Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 404
Filtrar
1.
Sci Rep ; 14(1): 8367, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600221

RESUMO

Post-traumatic epilepsy (PTE) stands as one of the numerous debilitating consequences that follow traumatic brain injury (TBI). Despite its impact on many individuals, the current landscape offers only a limited array of reliable treatment options, and our understanding of the underlying mechanisms and susceptibility factors remains incomplete. Among the potential contributors to epileptogenesis, astrocytes, a type of glial cell, have garnered substantial attention as they are believed to promote hyperexcitability and the development of seizures in the brain following TBI. The current study evaluated the transcriptomic changes in cortical astrocytes derived from animals that developed seizures as a result of severe focal TBI. Using RNA-Seq and ingenuity pathway analysis (IPA), we unveil a distinct gene expression profile in astrocytes, including alterations in genes supporting inflammation, early response modifiers, and neuropeptide-amidating enzymes. The findings underscore the complex molecular dynamics in astrocytes during PTE development, offering insights into therapeutic targets and avenues for further exploration.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Humanos , Animais , Epilepsia Pós-Traumática/etiologia , Astrócitos/metabolismo , Transcriptoma , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/metabolismo , Convulsões , Perfilação da Expressão Gênica , Modelos Animais de Doenças
2.
Discov Med ; 36(183): 842-852, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38665032

RESUMO

BACKGROUND: Following traumatic brain injury (TBI), an imbalance arises in the central nervous system within the hippocampus region, resulting in the proliferation of mossy cell fibers, causing abnormal membrane discharge. Moreover, disruptions in cellular neurotransmitter secretion induce post-traumatic epilepsy. Extensive experimental and clinical data indicate that the orexin system plays a regulatory role in the hippocampal central nervous system, but the specific regulatory effects are unclear. Therefore, further experimental evaluation of its relevance is needed. OBJECTIVE: This study aims to investigate the effects of orexin receptor agonists (OXA) on the seizure threshold and intensity in controlled cortical impact (CCI) mice, and to understand the role of the orexin system in post-traumatic epilepsy (PTE). METHODS: Male C57BL/6 mice weighing 18-22 g were randomly divided into three groups: Sham, CCI, and CCI+OXA. The three groups of mice were sequentially constructed with models, implanted with electrodes, and established drug-delivery cannulas. After a 30-day recovery, the Sham and CCI groups were injected with physiological saline through the administration cannulas, while the CCI+OXA group was injected with OXA. Subsequently, all mice underwent electrical stimulation every 30 minutes for a total of 15 times. Epileptic susceptibility, duration, intensity, and cognitive changes were observed. Concurrently, the expression levels and changes of GABAergic neurons in the hippocampus of each group were examined by immunofluorescence. RESULTS: Injecting OXA into hippocampal CA1 reduces the threshold of post-traumatic seizures, prolongs the post-discharge duration, prolongs seizure duration, reduces cognitive ability, and exacerbates the loss of GABAergic neurons in the hippocampal region. CONCLUSIONS: Based on the results, we can find that injecting OXA antagonists into the CA1 region of the hippocampus can treat or prevent the occurrence and progression of post-traumatic epilepsy.


Assuntos
Lesões Encefálicas Traumáticas , Camundongos Endogâmicos C57BL , Orexinas , Animais , Masculino , Camundongos , Orexinas/metabolismo , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Receptores de Orexina/metabolismo , Epilepsia Pós-Traumática/etiologia , Epilepsia Pós-Traumática/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/patologia , Epilepsia/etiologia , Epilepsia/metabolismo , Convulsões/etiologia , Convulsões/metabolismo
3.
Nat Rev Neurol ; 20(5): 298-312, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38570704

RESUMO

Post-traumatic epilepsy (PTE) accounts for 5% of all epilepsies. The incidence of PTE after traumatic brain injury (TBI) depends on the severity of injury, approaching one in three in groups with the most severe injuries. The repeated seizures that characterize PTE impair neurological recovery and increase the risk of poor outcomes after TBI. Given this high risk of recurrent seizures and the relatively short latency period for their development after injury, PTE serves as a model disease to understand human epileptogenesis and trial novel anti-epileptogenic therapies. Epileptogenesis is the process whereby previously normal brain tissue becomes prone to recurrent abnormal electrical activity, ultimately resulting in seizures. In this Review, we describe the clinical course of PTE and highlight promising research into epileptogenesis and treatment using animal models of PTE. Clinical, imaging, EEG and fluid biomarkers are being developed to aid the identification of patients at high risk of PTE who might benefit from anti-epileptogenic therapies. Studies in preclinical models of PTE have identified tractable pathways and novel therapeutic strategies that can potentially prevent epilepsy, which remain to be validated in humans. In addition to improving outcomes after TBI, advances in PTE research are likely to provide therapeutic insights that are relevant to all epilepsies.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Humanos , Epilepsia Pós-Traumática/etiologia , Animais , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/fisiopatologia , Modelos Animais de Doenças , Eletroencefalografia/métodos
4.
Seizure ; 117: 222-228, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38503099

RESUMO

PURPOSE: To evaluate the clinical state of posttraumatic epilepsy (PTE) in patients with chronic disorders of consciousness (CDC) due to severe traumatic brain injury (STBI) after traffic accidents and clarify the risk factors for seizure occurrence in such patients. METHODS: Two hundred ninety-three patients with CDC due to STBI (mean age at admission [±standard deviation]: 36.4 ± 17.9 years; men: 71.7 %; mean duration of injury to admission: 416 ± 732 days; mean hospitalization time: 899 ± 319 days) were enrolled in this study. We retrospectively investigated the relationship between seizure conditions (type and frequency) and clinical data, including age, sex, pathological types of brain injury, with/without surgical intervention, degree of CDC, and administration of antiseizure medications (ASMs). RESULTS: Overall, 52.9 % (n = 155/293) and 64.2 % of the patients (n = 183/of 285 patients surviving at discharge) were administered ASMs at admission and discharge, respectively. One hundred thirty-two patients (45.1 %) experienced epileptic seizures during hospitalization, and the mean seizure frequency was 4.0 ± 0.4 times per year. In multivariate analysis, significant and independent risk factors of seizure occurrence were revealed to be male sex, high National Agency for Automotive Safety and Victims' Aid score, hypoxic encephalopathy, and history of the neurosurgical operations. CONCLUSION: The high prevalence of PTE in patients with CDC due to STBI, and the significant and independent risk factors for seizure occurrence in the chronic clinical phase were revealed. We expect that this study will aid toward improving clinical assessment and management of epileptic seizures in the population.


Assuntos
Acidentes de Trânsito , Lesões Encefálicas Traumáticas , Transtornos da Consciência , Epilepsia Pós-Traumática , Humanos , Masculino , Feminino , Lesões Encefálicas Traumáticas/complicações , Adulto , Pessoa de Meia-Idade , Acidentes de Trânsito/estatística & dados numéricos , Estudos Retrospectivos , Transtornos da Consciência/etiologia , Adulto Jovem , Epilepsia Pós-Traumática/etiologia , Epilepsia Pós-Traumática/epidemiologia , Adolescente , Fatores de Risco , Idoso , Doença Crônica , Anticonvulsivantes/uso terapêutico
5.
Exp Neurol ; 374: 114677, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38185315

RESUMO

Traumatic brain injury (TBI) is a complex and heterogeneous condition that can cause wide-spectral neurological sequelae such as behavioral deficits, sleep abnormalities, and post-traumatic epilepsy (PTE). However, understanding the interaction of TBI phenome is challenging because few animal models can recapitulate the heterogeneity of TBI outcomes. We leveraged the genetically diverse recombinant inbred Collaborative Cross (CC) mice panel and systematically characterized TBI-related outcomes in males from 12 strains of CC and the reference C57BL/6J mice. We identified unprecedented extreme responses in multiple clinically relevant traits across CC strains, including weight change, mortality, locomotor activity, cognition, and sleep. Notably, we identified CC031 mouse strain as the first rodent model of PTE that exhibit frequent and progressive post-traumatic seizures after moderate TBI induced by lateral fluid percussion. Multivariate analysis pinpointed novel biological interactions and three principal components across TBI-related modalities. Estimate of the proportion of TBI phenotypic variability attributable to strain revealed large range of heritability, including >70% heritability of open arm entry time of elevated plus maze. Our work provides novel resources and models that can facilitate genetic mapping and the understanding of the pathobiology of TBI and PTE.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Masculino , Camundongos , Animais , Epilepsia Pós-Traumática/etiologia , Camundongos Endogâmicos C57BL , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/genética , Modelos Animais de Doenças , Variação Genética
6.
Seizure ; 115: 87-93, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38232649

RESUMO

BACKGROUND: Traumatic brain injury (TBI) affects approximately 69 million individuals annually, often resulting in well-documented complications such as epilepsy. Although numerous studies have been performed on posttraumatic epilepsy (PTE) in adults over the past decade, research on chronic consequences of TBI in children remains limited. Herein, we retrospectively assessed children who had experienced moderate to severe TBI to determine their clinical characteristics and identify associated factors associated with the development of PTE in the pediatric population. METHODS: The study population comprised children aged 0-18 years who had experienced moderate to severe TBI and underwent treatment at the Children's Hospital of Chongqing Medical University between 2011 and 2021. They were categorized into two groups: the PTE group, comprising individuals diagnosed with PTE within a one-year follow-up period, and the nPTE group, consisting of those who did not develop PTE during the same timeframe. The primary objective was to investigate the clinical characteristics and identify related associated factors. The relationship between various clinical factors and the incidence of PTE was assessed through univariate and multivariate logistic regression. RESULTS: A total of 132 patients were assessed. Most participants were male (65%) and the age distribution skewed towards younger children, with a median age of 41.0 months (interquartile range: 45.3). Upon their last clinical visit, 64 children (49%) were diagnosed with PTE. Notably, the first posttraumatic seizure predominantly occurred within the first week following the traumatic event. Further analyses revealed that increasing injury severity, as indicated by a lower Glasgow Coma Scale (GCS) score (odds ratio [OR]: 0.78, 95% confidence interval [CI]: 0.54-1.12, p= 0.018), a contusion load ≥3 (OR: 8.1, 95% CI: 2.3-28.9, p= 0.001), immediate posttraumatic seizures (IPTS) (OR: 8.9, 95% CI: 2.5-31.2, p < 0.001), and early posttraumatic seizures (EPTS) (OR: 54, 95% CI: 11-276, p < 0.001), were all significantly associated with a higher risk of developing PTE. CONCLUSION: This study highlights that the onset of PTE was associated with the markers of injury severity or PTS and identified GCS scores, contusion loads of ≥3, IPTS, and EPTS as independent associated factors significantly associated with the development of PTE.


Assuntos
Lesões Encefálicas Traumáticas , Contusões , Epilepsia Pós-Traumática , Adulto , Humanos , Criança , Masculino , Pré-Escolar , Feminino , Estudos Retrospectivos , Estudos de Casos e Controles , Fatores de Risco , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/epidemiologia , Epilepsia Pós-Traumática/epidemiologia , Epilepsia Pós-Traumática/etiologia , Convulsões/etiologia , Contusões/complicações
7.
Epilepsia ; 65(2): 511-526, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38052475

RESUMO

OBJECTIVE: This study was undertaken to assess reproducibility of the epilepsy outcome and phenotype in a lateral fluid percussion model of posttraumatic epilepsy (PTE) across three study sites. METHODS: A total of 525 adult male Sprague Dawley rats were randomized to lateral fluid percussion-induced brain injury (FPI) or sham operation. Of these, 264 were assigned to magnetic resonance imaging (MRI cohort, 43 sham, 221 traumatic brain injury [TBI]) and 261 to electrophysiological follow-up (EEG cohort, 41 sham, 220 TBI). A major effort was made to harmonize the rats, materials, equipment, procedures, and monitoring systems. On the 7th post-TBI month, rats were video-EEG monitored for epilepsy diagnosis. RESULTS: A total of 245 rats were video-EEG phenotyped for epilepsy on the 7th postinjury month (121 in MRI cohort, 124 in EEG cohort). In the whole cohort (n = 245), the prevalence of PTE in rats with TBI was 22%, being 27% in the MRI and 18% in the EEG cohort (p > .05). Prevalence of PTE did not differ between the three study sites (p > .05). The average seizure frequency was .317 ± .725 seizures/day at University of Eastern Finland (UEF; Finland), .085 ± .067 at Monash University (Monash; Australia), and .299 ± .266 at University of California, Los Angeles (UCLA; USA; p < .01 as compared to Monash). The average seizure duration did not differ between UEF (104 ± 48 s), Monash (90 ± 33 s), and UCLA (105 ± 473 s; p > .05). Of the 219 seizures, 53% occurred as part of a seizure cluster (≥3 seizures/24 h; p >.05 between the study sites). Of the 209 seizures, 56% occurred during lights-on period and 44% during lights-off period (p > .05 between the study sites). SIGNIFICANCE: The PTE phenotype induced by lateral FPI is reproducible in a multicenter design. Our study supports the feasibility of performing preclinical multicenter trials in PTE to increase statistical power and experimental rigor to produce clinically translatable data to combat epileptogenesis after TBI.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Epilepsia , Animais , Masculino , Ratos , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Modelos Animais de Doenças , Epilepsia/etiologia , Epilepsia Pós-Traumática/etiologia , Epilepsia Pós-Traumática/patologia , Percussão , Fenótipo , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Convulsões
8.
Epilepsy Res ; 199: 107263, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056191

RESUMO

OBJECTIVE: Project 1 of the Preclinical Multicenter Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx) consortium aims to identify preclinical biomarkers for antiepileptogenic therapies following traumatic brain injury (TBI). The international participating centers in Finland, Australia, and the United States have made a concerted effort to ensure protocol harmonization. Here, we evaluate the success of harmonization process by assessing the timing, coverage, and performance between the study sites. METHOD: We collected data on animal housing conditions, lateral fluid-percussion injury model production, postoperative care, mortality, post-TBI physiological monitoring, timing of blood sampling and quality, MR imaging timing and protocols, and duration of video-electroencephalography (EEG) follow-up using common data elements. Learning effect in harmonization was assessed by comparing procedural accuracy between the early and late stages of the project. RESULTS: The animal housing conditions were comparable between the study sites but the postoperative care procedures varied. Impact pressure, duration of apnea, righting reflex, and acute mortality differed between the study sites (p < 0.001). The severity of TBI on D2 post TBI assessed using the composite neuroscore test was similar between the sites, but recovery of acute somato-motor deficits varied (p < 0.001). A total of 99% of rats included in the final cohort in UEF, 100% in Monash, and 79% in UCLA had blood samples taken at all time points. The timing of sampling differed on day (D)2 (p < 0.05) but not D9 (p > 0.05). Plasma quality was poor in 4% of the samples in UEF, 1% in Monash and 14% in UCLA. More than 97% of the final cohort were MR imaged at all timepoints in all study sites. The timing of imaging did not differ on D2 and D9 (p > 0.05), but varied at D30, 5 months, and ex vivo timepoints (p < 0.001). The percentage of rats that completed the monthly high-density video-EEG follow-up and the duration of video-EEG recording on the 7th post-injury month used for seizure detection for diagnosis of post-traumatic epilepsy differed between the sites (p < 0.001), yet the prevalence of PTE (UEF 21%, Monash 22%, UCLA 23%) was comparable between the sites (p > 0.05). A decrease in acute mortality and increase in plasma quality across time reflected a learning effect in the TBI production and blood sampling protocols. SIGNIFICANCE: Our study is the first demonstration of the feasibility of protocol harmonization for performing powered preclinical multi-center trials for biomarker and therapy discovery of post-traumatic epilepsy.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Epilepsia , Animais , Ratos , Biomarcadores , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Modelos Animais de Doenças , Epilepsia/etiologia , Epilepsia/diagnóstico , Epilepsia Pós-Traumática/etiologia , Epilepsia Pós-Traumática/tratamento farmacológico , Convulsões , Estudos Multicêntricos como Assunto
9.
Cell Mol Neurobiol ; 43(8): 4059-4069, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37889439

RESUMO

Posttraumatic epilepsy (PTE) is a severe complication arising from a traumatic brain injury caused by various violent actions on the brain. The underlying mechanisms for the pathogenesis of PTE are complex and have not been fully defined. Approximately, one-third of patients with PTE are resistant to antiepileptic therapy. Recent research evidence has shown that neuroinflammation is critical in the development of PTE. This article reviews the immune-inflammatory mechanisms regarding microglial activation, astrocyte proliferation, inflammatory signaling pathways, chronic neuroinflammation, and intestinal flora. These mechanisms offer novel insights into the pathophysiological mechanisms of PTE and have groundbreaking implications in the prevention and treatment of PTE. Immunoinflammatory cross-talk between glial cells and gut microbiota in posttraumatic epilepsy. This graphical abstract depicts the roles of microglia and astrocytes in posttraumatic epilepsy, highlighting the influence of the gut microbiota on their function. TBI traumatic brain injury, AQP4 aquaporin-4, Kir4.1 inward rectifying K channels.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Humanos , Doenças Neuroinflamatórias , Epilepsia Pós-Traumática/etiologia , Epilepsia Pós-Traumática/patologia , Lesões Encefálicas Traumáticas/complicações , Encéfalo/patologia , Astrócitos/patologia
10.
Epilepsy Res ; 196: 107217, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37619297

RESUMO

PURPOSE: There are currently no clinical treatments to prevent posttraumatic epilepsy (PTE). Recently, our group has shown that administration of levetiracetam (LEV) or brivaracetam (BRV) shortly after cortical neurotrauma prevents the development of epileptiform activity in rats, as measured ex vivo in neocortical slices. Due to the low incidence of spontaneous seizures in rodent-based models of traumatic brain injury (TBI), chemoconvulsants have been used to test injured animals for seizure susceptibility. We used a low dose of the voltage-gated potassium channel blocker 4-aminopyridine (4-AP) to evaluate posttraumatic epileptogenesis after controlled cortical impact (CCI) injury. We then used this assessment to further investigate the efficacy of BRV as an antiepileptogenic treatment. METHODS: Sprague-Dawley rats aged P24-35 were subjected to severe CCI injury. Following trauma, one group received BRV-21 mg/kg (IP) at 0-2 min after injury and the other BRV-100 mg/kg (IP) at 30 min after injury. Four to eight weeks after injury, animals were given a single, low dose of 4-AP (3.0-3.5 mg/kg, IP) and then monitored up to 90 min for stage 4/5 seizures. RESULTS: The chemoconvulsant challenge revealed that within four to eight weeks, CCI injury led to a two-fold increase in percentage of rats with 4-AP induced stage 4-5 seizures relative to sham-injured controls. Administration of a single dose of BRV within 30 min after trauma significantly reduced injury-induced seizure susceptibility, bringing the proportion of CCI-rats that exhibited evoked seizures down to control levels. CONCLUSIONS: This study is the first to use a low dose of 4-AP as a chemoconvulsant challenge to test epileptogenicity within the first two months after CCI injury in rats. Our findings show that a single dose of BRV administered within 30 min after TBI prevents injury-induced increases in seizure susceptibility. This supports our hypothesis that early intervention with BRV may prevent PTE.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Ratos , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Ratos Sprague-Dawley , Pirrolidinonas/farmacologia , Pirrolidinonas/uso terapêutico , Convulsões/tratamento farmacológico , Convulsões/etiologia , Convulsões/prevenção & controle , Epilepsia Pós-Traumática/tratamento farmacológico , Epilepsia Pós-Traumática/etiologia , Epilepsia Pós-Traumática/prevenção & controle , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico
11.
CNS Neurosci Ther ; 29(9): 2430-2444, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37309302

RESUMO

BACKGROUND: Posttraumatic epilepsy (PTE) is one of the most critical complications of traumatic brain injury (TBI), significantly increasing TBI patients' neuropsychiatric symptoms and mortality. The abnormal accumulation of glutamate caused by TBI and its secondary excitotoxicity are essential reasons for neural network reorganization and functional neural plasticity changes, contributing to the occurrence and development of PTE. Restoring glutamate balance in the early stage of TBI is expected to play a neuroprotective role and reduce the risk of PTE. AIMS: To provide a neuropharmacological insight for drug development to prevent PTE based on regulating glutamate homeostasis. METHODS: We discussed how TBI affects glutamate homeostasis and its relationship with PTE. Furthermore, we also summarized the research progress of molecular pathways for regulating glutamate homeostasis after TBI and pharmacological studies aim to prevent PTE by restoring glutamate balance. RESULTS: TBI can lead to the accumulation of glutamate in the brain, which increases the risk of PTE. Targeting the molecular pathways affecting glutamate homeostasis helps restore normal glutamate levels and is neuroprotective. DISCUSSION: Taking glutamate homeostasis regulation as a means for new drug development can avoid the side effects caused by direct inhibition of glutamate receptors, expecting to alleviate the diseases related to abnormal glutamate levels in the brain, such as PTE, Parkinson's disease, depression, and cognitive impairment. CONCLUSION: It is a promising strategy to regulate glutamate homeostasis through pharmacological methods after TBI, thereby decreasing nerve injury and preventing PTE.


Assuntos
Lesões Encefálicas Traumáticas , Disfunção Cognitiva , Epilepsia Pós-Traumática , Humanos , Epilepsia Pós-Traumática/tratamento farmacológico , Epilepsia Pós-Traumática/etiologia , Epilepsia Pós-Traumática/prevenção & controle , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Disfunção Cognitiva/complicações , Ácido Glutâmico , Homeostase
12.
Cells ; 12(9)2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37174647

RESUMO

BACKGROUND: Traumatic brain injury (TBI) remains a significant risk factor for post-traumatic epilepsy (PTE). The pathophysiological mechanisms underlying the injury-induced epileptogenesis are under investigation. The dentate gyrus-a structure that is highly susceptible to injury-has been implicated in the evolution of seizure development. METHODS: Utilizing the murine unilateral focal control cortical impact (CCI) injury, we evaluated seizure onset using 24/7 EEG video analysis at 2-4 months post-injury. Cellular changes in the dentate gyrus and hilus of the hippocampus were quantified by unbiased stereology and Imaris image analysis to evaluate Prox1-positive cell migration, astrocyte branching, and morphology, as well as neuronal loss at four months post-injury. Isolation of region-specific astrocytes and RNA-Seq were performed to determine differential gene expression in animals that developed post-traumatic epilepsy (PTE+) vs. those animals that did not (PTE-), which may be associated with epileptogenesis. RESULTS: CCI injury resulted in 37% PTE incidence, which increased with injury severity and hippocampal damage. Histological assessments uncovered a significant loss of hilar interneurons that coincided with aberrant migration of Prox1-positive granule cells and reduced astroglial branching in PTE+ compared to PTE- mice. We uniquely identified Cst3 as a PTE+-specific gene signature in astrocytes across all brain regions, which showed increased astroglial expression in the PTE+ hilus. CONCLUSIONS: These findings suggest that epileptogenesis may emerge following TBI due to distinct aberrant cellular remodeling events and key molecular changes in the dentate gyrus of the hippocampus.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Camundongos , Animais , Epilepsia Pós-Traumática/etiologia , Epilepsia Pós-Traumática/patologia , Gliose/complicações , Lesões Encefálicas Traumáticas/complicações , Convulsões , Interneurônios/metabolismo
13.
Epilepsia ; 64(7): 1842-1852, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37073101

RESUMO

OBJECTIVE: Posttraumatic epilepsy (PTE) develops in as many as one third of severe traumatic brain injury (TBI) patients, often years after injury. Analysis of early electroencephalographic (EEG) features, by both standardized visual interpretation (viEEG) and quantitative EEG (qEEG) analysis, may aid early identification of patients at high risk for PTE. METHODS: We performed a case-control study using a prospective database of severe TBI patients treated at a single center from 2011 to 2018. We identified patients who survived 2 years postinjury and matched patients with PTE to those without using age and admission Glasgow Coma Scale score. A neuropsychologist recorded outcomes at 1 year using the Expanded Glasgow Outcomes Scale (GOSE). All patients underwent continuous EEG for 3-5 days. A board-certified epileptologist, blinded to outcomes, described viEEG features using standardized descriptions. We extracted 14 qEEG features from an early 5-min epoch, described them using qualitative statistics, then developed two multivariable models to predict long-term risk of PTE (random forest and logistic regression). RESULTS: We identified 27 patients with and 35 without PTE. GOSE scores were similar at 1 year (p = .93). The median time to onset of PTE was 7.2 months posttrauma (interquartile range = 2.2-22.2 months). None of the viEEG features was different between the groups. On qEEG, the PTE cohort had higher spectral power in the delta frequencies, more power variance in the delta and theta frequencies, and higher peak envelope (all p < .01). Using random forest, combining qEEG and clinical features produced an area under the curve of .76. Using logistic regression, increases in the delta:theta power ratio (odds ratio [OR] = 1.3, p < .01) and peak envelope (OR = 1.1, p < .01) predicted risk for PTE. SIGNIFICANCE: In a cohort of severe TBI patients, acute phase EEG features may predict PTE. Predictive models, as applied to this study, may help identify patients at high risk for PTE, assist early clinical management, and guide patient selection for clinical trials.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Humanos , Estudos de Casos e Controles , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico , Epilepsia Pós-Traumática/diagnóstico , Epilepsia Pós-Traumática/etiologia , Eletroencefalografia , Escala de Coma de Glasgow
14.
Neurobiol Dis ; 179: 106053, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36871641

RESUMO

PTE is a neurological disorder characterized by recurrent and spontaneous epileptic seizures. PTE is a major public health problem occurring in 2-50% of TBI patients. Identifying PTE biomarkers is crucial for the development of effective treatments. Functional neuroimaging studies in patients with epilepsy and in epileptic rodents have observed that abnormal functional brain activity plays a role in the development of epilepsy. Network representations of complex systems ease quantitative analysis of heterogeneous interactions within a unified mathematical framework. In this work, graph theory was used to study resting state functional magnetic resonance imaging (rs-fMRI) and reveal functional connectivity abnormalities that are associated with seizure development in traumatic brain injury (TBI) patients. We examined rs-fMRI of 75 TBI patients from Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx) which aims to identify validated Post-traumatic epilepsy (PTE) biomarkers and antiepileptogenic therapies using multimodal and longitudinal data acquired from 14 international sites. The dataset includes 28 subjects who had at least one late seizure after TBI and 47 subjects who had no seizures within 2 years post-injury. Each subject's neural functional network was investigated by computing the correlation between the low frequency time series of 116 regions of interest (ROIs). Each subject's functional organization was represented as a network consisting of nodes, brain regions, and edges that show the relationship between the nodes. Then, several graph measures concerning the integration and the segregation of the functional brain networks were extracted in order to highlight changes in functional connectivity between the two TBI groups. Results showed that the late seizure-affected group had a compromised balance between integration and segregation and presents functional networks that are hyperconnected, hyperintegrated but at the same time hyposegregated compared with seizure-free patients. Moreover, TBI subjects who developed late seizures had more low betweenness hubs.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Epilepsia , Humanos , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Epilepsia Pós-Traumática/diagnóstico por imagem , Epilepsia Pós-Traumática/etiologia , Encéfalo/diagnóstico por imagem , Biomarcadores , Convulsões/diagnóstico por imagem , Imageamento por Ressonância Magnética
15.
Metab Brain Dis ; 38(3): 749-765, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36715879

RESUMO

Traumatic brain injury (TBI) leads to post-traumatic epilepsy (PTE); hence, both TBI and PTE share various similar molecular mechanisms. MicroRNA (miRNA) is a small noncoding RNA that acts as a gene-silencing molecule. Notably, the dysregulation of miRNAs in various neurological diseases, including TBI and epilepsy, has been reported in several studies. However, studies on commonly dysregulated miRNAs and the regulation of shared pathways in both TBI and epilepsy that can identify potential biomarkers of PTE are still lacking. This systematic review covers the peer-review publications of TBI and database studies of epilepsy-dysregulated miRNAs of clinical studies. For TBI, 290 research articles were identified after screening, and 12 provided data for dysregulated miRNAs in humans. The compiled data suggest that 85 and 222 miRNAs are consecutively dysregulated in TBI and epilepsy. In both, 10 miRNAs were found to be commonly dysregulated, implying that they are potentially dysregulated miRNAs for PTE. Furthermore, the targets and involvement of each putative miRNA in different pathways were identified and evaluated. Additionally, clusters of predicted miRNAs were analyzed. Each miRNA's regulatory role was linked with apoptosis, inflammation, and cell cycle regulation pathways. Hence, these findings provide insight for future diagnostic biomarkers.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Epilepsia , MicroRNAs , Humanos , Epilepsia Pós-Traumática/etiologia , Epilepsia Pós-Traumática/genética , MicroRNAs/genética , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/genética , Epilepsia/diagnóstico , Epilepsia/genética , Biomarcadores
16.
J Neurol Neurosurg Psychiatry ; 94(3): 245-249, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36241423

RESUMO

BACKGROUND: Post-traumatic epilepsy (PTE) is a severe complication of traumatic brain injury (TBI). Electroencephalography aids early post-traumatic seizure diagnosis, but its optimal utility for PTE prediction remains unknown. We aim to evaluate the contribution of quantitative electroencephalograms to predict first-year PTE (PTE1). METHODS: We performed a multicentre, retrospective case-control study of patients with TBI. 63 PTE1 patients were matched with 63 non-PTE1 patients by admission Glasgow Coma Scale score, age and sex. We evaluated the association of quantitative electroencephalography features with PTE1 using logistic regressions and examined their predictive value relative to TBI mechanism and CT abnormalities. RESULTS: In the matched cohort (n=126), greater epileptiform burden, suppression burden and beta variability were associated with 4.6 times higher PTE1 risk based on multivariable logistic regression analysis (area under the receiver operating characteristic curve, AUC (95% CI) 0.69 (0.60 to 0.78)). Among 116 (92%) patients with available CT reports, adding quantitative electroencephalography features to a combined mechanism and CT model improved performance (AUC (95% CI), 0.71 (0.61 to 0.80) vs 0.61 (0.51 to 0.72)). CONCLUSIONS: Epileptiform and spectral characteristics enhance covariates identified on TBI admission and CT abnormalities in PTE1 prediction. Future trials should incorporate quantitative electroencephalography features to validate this enhancement of PTE risk stratification models.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Humanos , Epilepsia Pós-Traumática/diagnóstico , Epilepsia Pós-Traumática/etiologia , Estudos Retrospectivos , Estudos de Casos e Controles , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico , Eletroencefalografia/efeitos adversos
17.
Neurochem Res ; 48(3): 909-919, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36383323

RESUMO

Post-traumatic epilepsy (PTE) caused by mild TBI (mild traumatic brain injury, mTBI) has a high incidence and poor prognosis, but its mechanisms are unclear. Herein, we investigated the role of reduced levels of neuronal autophagy during the latency period in the increased susceptibility to PTE. In the study, a gentle whole-body mechanical trauma rat model was prepared using Noble-Collip drums, and the extent of injury was observed by cranial CT and HE staining of hippocampal tissue. The incidence of epilepsy and its seizure form were observed 7-90 days after mTBI, and electroencephalography (EEG) was recorded during seizures in rats. Subcortical injection of non-epileptogenic dose of ferrous chloride (FeCl2) was used to observe the changes of PTE incidence after mTBI. Western blot and Real-time PCR were used to detect the level of autophagy in hippocampal cells at different time points during the latency period of PTE, and its incidence was observed after up-regulation of autophagy after administration of autophagy agonist-rapamycin. The results showed that mTBI was prepared by Noble-Collip drum, which could better simulate the clinical mTBI process. There was no intracerebral hemorrhage and necrosis in rats, no early-onset seizures, and the incidence of PTE after mTBI was 26.7%. The incidence of PTE was 56.7% in rats injected cortically with FeCl2 at a dose lower than the epileptogenic dose 48 h after mTBI, and the difference was significant compared with no FeCl2 injection, suggesting an increased susceptibility to PTE after mTBI. Further study of neuronal autophagy during PTE latency revealed that autophagy levels were reduced, and the incidence of PTE was significantly reduced after administration of rapamycin to upregulate autophagy. Taken together, the decreased level of neuronal autophagy during the latency period may be a possible mechanism for the increased susceptibility to PTE after mTBI.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Ratos , Animais , Epilepsia Pós-Traumática/etiologia , Epilepsia Pós-Traumática/epidemiologia , Lesões Encefálicas Traumáticas/complicações , Convulsões/etiologia , Concussão Encefálica/complicações , Autofagia
18.
CNS Neurol Disord Drug Targets ; 22(10): 1417-1428, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36443981

RESUMO

BACKGROUND: Traumatic brain injury (TBI) is one of the leading causes of morbidity and mortality today, which will surpass many infectious diseases in the coming years/decades. Posttraumatic epilepsy (PTE) is one of the most common debilitating consequences of TBI. PTE is a secondary, acquired epilepsy that causes recurrent, spontaneous seizures more than a week after TBI. The extent of head injury in individuals who develop PTE is unknown; however, trauma is thought to account for 20% of symptomatic epilepsy worldwide. Understanding the mechanisms of epilepsy following TBI is crucial for the discovery of new anticonvulsant drugs for the treatment of PTE, as well as for improving the quality of life of patients with PTE. OBJECTIVE: This review article explains the rationale for the usage of a chemical model to access new treatments for post-traumatic epilepsy. RESULTS: There are multiple methods to control and manage PTE. The essential and available remedy for the management of epilepsy is the use of antiepileptic drugs. Antiepileptic drugs (AEDs) decrease the frequency of seizures without affecting the disease's causality. Antiepileptic drugs are administrated for the prevention and treatment of PTE; however, 30% of epilepsy patients are drug-resistant, and AED side effects are significant in PTE patients. There are different types of animal models, such as the liquid percussion model, intracortical ferric chloride injection, and cortical subincision model, to study PTE and neurophysiological mechanisms underlying the development of epilepsy after head injury. However, these animal models do not easily mimic the pathological events occurring in epilepsy. Therefore, animal models of PTE are an inappropriate tool for screening new and putatively effective AEDs. Chemical kindling is the most common animal model used to study epilepsy. There is a strong similarity between the kindling model and different types of human epilepsy. CONCLUSION: Today, researchers use experimental animal models to evaluate new anticonvulsant drugs. The chemical kindling models, such as pentylenetetrazol, bicuculline, and picrotoxin-induced seizures, are important experimental models to analyze the impact of putative antiepileptic drugs.


Assuntos
Lesões Encefálicas Traumáticas , Traumatismos Craniocerebrais , Epilepsia Generalizada , Epilepsia Pós-Traumática , Epilepsia , Animais , Humanos , Epilepsia Pós-Traumática/tratamento farmacológico , Epilepsia Pós-Traumática/etiologia , Epilepsia Pós-Traumática/diagnóstico , Anticonvulsivantes/uso terapêutico , Qualidade de Vida , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Convulsões/tratamento farmacológico , Epilepsia/tratamento farmacológico , Epilepsia/etiologia , Traumatismos Craniocerebrais/complicações , Traumatismos Craniocerebrais/tratamento farmacológico , Modelos Animais de Doenças , Epilepsia Generalizada/tratamento farmacológico
19.
Ter Arkh ; 95(12): 1128-1132, 2023 Dec 28.
Artigo em Russo | MEDLINE | ID: mdl-38785052

RESUMO

This study is aimed at investigating epileptic seizures, one of the consequences of traumatic brain injury (TBI). Immediate and early post-traumatic seizures, as well as late post-traumatic epileptic seizures or post-traumatic epilepsy, can have different pathogenetic bases. The following key risk factors associated with post-traumatic epilepsy are known: duration of unconsciousness, gunshot wounds, intracranial hemorrhage, diffuse axonal injury, prolonged (more than 3 days) post-traumatic amnesia, acute subdural hematoma with surgical evacuation, immediate and early post-traumatic epileptic seizures, fracture of the skull bones. The role of genetic factors in post-traumatic seizures is poorly understood due to the complexity and multiple causal mechanisms. This paper addresses the role of genetic factors in the occurrence and severity of epileptic events in patients with TBI. In particular, we investigated the role of the Cys112Arg single nucleotide polymorphism of the apolipoprotein E gene. Apolipoprotein E is known for its role in the transport and metabolism of lipids and, therefore, the development of cardiovascular diseases; it is also associated with Alzheimer's disease and has recently been studied in the context of association with epilepsy. The study shows an association between this polymorphism and the risk of immediate and early epileptic seizures in patients with severe TBI.


Assuntos
Apolipoproteínas E , Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Polimorfismo de Nucleotídeo Único , Humanos , Apolipoproteínas E/genética , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/complicações , Epilepsia Pós-Traumática/genética , Epilepsia Pós-Traumática/etiologia , Predisposição Genética para Doença , Fatores de Risco
20.
Epilepsia ; 63(11): 2802-2812, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35996866

RESUMO

Posttraumatic epilepsy (PTE) is a well-known chronic complication following traumatic brain injury (TBI). Despite some evidence that age at the time of injury may influence the likelihood of PTE, the incidence of PTE in pediatric populations remains unclear. We therefore conducted a systematic review to determine the overall reported incidence of PTE, and explore potential risk factors associated with PTE after pediatric TBI. A comprehensive literature search of the PubMed, Embase, and Web of Science databases was conducted, including randomized controlled trials and cohort studies assessing the incidence of PTE in TBI pediatric patients. We excluded studies with a sample size of <10 patients and those in which a pediatric cohort was not clearly discernable. The review was conducted in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. We found that the overall incidence of PTE following pediatric TBI was 10% (95% confidence interval [CI] = 5.9%-15%). Subgroup analysis of a small number of studies demonstrated that the occurrence of early seizures (cumulative incidence ratio [CIR] = 7.28, 95% CI = 1.09-48.4, p = .040), severe TBI (CIR = 1.81, 95% CI = 1.23-2.67, p < .001), and intracranial hemorrhage (CIR = 1.60, 95% CI = 1.06-2.40, p = .024) increased the risk of PTE in this population. Other factors, including male sex and neurosurgical intervention, were nonsignificantly associated with a higher incidence of PTE. In conclusion, PTE is a significant chronic complication following childhood TBI, similar to in the adult population. Further standardized investigation into clinical risk factors and management guidelines is warranted. PROSPERO ID# CRD42021245802.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Adulto , Humanos , Criança , Masculino , Incidência , Epilepsia Pós-Traumática/etiologia , Epilepsia Pós-Traumática/complicações , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/epidemiologia , Fatores de Risco , Estudos de Coortes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA