of neurological deficits and developmental abnormalities in the fetus. Over the past decade, several human and animal studies have demonstrated that alcohol causes alterations in epigenetic marks, including DNA methylation, histone modifications, and non-coding RNAs. There is an increasing amount of evidence that early pregnancy is a sensitive period for environmental-induced epigenetic changes. It is a dynamic period of epigenetic reprogramming, cell divisions, and DNA replication and, therefore, a particularly interesting period to study the molecular changes caused by alcohol exposure as well as the etiology of alcohol-induced developmental disorders. This article will review the current knowledge about the in vivo and in vitro effects of alcohol exposure on the epigenome, gene regulation, and the phenotype during the first weeks of pregnancy.


Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Desenvolvimento Embrionário/efeitos dos fármacos , Epigenoma/genética , Animais , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Epigênese Genética/genética , Epigenoma/efeitos dos fármacos , Feminino , Feto/efeitos dos fármacos , Feto/fisiologia , Código das Histonas , Histonas/metabolismo , Humanos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/genética
10.
Biol Reprod ; 105(3): 720-734, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34258621

RESUMO

Each year, millions of infants and children are anesthetized for medical and surgical procedures. Yet, a substantial body of preclinical evidence suggests that anesthetics are neurotoxins that cause rapid and widespread apoptotic cell death in the brains of infant rodents and nonhuman primates. These animals have persistent impairments in cognition and behavior many weeks or months after anesthesia exposure, leading us to hypothesize that anesthetics do more than simply kill brain cells. Indeed, anesthetics cause chronic neuropathology in neurons that survive the insult, which then interferes with major aspects of brain development, synaptic plasticity, and neuronal function. Understanding the phenomenon of anesthesia-induced developmental neurotoxicity is of critical public health importance because clinical studies now report that anesthesia in human infancy is associated with cognitive and behavioral deficits. In our search for mechanistic explanations for why a young and pliable brain cannot fully recover from a relatively brief period of anesthesia, we have accumulated evidence that neonatal anesthesia can dysregulate epigenetic tags that influence gene transcription such as histone acetylation and DNA methylation. In this review, we briefly summarize the phenomenon of anesthesia-induced developmental neurotoxicity. We then discuss chronic neuropathology caused by neonatal anesthesia, including disturbances in cognition, socio-affective behavior, neuronal morphology, and synaptic plasticity. Finally, we present evidence of anesthesia-induced genetic and epigenetic dysregulation within the developing brain that may be transmitted intergenerationally to anesthesia-naïve offspring.


Assuntos
Anestesia/efeitos adversos , Animais Recém-Nascidos/genética , Epigenoma/efeitos dos fármacos , Primatas/genética , Animais , Humanos , Recém-Nascido , Camundongos , Ratos
11.
Antiviral Res ; 192: 105103, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34082058

RESUMO

The ability to establish, and reactivate from, latent infections is central to the biology and pathogenesis of HSV-1. It also poses a strong challenge to antiviral therapy, as latent HSV-1 genomes do not replicate or express any protein to be targeted. Although the processes regulating the establishment and maintenance of, and reactivation from, latency are not fully elucidated, the current general consensus is that epigenetics play a major role. A unifying model postulates that whereas HSV-1 avoids or counteracts chromatin silencing in lytic infections, it becomes silenced during latency, silencing which is somewhat disrupted during reactivation. Many years of work by different groups using a variety of approaches have also shown that the lytic HSV-1 chromatin is distinct and has unique biophysical properties not shared with most cellular chromatin. Nonetheless, the lytic and latent viral chromatins are typically enriched in post translational modifications or histone variants characteristic of active or repressed transcription, respectively. Moreover, a variety of small molecule epigenetic modulators inhibit viral replication and reactivation from latency. Despite these successes in culture and animal models, it is not obvious how epigenetic modulation would be used in antiviral therapy if the same epigenetic mechanisms governed viral and cellular gene expression. Recent work has highlighted several important differences between the viral and cellular chromatins, which appear to be of consequence to their respective epigenetic regulations. In this review, we will discuss the distinctiveness of the viral chromatin, and explore whether it is regulated by mechanisms unique enough to be exploited in antiviral therapy.


Assuntos
Antivirais/farmacologia , Cromatina/genética , Epigênese Genética/efeitos dos fármacos , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Herpesvirus Humano 1/efeitos dos fármacos , Animais , Antivirais/uso terapêutico , Cromatina/efeitos dos fármacos , Epigenoma/efeitos dos fármacos , Herpes Simples/tratamento farmacológico , Herpes Simples/virologia , Herpesvirus Humano 1/genética , Humanos , Latência Viral/efeitos dos fármacos , Latência Viral/genética
12.
Mol Carcinog ; 60(6): 391-402, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33848375

RESUMO

Epigenetics/epigenomics has been shown to be involved in carcinogenesis. However, how the epigenome would be altered in the transgenic adenocarcinoma of the mouse prostate (TRAMP) cancer model and the effect of cancer chemopreventive phytochemical phenethyl isothiocyanate (PEITC) on the epigenome in TRAMP mice are not known. PEITC has been reported to reduce the risk of many cancers including prostate cancer (PCa). In this study, male TRAMP mice were fed a control diet or diet containing 0.05% PEITC from 8 weeks to 16 weeks. The tumor incidence was reduced in the PEITC diet (0/6) as compared with the control diet (6/7). RNA-sequencing (RNA-seq) analyses on nontumor and tumor prostatic tissues revealed several pathways like cell cycle/Cdc42 signaling, inflammation, and cancer-related signaling, were activated in prostate tissues of TRAMP mice but were reversed or attenuated in TRAMP mice fed with PEITC diet. DNA CpG methyl-seq analyses showed that global methylation patterns of prostate samples from TRAMP mice were hugely different from those of wild-type mice. Dietary PEITC partially reversed the global methylation changes during prostatic carcinogenesis. Integration of RNA-seq and DNA methyl-seq analyses identified a list of genes, including Adgrb1 and Ebf4, with an inverse regulatory relationship between their RNA expression and CpG methylation. In summary, our current study demonstrates that alteration of the global epigenome in TRAMP prostate tumor and PEITC administration suppresses PCa carcinogenesis, impacts global CpG epigenome and transcriptome, and attenuates carcinogenic pathways like cell cycle arrest and inflammation. These results may provide insights and epigenetic markers/targets for PCa prevention and treatment in human PCa patients.


Assuntos
Anticarcinógenos/farmacologia , Metilação de DNA/efeitos dos fármacos , Isotiocianatos/farmacologia , Neoplasias da Próstata/prevenção & controle , Animais , Epigenoma/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias Experimentais/genética , Neoplasias da Próstata/genética
13.
Mol Neurobiol ; 58(8): 3759-3768, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33826069

RESUMO

N6-methyladenosine (m6A) is the most prevalent internal modification found in mRNAs and lncRNA and plays a vital role in posttranscriptional regulation in mammals. m6A is abundant in the nervous system, where it modulates neuronal development and hippocampus-dependent learning and memory. However, the roles of RNAs m6A modification and its related enzymes in cocaine reward are still not fully understood. In this study, we found that the fat mass and obesity-associated gene (FTO) demethylase, but not methyltransferase-like 3 (METTL3) and 14 (METTL14), was downregulated in the hippocampus following cocaine-induced conditioned place preference (CPP), and the level of m6A is notably higher in the hippocampus of cocaine CPP training mice. Using methylated m6A RNA immunoprecipitation sequencing (MeRIP-m6A-seq), we identified a total of 6516 m6A peaks within 4460 mRNAs, and 3083 m6A peaks within 850 lncRNAs were significantly dysregulated. Intriguingly, the altered m6A peaks within mRNAs and lncRNAs were enriched in synapse maturation and localization processes. Our study uncovers a critical role for an m6A epitranscriptomic dysregulation and downregulation of FTO expression in the hippocampus following cocaine-induced CPP.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato/biossíntese , Cocaína/administração & dosagem , Condicionamento Psicológico/fisiologia , Hipocampo/metabolismo , Glicoproteínas de Membrana/biossíntese , Proteínas do Tecido Nervoso/biossíntese , Análise de Sequência de RNA/métodos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/antagonistas & inibidores , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Animais , Condicionamento Psicológico/efeitos dos fármacos , Epigenoma/efeitos dos fármacos , Epigenoma/fisiologia , Hipocampo/efeitos dos fármacos , Masculino , Glicoproteínas de Membrana/genética , Metilação/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética
14.
Recent Pat Anticancer Drug Discov ; 16(3): 377-392, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33888051

RESUMO

BACKGROUND: Bee venom is a promising agent for cancer treatment due to its selective cytotoxic potential for cancer cells through apoptotic pathways. However, there is no evidence for changes in the epigenome and mitochondrial DNA copy numbers after bee venom application. The purpose of this study was to determine the impact of bee venom on cytosine modifications and mitochondrial DNA copy number variation. METHODS: A broad range of methods was applied to elucidate the impact of bee venom on neoplastic cells. These included MTT assay for detection of cytotoxicity, immunostaining of cytosine modifications and mitochondria, assessment of cellular morphology by flow cytometry, and quantification of mitochondrial DNA copy numbers using QPCR. RESULTS: Bee venom-induced cell death was selective for cancer cells, where it triggered a response characterized by alteration of cytosine modification. In contrast, normal cells were more resistant to DNA modifications. Furthermore, application of the venom resulted in variation of mitochondrial membrane permeability and mitochondrial DNA copy numbers, together with alterations in cell morphology, manifesting as reduced affected cell size. CONCLUSION: The study findings suggest that bee venom can be used as a selective DNA (de)methylating agent in cancer. Various agents (such as decitabine and 5-azacytidine) have been synthesized and developed for cancer treatment, and a range of syntheses and preparation and application methods have been described for these patented drugs. However, to the best of our knowledge, no previous research has investigated the use of bee venom or any component thereof for epigenetic therapy in cancer cells.


Assuntos
Venenos de Abelha/farmacologia , DNA Mitocondrial/efeitos dos fármacos , Epigenoma/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Animais , Apiterapia , Linhagem Celular Tumoral , Forma Celular , Tamanho Celular , Variações do Número de Cópias de DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Epigenoma/genética , Células Hep G2 , Humanos , Camundongos , Mitocôndrias/genética , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Células NIH 3T3 , Permeabilidade/efeitos dos fármacos
15.
Int J Mol Sci ; 22(4)2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672782

RESUMO

Parental exposure to bisphenol A (BPA) has been linked to a greater incidence of congenital diseases. We have demonstrated that BPA induces in zebrafish males an increase in the acetylation of sperm histones that is transmitted to the blastomeres of the unexposed progeny. This work is aimed to determine whether histone hyperacetylation promoted by paternal exposure to BPA is the molecular mechanism underlying the cardiogenesis impairment in the descendants. Zebrafish males were exposed to 100 and 2000 µg/L BPA during early spermatogenesis and mated with non-exposed females. We analyzed in the progeny the expression of genes involved in cardiogenesis and the epigenetic profile. Once the histone hyperacetylation was confirmed, treatment with epigallocatechin gallate (EGCG), an inhibitor of histone acetyltransferases, was assayed on F1 embryos. Embryos from males exposed to 2000 µg/L BPA overexpressed the transcription factor hand2 and the receptor esr2b, showing their own promoters-as well as that of kat6a-an enrichment in H3K9ac. In embryos treated with EGCG, both gene expression and histone acetylation (global and specific) returned to basal levels, and the phenotype was recovered. As shown by the results, the histone hyperacetylated landscape promoted by BPA in the sperm alters the chromatin structure of the progeny, leading to the overexpression of the histone acetyltransferase and genes involved in cardiogenesis.


Assuntos
Compostos Benzidrílicos/toxicidade , Cardiotoxicidade/genética , Epigenoma/genética , Herança Paterna/genética , Fenóis/toxicidade , Espermatozoides/metabolismo , Acetilação , Animais , Catequina/análogos & derivados , Catequina/farmacologia , Embrião não Mamífero/metabolismo , Epigênese Genética/efeitos dos fármacos , Epigenoma/efeitos dos fármacos , Histonas/metabolismo , Masculino , Espermatozoides/efeitos dos fármacos , Transcriptoma/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
16.
Curr Cancer Drug Targets ; 21(4): 306-325, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33535953

RESUMO

Epigenetic modulation of gene expression is essential for tissue-specific development and maintenance in mammalian cells. Disruption of epigenetic processes, and the subsequent alteration of gene functions, can result in inappropriate activation or inhibition of various cellular signaling pathways, leading to cancer. Recent advancements in the understanding of the role of epigenetics in cancer initiation and progression have uncovered functions for DNA methylation, histone modifications, nucleosome positioning, and non-coding RNAs. Epigenetic therapies have shown some promise for hematological malignancies, and a wide range of epigenetic-based drugs are undergoing clinical trials. However, in a dynamic survival strategy, cancer cells exploit their heterogeneous population which frequently results in the rapid acquisition of therapy resistance. Here, we describe novel approaches in drug discovery targeting the epigenome, highlighting recent advances the selective degradation of target proteins using Proteolysis Targeting Chimera (PROTAC) to address drug resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Terapia de Alvo Molecular , Neoplasias , Proteólise , Descoberta de Drogas/métodos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Epigênese Genética , Epigenoma/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Terapia de Alvo Molecular/métodos , Terapia de Alvo Molecular/tendências , Neoplasias/tratamento farmacológico , Neoplasias/genética
17.
Epigenomics ; 13(4): 285-297, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33401928

RESUMO

Aims: Paternal age is increasing in developed countries. Understanding of aging-related epigenetic changes in sperm is needed as well as factors that modify such changes. Materials & methods: Young pubertal and mature rats were exposed perinatally to vehicle or environmental xenobiotic 2,2',4,4'-tetrabromodiphenyl ether. Epididymal sperm was reduced representation bisulfite sequenced. Differentially methylated regions (DMRs) were identified via MethPipe. Results: In control animals, 5319 age-dependent DMRs were identified. Age-related DMRs were enriched for embryonic development. In exposed rats, DNA methylation was higher in young and lower in mature animals then in controls. Conclusions: Sperm methylome undergoes significant age-dependent changes, which may represent a causal link between paternal age and offspring phenotype. Environmental xenobiotics can interfere with the natural process of epigenetic aging.


Assuntos
Envelhecimento/fisiologia , Metilação de DNA/efeitos dos fármacos , Retardadores de Chama/efeitos adversos , Espermatozoides/efeitos dos fármacos , Animais , Desenvolvimento Embrionário/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Epigenoma/efeitos dos fármacos , Epigenômica/métodos , Feminino , Masculino , Parto/efeitos dos fármacos , Idade Paterna , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Ratos , Ratos Wistar
18.
J Drug Target ; 29(1): 69-77, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32672115

RESUMO

Post-replicative DNA methylation is essential for diverse biological processes in both eukaryotes and prokaryotes. Mycobacterium tuberculosis (M. tuberculosis), the causative agent of tuberculosis, remains one of the most formidable threats worldwide. Although DNA methylation of M. tuberculosis has been documented, little information is available for clinical drug-resistant M. tuberculosis. Single-molecule real-time (SMRT) sequencing was used to profile the core methylome of three clinical isolates, namely multidrug-resistant (MDR), extensively drug-resistant (XDR) and extremely drug-resistant (XXDR) strains. 3812, 6808 and 6041 DNA methylated sites were identified in MDR-MTB, XDR-MTB and XXDR-MTB genome, respectively. There are two types of methylated motifs, namely N6-methyladenine (m6A) and N4-methylcytosine (m4C). A novel widespread 6 mA methylation motif 5'-CACGCAG-3' was found in XDR-MTB and XXDR-MTB. The methylated genes are involved in multiple cellular processes, especially metabolic enzymes engaged in glucose metabolism, fatty acid and TCA cycle. Many methylated genes are involved in mycobacterial virulence, antibiotic resistance and tolerance. This provided a comprehensive list of methylated genes in drug-resistant clinical isolates and the basis for further functional elucidation.


Assuntos
Antituberculosos/farmacologia , Epigenoma/genética , Tuberculose Extensivamente Resistente a Medicamentos/genética , Mycobacterium tuberculosis/genética , Análise de Sequência de DNA/métodos , Imagem Individual de Molécula/métodos , Antituberculosos/uso terapêutico , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Epigenoma/efeitos dos fármacos , Tuberculose Extensivamente Resistente a Medicamentos/tratamento farmacológico , Humanos , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/genética
19.
J Agric Food Chem ; 68(52): 15449-15459, 2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33320666

RESUMO

DNA methylation is an epigenetic event that plays critical roles in the pathogenesis, progression, and treatment of human diseases. In this study, we investigated the epigenetic mechanisms for Astragalus polysaccharide (APS)-improved osteoporosis in a rat model. The results showed that APS significantly changed the DNA methylome in colonic epithelia with great efficiency. Gene set enrichment analysis (GSEA) based on differentially methylated sites (DMSs) revealed that APS caused promoter DNA methylation changes of genes associated with calcium homeostasis, osteoclast/osteoblast balance, Wnt signaling, and hormone-related processes. Further analysis showed high consistency of APS-induced gene methylomic changes in colonic epithelia and its effects on diabetes, virus infection, and wound healing, which had been reported already. Moreover, we suggested new functions and the involved mechanisms of APS in heart disease, neurological disorder, reproductive problem, and olfactory dysfunction. In this study, we offered epigenetic mechanisms for APS-improved osteoporosis. More importantly, we proposed and proved a reliable method to explore the beneficial effects of bioactive polysaccharides by studying DNA methylation changes at nonfocal sites. We firmly believed the promising prospects of this method for its great efficiency, rapidness, and economy in exploring possible beneficial or therapeutic effects of functional macromolecules with one single experiment.


Assuntos
Astrágalo/química , Medicamentos de Ervas Chinesas/administração & dosagem , Osteoporose/tratamento farmacológico , Polissacarídeos/administração & dosagem , Animais , Cálcio/metabolismo , Metilação de DNA/efeitos dos fármacos , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/química , Epigênese Genética/efeitos dos fármacos , Epigenoma/efeitos dos fármacos , Feminino , Humanos , Osteoporose/genética , Osteoporose/metabolismo , Projetos Piloto , Polissacarídeos/química , Ratos , Ratos Sprague-Dawley
20.
PLoS Med ; 17(11): e1003229, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33151971

RESUMO

BACKGROUND: Higher maternal plasma glucose (PG) concentrations, even below gestational diabetes mellitus (GDM) thresholds, are associated with adverse offspring outcomes, with DNA methylation proposed as a mediating mechanism. Here, we examined the relationships between maternal dysglycaemia at 24 to 28 weeks' gestation and DNA methylation in neonates and whether a dietary and physical activity intervention in pregnant women with obesity modified the methylation signatures associated with maternal dysglycaemia. METHODS AND FINDINGS: We investigated 557 women, recruited between 2009 and 2014 from the UK Pregnancies Better Eating and Activity Trial (UPBEAT), a randomised controlled trial (RCT), of a lifestyle intervention (low glycaemic index (GI) diet plus physical activity) in pregnant women with obesity (294 contol, 263 intervention). Between 27 and 28 weeks of pregnancy, participants had an oral glucose (75 g) tolerance test (OGTT), and GDM diagnosis was based on diagnostic criteria recommended by the International Association of Diabetes and Pregnancy Study Groups (IADPSG), with 159 women having a diagnosis of GDM. Cord blood DNA samples from the infants were interrogated for genome-wide DNA methylation levels using the Infinium Human MethylationEPIC BeadChip array. Robust regression was carried out, adjusting for maternal age, smoking, parity, ethnicity, neonate sex, and predicted cell-type composition. Maternal GDM, fasting glucose, 1-h, and 2-h glucose concentrations following an OGTT were associated with 242, 1, 592, and 17 differentially methylated cytosine-phosphate-guanine (dmCpG) sites (false discovery rate (FDR) ≤ 0.05), respectively, in the infant's cord blood DNA. The most significantly GDM-associated CpG was cg03566881 located within the leucine-rich repeat-containing G-protein coupled receptor 6 (LGR6) (FDR = 0.0002). Moreover, we show that the GDM and 1-h glucose-associated methylation signatures in the cord blood of the infant appeared to be attenuated by the dietary and physical activity intervention during pregnancy; in the intervention arm, there were no GDM and two 1-h glucose-associated dmCpGs, whereas in the standard care arm, there were 41 GDM and 160 1-h glucose-associated dmCpGs. A total of 87% of the GDM and 77% of the 1-h glucose-associated dmCpGs had smaller effect sizes in the intervention compared to the standard care arm; the adjusted r2 for the association of LGR6 cg03566881 with GDM was 0.317 (95% confidence interval (CI) 0.012, 0.022) in the standard care and 0.240 (95% CI 0.001, 0.015) in the intervention arm. Limitations included measurement of DNA methylation in cord blood, where the functional significance of such changes are unclear, and because of the strong collinearity between treatment modality and severity of hyperglycaemia, we cannot exclude that treatment-related differences are potential confounders. CONCLUSIONS: Maternal dysglycaemia was associated with significant changes in the epigenome of the infants. Moreover, we found that the epigenetic impact of a dysglycaemic prenatal maternal environment appeared to be modified by a lifestyle intervention in pregnancy. Further research will be needed to investigate possible medical implications of the findings. TRIAL REGISTRATION: ISRCTN89971375.


Assuntos
Diabetes Gestacional/epidemiologia , Dieta , Epigenoma , Estilo de Vida , Adulto , Dieta/efeitos adversos , Epigenoma/efeitos dos fármacos , Epigenoma/fisiologia , Exercício Físico/fisiologia , Feminino , Idade Gestacional , Humanos , Lactente , Recém-Nascido , Obesidade/epidemiologia , Obesidade/terapia , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA