Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.849
Filtrar
1.
Neurology ; 102(11): e209450, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38759128

RESUMO

Poststroke epilepsy (PSE) is associated with higher mortality and poor functional and cognitive outcomes in patients with stroke. With the remarkable development of acute stroke treatment, there is a growing number of survivors with PSE. Although approximately 10% of patients with stroke develop PSE, given the significant burden of stroke worldwide, PSE is a significant problem in stroke survivors. Therefore, the attention of health policymakers and significant funding are required to promote PSE prevention research. The current PSE definition includes unprovoked seizures occurring more than 7 days after stroke onset, given the high recurrence risks of seizures. However, the pathologic cascade of stroke is not uniform, indicating the need for a tissue-based approach rather than a time-based one to distinguish early seizures from late seizures. EEG is a commonly used tool in the diagnostic work-up of PSE. EEG findings during the acute phase of stroke can potentially stratify the risk of subsequent seizures and predict the development of poststroke epileptogenesis. Recent reports suggest that cortical superficial siderosis, which may be involved in epileptogenesis, is a promising marker for PSE. By incorporating such markers, future risk-scoring models could guide treatment strategies, particularly for the primary prophylaxis of PSE. To date, drugs that prevent poststroke epileptogenesis are lacking. The primary challenge involves the substantial cost burden due to the difficulty of reliably enrolling patients who develop PSE. There is, therefore, a critical need to determine reliable biomarkers for PSE. The goal is to be able to use them for trial enrichment and as a surrogate outcome measure for epileptogenesis. Moreover, seizure prophylaxis is essential to prevent functional and cognitive decline in stroke survivors. Further elucidation of factors that contribute to poststroke epileptogenesis is eagerly awaited. Meanwhile, the regimen of antiseizure medications should be based on individual cardiovascular risk, psychosomatic comorbidities, and concomitant medications. This review summarizes the current understanding of poststroke epileptogenesis, its risks, prognostic models, prophylaxis, and strategies for secondary prevention of seizures and suggests strategies to advance research on PSE.


Assuntos
Epilepsia , Acidente Vascular Cerebral , Humanos , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/fisiopatologia , Epilepsia/etiologia , Epilepsia/fisiopatologia , Epilepsia/diagnóstico , Prognóstico , Eletroencefalografia , Anticonvulsivantes/uso terapêutico
3.
Sci Rep ; 14(1): 10792, 2024 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734752

RESUMO

Epilepsy is a chronic neurological disease, characterized by spontaneous, unprovoked, recurrent seizures that may lead to long-term disability and premature death. Despite significant efforts made to improve epilepsy detection clinically and pre-clinically, the pervasive presence of noise in EEG signals continues to pose substantial challenges to their effective application. In addition, discriminant features for epilepsy detection have not been investigated yet. The objective of this study is to develop a hybrid model for epilepsy detection from noisy and fragmented EEG signals. We hypothesized that a hybrid model could surpass existing single models in epilepsy detection. Our approach involves manual noise rejection and a novel statistical channel selection technique to detect epilepsy even from noisy EEG signals. Our proposed Base-2-Meta stacking classifier achieved notable accuracy (0.98 ± 0.05), precision (0.98 ± 0.07), recall (0.98 ± 0.05), and F1 score (0.98 ± 0.04) even with noisy 5-s segmented EEG signals. Application of our approach to the specific problem like detection of epilepsy from noisy and fragmented EEG data reveals a performance that is not only superior to others, but also is translationally relevant, highlighting its potential application in a clinic setting, where EEG signals are often noisy or scanty. Our proposed metric DF-A (Discriminant feature-accuracy), for the first time, identified the most discriminant feature with models that give A accuracy or above (A = 95 used in this study). This groundbreaking approach allows for detecting discriminant features and can be used as potential electrographic biomarkers in epilepsy detection research. Moreover, our study introduces innovative insights into the understanding of these features, epilepsy detection, and cross-validation, markedly improving epilepsy detection in ways previously unavailable.


Assuntos
Eletroencefalografia , Epilepsia , Eletroencefalografia/métodos , Humanos , Epilepsia/diagnóstico , Epilepsia/fisiopatologia , Processamento de Sinais Assistido por Computador , Algoritmos , Razão Sinal-Ruído
5.
Sensors (Basel) ; 24(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732929

RESUMO

The treatment of epilepsy, the second most common chronic neurological disorder, is often complicated by the failure of patients to respond to medication. Treatment failure with anti-seizure medications is often due to the presence of non-epileptic seizures. Distinguishing non-epileptic from epileptic seizures requires an expensive and time-consuming analysis of electroencephalograms (EEGs) recorded in an epilepsy monitoring unit. Machine learning algorithms have been used to detect seizures from EEG, typically using EEG waveform analysis. We employed an alternative approach, using a convolutional neural network (CNN) with transfer learning using MobileNetV2 to emulate the real-world visual analysis of EEG images by epileptologists. A total of 5359 EEG waveform plot images from 107 adult subjects across two epilepsy monitoring units in separate medical facilities were divided into epileptic and non-epileptic groups for training and cross-validation of the CNN. The model achieved an accuracy of 86.9% (Area Under the Curve, AUC 0.92) at the site where training data were extracted and an accuracy of 87.3% (AUC 0.94) at the other site whose data were only used for validation. This investigation demonstrates the high accuracy achievable with CNN analysis of EEG plot images and the robustness of this approach across EEG visualization software, laying the groundwork for further subclassification of seizures using similar approaches in a clinical setting.


Assuntos
Eletroencefalografia , Epilepsia , Aprendizado de Máquina , Redes Neurais de Computação , Convulsões , Humanos , Eletroencefalografia/métodos , Convulsões/diagnóstico , Convulsões/fisiopatologia , Epilepsia/diagnóstico , Epilepsia/fisiopatologia , Adulto , Masculino , Algoritmos , Feminino , Pessoa de Meia-Idade
6.
Sensors (Basel) ; 24(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732969

RESUMO

The recent scientific literature abounds in proposals of seizure forecasting methods that exploit machine learning to automatically analyze electroencephalogram (EEG) signals. Deep learning algorithms seem to achieve a particularly remarkable performance, suggesting that the implementation of clinical devices for seizure prediction might be within reach. However, most of the research evaluated the robustness of automatic forecasting methods through randomized cross-validation techniques, while clinical applications require much more stringent validation based on patient-independent testing. In this study, we show that automatic seizure forecasting can be performed, to some extent, even on independent patients who have never been seen during the training phase, thanks to the implementation of a simple calibration pipeline that can fine-tune deep learning models, even on a single epileptic event recorded from a new patient. We evaluate our calibration procedure using two datasets containing EEG signals recorded from a large cohort of epileptic subjects, demonstrating that the forecast accuracy of deep learning methods can increase on average by more than 20%, and that performance improves systematically in all independent patients. We further show that our calibration procedure works best for deep learning models, but can also be successfully applied to machine learning algorithms based on engineered signal features. Although our method still requires at least one epileptic event per patient to calibrate the forecasting model, we conclude that focusing on realistic validation methods allows to more reliably compare different machine learning approaches for seizure prediction, enabling the implementation of robust and effective forecasting systems that can be used in daily healthcare practice.


Assuntos
Algoritmos , Aprendizado Profundo , Eletroencefalografia , Convulsões , Humanos , Eletroencefalografia/métodos , Convulsões/diagnóstico , Convulsões/fisiopatologia , Calibragem , Processamento de Sinais Assistido por Computador , Epilepsia/diagnóstico , Epilepsia/fisiopatologia , Aprendizado de Máquina
7.
Comput Biol Med ; 175: 108510, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38691913

RESUMO

BACKGROUND: The seizure prediction algorithms have demonstrated their potential in mitigating epilepsy risks by detecting the pre-ictal state using ongoing electroencephalogram (EEG) signals. However, most of them require high-density EEG, which is burdensome to the patients for daily monitoring. Moreover, prevailing seizure models require extensive training with significant labeled data which is very time-consuming and demanding for the epileptologists. METHOD: To address these challenges, here we propose an adaptive channel selection strategy and a semi-supervised deep learning model respectively to reduce the number of EEG channels and to limit the amount of labeled data required for accurate seizure prediction. Our channel selection module is centered on features from EEG power spectra parameterization that precisely characterize the epileptic activities to identify the seizure-associated channels for each patient. The semi-supervised model integrates generative adversarial networks and bidirectional long short-term memory networks to enhance seizure prediction. RESULTS: Our approach is evaluated on the CHB-MIT and Siena epilepsy datasets. With utilizing only 4 channels, the method demonstrates outstanding performance with an AUC of 93.15% on the CHB-MIT dataset and an AUC of 88.98% on the Siena dataset. Experimental results also demonstrate that our selection approach reduces the model parameters and training time. CONCLUSIONS: Adaptive channel selection coupled with semi-supervised learning can offer the possible bases for a light weight and computationally efficient seizure prediction system, making the daily monitoring practical to improve patients' quality of life.


Assuntos
Eletroencefalografia , Convulsões , Humanos , Eletroencefalografia/métodos , Convulsões/fisiopatologia , Convulsões/diagnóstico , Processamento de Sinais Assistido por Computador , Aprendizado Profundo , Algoritmos , Bases de Dados Factuais , Epilepsia/fisiopatologia , Aprendizado de Máquina Supervisionado
8.
Chaos ; 34(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38717398

RESUMO

We use a multiscale symbolic approach to study the complex dynamics of temporal lobe refractory epilepsy employing high-resolution intracranial electroencephalogram (iEEG). We consider the basal and preictal phases and meticulously analyze the dynamics across frequency bands, focusing on high-frequency oscillations up to 240 Hz. Our results reveal significant periodicities and critical time scales within neural dynamics across frequency bands. By bandpass filtering neural signals into delta, theta, alpha, beta, gamma, and ripple high-frequency bands (HFO), each associated with specific neural processes, we examine the distinct nonlinear dynamics. Our method introduces a reliable approach to pinpoint intrinsic time lag scales τ within frequency bands of the basal and preictal signals, which are crucial for the study of refractory epilepsy. Using metrics such as permutation entropy (H), Fisher information (F), and complexity (C), we explore nonlinear patterns within iEEG signals. We reveal the intrinsic τmax that maximize complexity within each frequency band, unveiling the nonlinear subtle patterns of the temporal structures within the basal and preictal signal. Examining the H×F and C×F values allows us to identify differences in the delta band and a band between 200 and 220 Hz (HFO 6) when comparing basal and preictal signals. Differences in Fisher information in the delta and HFO 6 bands before seizures highlight their role in capturing important system dynamics. This offers new perspectives on the intricate relationship between delta oscillations and HFO waves in patients with focal epilepsy, highlighting the importance of these patterns and their potential as biomarkers.


Assuntos
Biomarcadores , Ritmo Delta , Humanos , Biomarcadores/metabolismo , Ritmo Delta/fisiologia , Eletroencefalografia/métodos , Epilepsia/fisiopatologia , Processamento de Sinais Assistido por Computador , Masculino , Dinâmica não Linear , Feminino , Adulto , Epilepsia do Lobo Temporal/fisiopatologia
9.
Sci Rep ; 14(1): 10667, 2024 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724576

RESUMO

The study introduces a new online spike encoding algorithm for spiking neural networks (SNN) and suggests new methods for learning and identifying diagnostic biomarkers using three prominent deep learning neural network models: deep BiLSTM, reservoir SNN, and NeuCube. EEG data from datasets related to epilepsy, migraine, and healthy subjects are employed. Results reveal that BiLSTM hidden neurons capture biological significance, while reservoir SNN activities and NeuCube spiking dynamics identify EEG channels as diagnostic biomarkers. BiLSTM and reservoir SNN achieve 90 and 85% classification accuracy, while NeuCube achieves 97%, all methods pinpointing potential biomarkers like T6, F7, C4, and F8. The research bears implications for refining online EEG classification, analysis, and early brain state diagnosis, enhancing AI models with interpretability and discovery. The proposed techniques hold promise for streamlined brain-computer interfaces and clinical applications, representing a significant advancement in pattern discovery across the three most popular neural network methods for addressing a crucial problem. Further research is planned to study how early can these diagnostic biomarkers predict an onset of brain states.


Assuntos
Biomarcadores , Encéfalo , Eletroencefalografia , Epilepsia , Transtornos de Enxaqueca , Redes Neurais de Computação , Humanos , Eletroencefalografia/métodos , Epilepsia/diagnóstico , Epilepsia/fisiopatologia , Biomarcadores/análise , Projetos Piloto , Transtornos de Enxaqueca/diagnóstico , Transtornos de Enxaqueca/fisiopatologia , Encéfalo/fisiopatologia , Aprendizado Profundo , Algoritmos , Masculino , Adulto , Feminino
10.
Sci Rep ; 14(1): 11491, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769115

RESUMO

Several attempts for speech brain-computer interfacing (BCI) have been made to decode phonemes, sub-words, words, or sentences using invasive measurements, such as the electrocorticogram (ECoG), during auditory speech perception, overt speech, or imagined (covert) speech. Decoding sentences from covert speech is a challenging task. Sixteen epilepsy patients with intracranially implanted electrodes participated in this study, and ECoGs were recorded during overt speech and covert speech of eight Japanese sentences, each consisting of three tokens. In particular, Transformer neural network model was applied to decode text sentences from covert speech, which was trained using ECoGs obtained during overt speech. We first examined the proposed Transformer model using the same task for training and testing, and then evaluated the model's performance when trained with overt task for decoding covert speech. The Transformer model trained on covert speech achieved an average token error rate (TER) of 46.6% for decoding covert speech, whereas the model trained on overt speech achieved a TER of 46.3% ( p > 0.05 ; d = 0.07 ) . Therefore, the challenge of collecting training data for covert speech can be addressed using overt speech. The performance of covert speech can improve by employing several overt speeches.


Assuntos
Interfaces Cérebro-Computador , Eletrocorticografia , Fala , Humanos , Feminino , Masculino , Adulto , Fala/fisiologia , Percepção da Fala/fisiologia , Adulto Jovem , Estudos de Viabilidade , Epilepsia/fisiopatologia , Redes Neurais de Computação , Pessoa de Meia-Idade , Adolescente
11.
Neurology ; 102(11): e209430, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38768406

RESUMO

BACKGROUND AND OBJECTIVES: Tailoring epilepsy surgery using intraoperative electrocorticography (ioECoG) has been debated, and modest number of epilepsy surgery centers apply this diagnostic method. We assessed the current evidence to use ioECoG-tailored epilepsy surgery for improving postsurgical outcome. METHODS: PubMed and Embase were searched for original studies reporting on ≥10 cases who underwent ioECoG-tailored surgery for epilepsy, with a follow-up of at least 6 months. We used a random-effects model to calculate the overall rate of patients achieving favorable seizure outcome (FSO), defined as Engel class I, ILAE class 1, or seizure-free status. Meta-regression was used to investigate potential sources of heterogeneity. We calculated the odds ratio (OR) for estimating variables on FSO:ioECoG vs non-ioECoG-tailored surgery (if included studies contained patients with non-ioECoG-tailored surgery), ioECoG-tailored epilepsy surgery in children vs adults, temporal (TL) vs extratemporal lobe (eTL), MRI-positive vs MRI-negative, and complete vs incomplete resection of tissue that generated interictal epileptiform discharges (IEDs). A Bayesian network meta-analysis was conducted for underlying pathologies. We assessed the evidence certainty using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE). RESULTS: Eighty-three studies (82 observational studies, 1 trial) comprising 3,631 patients with ioECoG-tailored surgery were included. The overall pooled rate of patients who attained FSO after ioECoG-tailored surgery was 74% (95% CI 71-77) with significant heterogeneity, which was predominantly attributed to pathologies and seizure outcome classifications. Twenty-two studies contained non-ioECoG-tailored surgeries. IoECoG-tailored surgeries reached a higher rate of FSO than non-ioECoG-tailored surgeries (OR 2.10 [95% CI 1.37-3.24]; p < 0.01; very low certainty). Complete resection of tissue that displayed IEDs in ioECoG predicted FSO better compared with incomplete resection (OR 3.04 [1.76-5.25]; p < 0.01; low certainty). We found insignificant difference in FSO after ioECoG-tailored surgery in children vs adults, TL vs eTL, or MRI-positive vs MRI-negative. The network meta-analysis showed that the odds of FSO was lower for malformations of cortical development than for tumors (OR 0.47 95% credible interval 0.25-0.87). DISCUSSION: Although limited by low-quality evidence, our meta-analysis shows a relatively good surgical outcome (74% FSO) after epilepsy surgery with ioECoG, especially in tumors, with better outcome for ioECoG-tailored surgeries in studies describing both and better outcome after complete removal of IED areas.


Assuntos
Eletrocorticografia , Epilepsia , Monitorização Neurofisiológica Intraoperatória , Convulsões , Humanos , Eletrocorticografia/métodos , Epilepsia/cirurgia , Epilepsia/diagnóstico por imagem , Epilepsia/fisiopatologia , Monitorização Neurofisiológica Intraoperatória/métodos , Convulsões/cirurgia , Convulsões/fisiopatologia , Resultado do Tratamento , Procedimentos Neurocirúrgicos/métodos
12.
Neuropharmacology ; 253: 109968, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692453

RESUMO

Microglia are described as the immune cells of the brain, their immune properties have been extensively studied since first described, however, their neural functions have only been explored over the last decade. Microglia have an important role in maintaining homeostasis in the central nervous system by surveying their surroundings to detect pathogens or damage cells. While these are the classical functions described for microglia, more recently their neural functions have been defined; they are critical to the maturation of neurons during embryonic and postnatal development, phagocytic microglia remove excess synapses during development, a process called synaptic pruning, which is important to overall neural maturation. Furthermore, microglia can respond to neuronal activity and, together with astrocytes, can regulate neural activity, contributing to the equilibrium between excitation and inhibition through a feedback loop. Hypoxia at birth is a serious neurological condition that disrupts normal brain function resulting in seizures and epilepsy later in life. Evidence has shown that microglia may contribute to this hyperexcitability after neonatal hypoxia. This review will summarize the existing data on the role of microglia in the pathogenesis of neonatal hypoxia and the plausible mechanisms that contribute to the development of hyperexcitability after hypoxia in neonates. This article is part of the Special Issue on "Microglia".


Assuntos
Epilepsia , Microglia , Microglia/fisiologia , Microglia/patologia , Humanos , Animais , Epilepsia/fisiopatologia , Epilepsia/patologia , Recém-Nascido , Hipóxia/fisiopatologia , Encéfalo/patologia , Encéfalo/fisiopatologia
13.
PLoS One ; 19(5): e0301043, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38748712

RESUMO

BACKGROUND: A person with epilepsy experiences recurrent seizures as a result of a persistent underlying disorder. About 50 million people globally are impacted by it, with 4 million of those being in Sub-Saharan Africa. One of the most frequent comorbidities that raise the mortality and morbidity rates of epileptic patients is abnormal Electrocardiographic (ECG) findings. Thus, the purpose of this study is to evaluate the prevalence of abnormal ECG findings in epileptic patients that might lead to increased risk of sudden cardiac death. METHODOLOGY: A hospital based cross-sectional study was at Jimma Medical Center of Ethiopia on epileptic patients who were on follow-up at neurologic clinics during the data collection period. The malignant ECG characteristics and was identified using the ECG abnormality tool. To facilitate analysis, the gathered data was imported into Epidata version 3.1 and exported to the SPSS version 26. The factors of abnormal ECG and sudden death risk were examined using bivariate logistic regression. RESULTS: The study comprised 190 epileptic patients, with a mean age of 32 years. There were more men than women, making up 60.2%. A 43.2% (n = 80) frequency of ECG abnormalities was identified. According to the study, early repolarization abnormalities were the most common ECG abnormalities and increased with male sex and the length of time a person had seizures (AOR) of 4.751 and 95% CI (.273,.933), p = 0.029, compared to their female counterparts. CONCLUSION: The frequency of malignant ECG alterations in epileptic patients on follow-up at Jimma Medical Center in Ethiopia is described in the study. According to the study, there were significant ECG alterations in epileptic individuals. Male gender and longer duration of epilepsy raise the risk of abnormal ECG findings that could result in sudden cardiac death.


Assuntos
Eletrocardiografia , Epilepsia , Humanos , Masculino , Feminino , Etiópia/epidemiologia , Epilepsia/epidemiologia , Epilepsia/fisiopatologia , Epilepsia/complicações , Adulto , Estudos Transversais , Prevalência , Adulto Jovem , Pessoa de Meia-Idade , Adolescente , Fatores de Risco , Morte Súbita Cardíaca/epidemiologia , Morte Súbita Cardíaca/etiologia , Hospitais
14.
Cereb Cortex ; 34(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38725290

RESUMO

Information flow in brain networks is reflected in local field potentials that have both periodic and aperiodic components. The 1/fχ aperiodic component of the power spectra tracks arousal and correlates with other physiological and pathophysiological states. Here we explored the aperiodic activity in the human thalamus and basal ganglia in relation to simultaneously recorded cortical activity. We elaborated on the parameterization of the aperiodic component implemented by specparam (formerly known as FOOOF) to avoid parameter unidentifiability and to obtain independent and more easily interpretable parameters. This allowed us to seamlessly fit spectra with and without an aperiodic knee, a parameter that captures a change in the slope of the aperiodic component. We found that the cortical aperiodic exponent χ, which reflects the decay of the aperiodic component with frequency, is correlated with Parkinson's disease symptom severity. Interestingly, no aperiodic knee was detected from the thalamus, the pallidum, or the subthalamic nucleus, which exhibited an aperiodic exponent significantly lower than in cortex. These differences were replicated in epilepsy patients undergoing intracranial monitoring that included thalamic recordings. The consistently lower aperiodic exponent and lack of an aperiodic knee from all subcortical recordings may reflect cytoarchitectonic and/or functional differences. SIGNIFICANCE STATEMENT: The aperiodic component of local field potentials can be modeled to produce useful and reproducible indices of neural activity. Here we refined a widely used phenomenological model for extracting aperiodic parameters (namely the exponent, offset and knee), with which we fit cortical, basal ganglia, and thalamic intracranial local field potentials, recorded from unique cohorts of movement disorders and epilepsy patients. We found that the aperiodic exponent in motor cortex is higher in Parkinson's disease patients with more severe motor symptoms, suggesting that aperiodic features may have potential as electrophysiological biomarkers for movement disorders symptoms. Remarkably, we found conspicuous differences in the aperiodic parameters of basal ganglia and thalamic signals compared to those from neocortex.


Assuntos
Gânglios da Base , Córtex Cerebral , Tálamo , Humanos , Masculino , Feminino , Tálamo/fisiologia , Córtex Cerebral/fisiologia , Gânglios da Base/fisiologia , Doença de Parkinson/fisiopatologia , Pessoa de Meia-Idade , Adulto , Epilepsia/fisiopatologia , Idoso , Eletroencefalografia/métodos
15.
Sci Rep ; 14(1): 10887, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740844

RESUMO

Epilepsy surgery is effective for patients with medication-resistant seizures, however 20-40% of them are not seizure free after surgery. Aim of this study is to evaluate the role of linear and non-linear EEG features to predict post-surgical outcome. We included 123 paediatric patients who underwent epilepsy surgery at Bambino Gesù Children Hospital (January 2009-April 2020). All patients had long term video-EEG monitoring. We analysed 1-min scalp interictal EEG (wakefulness and sleep) and extracted 13 linear and non-linear EEG features (power spectral density (PSD), Hjorth, approximate entropy, permutation entropy, Lyapunov and Hurst value). We used a logistic regression (LR) as feature selection process. To quantify the correlation between EEG features and surgical outcome we used an artificial neural network (ANN) model with 18 architectures. LR revealed a significant correlation between PSD of alpha band (sleep), Mobility index (sleep) and the Hurst value (sleep and awake) with outcome. The fifty-four ANN models gave a range of accuracy (46-65%) in predicting outcome. Within the fifty-four ANN models, we found a higher accuracy (64.8% ± 7.6%) in seizure outcome prediction, using features selected by LR. The combination of PSD of alpha band, mobility and the Hurst value positively correlate with good surgical outcome.


Assuntos
Eletroencefalografia , Aprendizado de Máquina , Humanos , Eletroencefalografia/métodos , Criança , Feminino , Masculino , Pré-Escolar , Adolescente , Epilepsia/cirurgia , Epilepsia/fisiopatologia , Epilepsia/diagnóstico , Redes Neurais de Computação , Resultado do Tratamento , Lactente , Sono/fisiologia
16.
Pediatr Neurol ; 155: 114-119, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631079

RESUMO

BACKGROUND: The aim of this study was to investigate sleep habits, quality of life (QoL), and the relationship between them in children with epilepsy. METHODS: In this cross-sectional study, children aged two to 18 years being followed up for epilepsy were assessed using the Children's Sleep Habits Questionnaire (CSHQ) and the Pediatric Quality of Life Inventory (PedsQL). Pearson or Spearman correlation analysis was performed to examine the relationship between normally distributed and non-normally distributed variables, respectively. Linear regression analysis was used to examine independent variables associated with PedsQL total scale score. Level of significance was accepted as P < 0.05. RESULTS: The study included 112 children with a mean age of 10.5 ± 4.4 years (51.8% female). The frequency of poor sleep habits was 96.4%. There was a good level of agreement between children's and parents' PedsQL total, physical health, and psychosocial health scores (P < 0.001). Correlation analysis between QoL and sleep parameters revealed negative correlations between total sleep score and self-assessed PedsQL total scale, physical health, and psychosocial health scores (P < 0.05) and parent-assessed PedsQL total scale and psychosocial health scores (P < 0.05). The results of linear regression analysis indicated that the factors most significantly associated with lower QoL were high CSHQ total sleep score and exclusively daytime seizures (P < 0.001). CONCLUSIONS: It was found that children with epilepsy had poor sleep habits and low QoL and that poor sleep habits have a negative impact on QoL.


Assuntos
Epilepsia , Qualidade de Vida , Humanos , Feminino , Masculino , Criança , Estudos Transversais , Epilepsia/fisiopatologia , Adolescente , Pré-Escolar , Transtornos do Sono-Vigília/etiologia , Transtornos do Sono-Vigília/fisiopatologia , Sono/fisiologia , Inquéritos e Questionários , Hábitos
18.
Artigo em Russo | MEDLINE | ID: mdl-38676679

RESUMO

OBJECTIVE: To study the follow-up of adult patients with status epilepticus or a history of serial seizures, assessing the likelihood of achieving long-term remission and identifying predictors of treatment effectiveness. MATERIAL AND METHODS: The study included 280 patients divided into 137 patients with epilepsy with a series of seizures or a history of status epilepticus (group 1) and 143 patients, who had not previously received therapy and did not have a series of seizures or a history of status epilepticus (group 2). A clinical and neurological examination, analysis of medical documentation data, electroencephalography, and MRI were performed. RESULTS: After correction of therapy, remission in patients in group 1 was achieved in 21.9%, improvement in 30%, no effect was observed in 48.1%; in group 2 the indicators were 51%, 28.7%, 20.3%, respectively. The onset of epilepsy in childhood, frequent seizures, and regional epileptiform activity were associated with the lack of treatment effect. CONCLUSION: The results confirm the main role of the clinical examination in determining the prognosis of epilepsy in a particular patient. Currently available instrumental techniques have limited predictive value.


Assuntos
Anticonvulsivantes , Eletroencefalografia , Imageamento por Ressonância Magnética , Estado Epiléptico , Humanos , Adulto , Masculino , Feminino , Seguimentos , Estado Epiléptico/tratamento farmacológico , Estado Epiléptico/diagnóstico , Estado Epiléptico/fisiopatologia , Pessoa de Meia-Idade , Anticonvulsivantes/uso terapêutico , Resultado do Tratamento , Prognóstico , Adulto Jovem , Convulsões/tratamento farmacológico , Convulsões/diagnóstico , Convulsões/fisiopatologia , Indução de Remissão , Adolescente , Epilepsia/tratamento farmacológico , Epilepsia/diagnóstico , Epilepsia/fisiopatologia
19.
Rev Neurol ; 78(9): 253-263, 2024 May 01.
Artigo em Espanhol | MEDLINE | ID: mdl-38682763

RESUMO

Normal epileptiform-like variants or benign epileptiform variants are a diagnostic challenge in the interpretation of electroencephalograms, which require the knowledge and extensive experience of those responsible for the electroencephalographic report. They include a heterogeneous group of findings, some quite uncommon, initially related to epilepsy and various neurological conditions. Most of them are currently considered variants with no pathological significance, and their over-interpretation usually leads to misdiagnosis and the establishment of unnecessary treatments. Prevalence data are variable and usually come from selected populations, so they are difficult to extrapolate to a healthy population. Studies with invasive electrodes and recent series link some of these variants with epilepsy. We aim to review the characteristics and prevalence of the main benign epileptiform variants and to update their clinical significance.


TITLE: Variantes normales de aspecto epileptiforme en el electroencefalograma. Revisión de la bibliografía e implicaciones clínicas.Las variantes normales de aspecto epileptiforme, o variantes epileptiformes benignas, son un reto diagnóstico en la interpretación de los electroencefalogramas que requiere su conocimiento y una amplia experiencia por parte de los responsables del informe electroencefalográfico. Incluyen un grupo heterogéneo de hallazgos, algunos muy infrecuentes, que inicialmente se relacionaron con epilepsia y patologías neurológicas diversas. En la actualidad, la mayoría se consideran variantes sin significado patológico, y su sobreinterpretación habitualmente acarrea diagnósticos erróneos y tratamientos innecesarios. Los datos de prevalencia de estas variantes son muy diversos y proceden habitualmente de poblaciones seleccionadas, por lo que son difícilmente extrapolables a población sana. No obstante, estudios con electrodos invasivos y series más recientes vuelven a asociar algunas de estas variantes con epilepsia. Nuestro objetivo es revisar las características y la prevalencia de las principales variantes epileptiformes benignas y actualizar su significado clínico.


Assuntos
Eletroencefalografia , Epilepsia , Humanos , Epilepsia/diagnóstico , Epilepsia/fisiopatologia
20.
Commun Biol ; 7(1): 506, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678058

RESUMO

Limb movement direction can be inferred from local field potentials in motor cortex during movement execution. Yet, it remains unclear to what extent intended hand movements can be predicted from brain activity recorded during movement planning. Here, we set out to probe the directional-tuning of oscillatory features during motor planning and execution, using a machine learning framework on multi-site local field potentials (LFPs) in humans. We recorded intracranial EEG data from implanted epilepsy patients as they performed a four-direction delayed center-out motor task. Fronto-parietal LFP low-frequency power predicted hand-movement direction during planning while execution was largely mediated by higher frequency power and low-frequency phase in motor areas. By contrast, Phase-Amplitude Coupling showed uniform modulations across directions. Finally, multivariate classification led to an increase in overall decoding accuracy (>80%). The novel insights revealed here extend our understanding of the role of neural oscillations in encoding motor plans.


Assuntos
Córtex Motor , Movimento , Humanos , Movimento/fisiologia , Masculino , Adulto , Córtex Motor/fisiologia , Feminino , Eletroencefalografia , Encéfalo/fisiologia , Adulto Jovem , Aprendizado de Máquina , Eletrocorticografia , Epilepsia/fisiopatologia , Mãos/fisiologia , Mapeamento Encefálico/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA