Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 985
Filtrar
1.
Seizure ; 117: 235-243, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520962

RESUMO

OBJECTIVE: The long-term prognosis of photosensitive idiopathic generalized epilepsy (p-IGE) is generally considered favorable; however, its specific characteristics remain unclear. Our objective was to investigate the extended prognosis of p-IGE. METHODS: We analyzed the demographics, clinical, and electroencephalographic (EEG) data of consecutive patients who were diagnosed as having p-IGE, who were under follow-up for a minimum of 10 years and exhibited a photoparoxysmal response (PPR) in their EEGs. Prognostic data, epilepsy course types, and electroclinical variables were compared using appropriate statistical methods. RESULTS: The mean follow-up duration for 108 consecutive patients with p-IGE (74.1 % female) was 16.8 ± 6.5 years. The main syndromes within this cohort included juvenile myoclonic epilepsy (37 %), juvenile absence epilepsy (15.7 %), and epilepsy with eyelid myoclonia (EEM) (14.8 %). In terms of epilepsy course types, 27.8 % were in the relapse-remission group, and 13.9 % had never experienced remission. A low early remission rate (5.6 %) was evident, with the remaining half of the cohort categorized as the late remission group. Several significant poor prognostic factors were identified including self-induction, clinical symptoms accompanying PPR, asynchrony and focal findings in EEG discharges, a wide frequency range of PPR, the coexistence of three seizure types, the presence of accompanying focal seizure features, and a history of convulsive status epilepticus. CONCLUSIONS: Our long-term follow-up study, conducted within a substantial p-IGE group, unveiled newly proposed course types within this epilepsy category and highlighted significant poor prognostic factors related to photosensitivity. These findings furnish valuable insights for precise prognosis counselling and effective management strategies for patients with p-IGE.


Assuntos
Eletroencefalografia , Epilepsia Generalizada , Humanos , Feminino , Masculino , Prognóstico , Epilepsia Generalizada/fisiopatologia , Epilepsia Generalizada/diagnóstico , Adolescente , Adulto , Adulto Jovem , Criança , Epilepsia Reflexa/fisiopatologia , Epilepsia Reflexa/diagnóstico , Seguimentos , Estudos Retrospectivos
2.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38473769

RESUMO

The aim of this study was to investigate the comparative antiseizure activity of the l-enantiomers of d,l-fenfluramine and d,l-norfenfluramine and to evaluate the relationship between their concentration in plasma and brain and anticonvulsant activity. d,l-Fenfluramine, d,l-norfenfluramine and their individual enantiomers were evaluated in the mouse maximal electroshock seizure (MES) test. d,l-Fenfluramine, d,l-norfenfluramine and their individual l-enantiomers were also assessed in the DBA/2 mouse audiogenic seizure model. All compounds were administered intraperitoneally. Brain and plasma concentrations of the test compounds in DBA/2 mice were quantified and correlated with anticonvulsant activity. In the MES test, fenfluramine, norfenfluramine and their enantiomers showed comparable anticonvulsant activity, with ED50 values between 5.1 and 14.8 mg/kg. In the audiogenic seizure model, l-norfenfluramine was 9 times more potent than d,l-fenfluramine and 15 times more potent than l-fenfluramine based on ED50 (1.2 vs. 10.2 and 17.7 mg/kg, respectively). Brain concentrations of all compounds were about 20-fold higher than in plasma. Based on brain EC50 values, l-norfenfluramine was 7 times more potent than d,l-fenfluramine and 13 times more potent than l-fenfluramine (1940 vs. 13,200 and 25,400 ng/g, respectively). EC50 values for metabolically formed d,l-norfenfluramine and l-norfenfluramine were similar to brain EC50 values of the same compounds administered as such, suggesting that, in the audiogenic seizure model, the metabolites were responsible for the antiseizure activity of the parent compounds. Because of the evidence linking d-norfenfluramine to d,l-fenfluramine to cardiovascular and metabolic adverse effects, their l-enantiomers could potentially be safer follow-up compounds to d,l-fenfluramine. We found that, in the models tested, the activity of l-fenfluramine and l-norfenfluramine was comparable to that of the corresponding racemates. Based on the results in DBA/2 mice and other considerations, l-norfenfluramine appears to be a particularly attractive candidate for further evaluation as a novel, enantiomerically pure antiseizure medication.


Assuntos
Epilepsia Reflexa , Fenfluramina , Camundongos , Animais , Norfenfluramina/metabolismo , Anticonvulsivantes , Seguimentos , Camundongos Endogâmicos DBA , Convulsões
3.
Br J Pharmacol ; 181(12): 1886-1894, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38529699

RESUMO

BACKGROUND AND PURPOSE: GRIN-related disorders are neurodevelopmental disorders caused by mutations in N-methyl-D-aspartate receptor (NMDAR) subunit genes. A large fraction of these mutations lead to a 'gain of function' (GoF) of the NMDAR. Patients present with a range of symptoms including epilepsy, intellectual disability, behavioural and motor. Controlling seizures is a significant unmet medical need in most patients with GRIN-related disorders. Although several hundred GRIN mutations have been identified in humans, until recently none of the mouse models carrying Grin mutations/deletions showed an epileptic phenotype. The two recent exceptions both carry mutations of GluN2A. The aim of this study was to assess the efficacy of radiprodil, a selective negative allosteric modulator of GluN2B-containing NMDARs, in counteracting audiogenic seizures (AGS) in a murine model carrying the GluN2A(N615S) homozygous mutation (Grin2aS/S mice). EXPERIMENTAL APPROACH: Grin2aS/S mice were acutely treated with radiprodil at different doses before the presentation of a high-frequency acoustic stimulus commonly used for AGS induction. KEY RESULTS: Radiprodil significantly and dose-dependently reduced the onset and severity of AGS in Grin2aS/S mice. Surprisingly, the results revealed a sex-dependent difference in AGS susceptibility and in the dose-dependent protection of radiprodil in the two genders. Specifically, radiprodil was more effective in female versus male mice. CONCLUSION AND IMPLICATIONS: Overall, our data clearly show that radiprodil, a GluN2B selective negative allosteric modulator, may have the potential to control seizures in patients with GRIN2A GoF mutations. Further studies are warranted to better understand the sex-dependent effects observed in this study.


Assuntos
Mutação , Receptores de N-Metil-D-Aspartato , Animais , Receptores de N-Metil-D-Aspartato/genética , Masculino , Feminino , Camundongos , Piperidinas/farmacologia , Piperidinas/administração & dosagem , Piperidinas/uso terapêutico , Epilepsia Reflexa/genética , Epilepsia Reflexa/tratamento farmacológico , Regulação Alostérica/efeitos dos fármacos , Convulsões/tratamento farmacológico , Convulsões/genética , Camundongos Endogâmicos C57BL , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Anticonvulsivantes/administração & dosagem , Relação Dose-Resposta a Droga
4.
Brain Res ; 1829: 148792, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38325559

RESUMO

Temporal lobe epilepsy (TLE) development is associated with dysregulation of glutamatergic transmission in the hippocampus; however, detailed molecular mechanisms of pathological changes are still poorly understood. In the present study, we performed the complex analysis of glutamatergic system in the hippocampus of Krushinsky-Molodkina (KM) rats genetically prone to audiogenic seizures (AGS). Daily AGS stimulations (audiogenic kindling) were used to reproduce the dynamics of TLE development. Naïve KM rats were used as a control. After 14 AGS, at the stage of developing TLE, KM rats demonstrated significant upregulation of extracellular signal-regulated kinases (ERK) 1 and 2, cAMP response element-binding protein (CREB), and c-Fos in the hippocampus indicating activation of the hippocampal cells. These changes were accompanied with an increase in glutaminase and vesicular glutamate transporter (VGLUT) 2 suggesting the activation of glutamate production and loading into the synaptic vesicles. After 21 AGS, when TLE was fully-established, alterations were similar but more pronounced, with higher activation of glutaminase, increase in glutamate production, upregulation of VGLUT1 and 2, and Fos-related antigen 1 (Fra-1) along with c-Fos. Analysis of glutamate receptors showed variable changes. Thus, after 14 AGS, simultaneous increase in metabotropic glutamate receptor mGluR1 and decrease in ionotropic N-methyl-D-aspartate (NMDA) receptors could reflect compensatory anti-epileptic mechanism, while further kindling progression induced upregulation of ionotropic receptors, probably, contributing to the hippocampal epileptization. However, we revealed practically no alterations in the expression of synaptic proteins. Altogether, obtained results suggested that overactivation of glutamate production in the hippocampus strongly contributed to TLE development in KM rats.


Assuntos
Epilepsia Reflexa , Epilepsia do Lobo Temporal , Excitação Neurológica , Ratos , Animais , Glutaminase/metabolismo , Hipocampo/metabolismo , Epilepsia Reflexa/metabolismo , Excitação Neurológica/fisiologia , Epilepsia do Lobo Temporal/metabolismo , Predisposição Genética para Doença , Ácido Glutâmico/metabolismo , Convulsões/metabolismo , Estimulação Acústica
5.
Neurologia (Engl Ed) ; 39(3): 219-225, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38307413

RESUMO

INTRODUCTION: Children with epilepsy present greater prevalence of sleep disorders than the general population. Their diagnosis is essential, since epilepsy and sleep disorders have a bidirectional relationship. OBJECTIVE: Determine the incidence of sleep disorders and poor sleep habits in children with epilepsy. METHODS: We conducted a cross-sectional study of patients under 18 years of age with epilepsy, assessing sleep disorders using the Spanish-language version of the Sleep Disturbance Scale for Children (SDSC), and sleep habits using an original questionnaire. RESULTS: The sample included 153 patients. Eighty-four percent of our sample presented some type of sleep alteration. The most frequent alterations were sleep-wake transition disorders (53%), sleep initiation and maintenance disorders (47.7%), and daytime sleepiness (44.4%). In 70% of cases, the patients' parents reported that their child "slept well," although sleep disorders were detected in up to 75.7% of these patients. Many patients had poor sleep habits, such as using electronic devices in bed (16.3%), requiring the presence of a family member to fall asleep (39%), or co-sleeping or sharing a room (23.5% and 30.5%, respectively). Those with generalised epilepsy, refractory epilepsy, nocturnal seizures, and intellectual disability were more likely to present sleep disorders. In contrast, poor sleep habits were frequent regardless of seizure characteristics. CONCLUSIONS: Sleep disorders and poor sleep habits are common in children with epilepsy. Their treatment can lead to an improvement in the quality of life of the patient and his/her family, as well as an improvement in the prognosis of epilepsy.


Assuntos
Epilepsia Reflexa , Transtornos do Sono-Vigília , Humanos , Criança , Masculino , Feminino , Adolescente , Estudos Transversais , Qualidade de Vida , Sono , Transtornos do Sono-Vigília/epidemiologia
6.
Clin Neurophysiol ; 159: 56-65, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38335766

RESUMO

OBJECTIVE: Investigate sleep and temporal lobe epilepsy (TLE) effects on brain networks derived from electroencephalography (EEG). METHODS: High-density EEG was recorded during non-rapid eye movement (NREM) sleep stage 2 (N2) and wakefulness in 23 patients and healthy controls (HC). Epochs without epileptic discharges were source-reconstructed in 72 brain regions and connectivity was estimated. We calculated network integration and segregation at global (global efficiency, GE; average clustering coefficient, avgCC) and hemispheric level. These were compared between groups across frequency bands and correlated with the individual proportion of wakefulness- or sleep-related seizures. RESULTS: At the global level, patients had higher delta GE, delta avgCC and theta avgCC than controls, irrespective of the vigilance state. During wakefulness, theta GE of patients was higher than controls and, for patients, theta GE during wakefulness was higher than during N2. Wake-to-sleep differences in TLE were notable only in the ipsilateral hemisphere. Only measures from wakefulness recordings correlated with the proportion of wakefulness- or sleep-related seizures. CONCLUSIONS: TLE network alterations are more prominent during wakefulness and at lower frequencies. Increased integration and segregation suggest a pathological 'small world' configuration with a possible inhibitory role. SIGNIFICANCE: Network alterations in TLE occur and are easier to detect during wakefulness.


Assuntos
Epilepsia Reflexa , Epilepsia do Lobo Temporal , Humanos , Epilepsia do Lobo Temporal/diagnóstico , Movimentos Oculares , Vigília , Sono , Convulsões
7.
Int J Mol Sci ; 25(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38338895

RESUMO

To explore the processes of epileptogenesis/ictogenesis, this study determined the age-dependent development of the functional abnormalities in astroglial transmission associated with pannexin1-hemichannel using a genetic rat model of autosomal dominant sleep-related hypermotor epilepsy (ADSHE) named 'S286L-TG'. Pannexin1 expression in the plasma membrane of primary cultured cortical astrocytes and the orbitofrontal cortex (OFC), which is an ADSHE focus region, were determined using capillary immunoblotting. Astroglial D-serine releases induced by artificial high-frequency oscillation (HFO)-evoked stimulation, the removal of extracellular Ca2+, and the P2X7 receptor agonist (BzATP) were determined using ultra-high performance liquid chromatography (UHPLC). The expressions of pannexin1 in the plasma membrane fraction of the OFC in S286L-TG at four weeks old were almost equivalent when compared to the wild type. The pannexin1 expression in the OFC of the wild type non-statistically decreased age-dependently, whereas that in S286L-TG significantly increased age-dependently, resulting in relatively increasing pannexin1 expression from the 7- (at the onset of interictal discharge) and 10-week-old (after the ADSHE seizure onset) S286L-TG compared to the wild type. However, no functional abnormalities of astroglial pannexin1 expression or D-serine release through the pannexin1-hemichannels from the cultured astrocytes of S286L-TG could be detected. Acutely HFO-evoked stimulation, such as physiological ripple burst (200 Hz) and epileptogenic fast ripple burst (500 Hz), frequency-dependently increased both pannexin1 expression in the astroglial plasma membrane and astroglial D-serine release. Neither the selective inhibitors of pannexin1-hemichannel (10PANX) nor connexin43-hemichannel (Gap19) affected astroglial D-serine release during the resting stage, whereas HFO-evoked D-serine release was suppressed by both inhibitors. The inhibitory effect of 10PANX on the ripple burst-evoked D-serine release was more predominant than that of Gap19, whereas fast ripple burst-evoked D-serine release was predominantly suppressed by Gap19 rather than 10PANX. Astroglial D-serine release induced by acute exposure to BzATP was suppressed by 10PANX but not by Gap19. These results suggest that physiological ripple burst during the sleep spindle plays important roles in the organization of some components of cognition in healthy individuals, but conversely, it contributes to the initial development of epileptogenesis/ictogenesis in individuals who have ADSHE vulnerability via activation of the astroglial excitatory transmission associated with pannexin1-hemichannels.


Assuntos
Conexinas , Epilepsia Reflexa , Animais , Ratos , Astrócitos/metabolismo , Conexina 43/metabolismo , Epilepsia Reflexa/metabolismo , Córtex Pré-Frontal/metabolismo , Serina/metabolismo , Sono , Conexinas/metabolismo
8.
Pediatr Neurol ; 152: 177-183, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295719

RESUMO

BACKGROUND: Sunflower syndrome is a rare photosensitive pediatric epilepsy characterized by stereotyped hand-waving in response to bright lights. These stereotyped movements with maintained awareness can be mistaken for a movement disorder. This study assessed neurology providers' diagnostic reasoning, evaluation, and treatment of Sunflower syndrome. METHODS: A 32-question anonymized electronic survey, including a clinical vignette and video of hand-waving in sunlight, was distributed to child neurology providers to assess (1) initial diagnosis and evaluation based on clinical information, (2) updated diagnosis and management after electroencephalography (EEG), and (3) prior experience with Sunflower syndrome. RESULTS: Among 277 viewed surveys, 211 respondents provided information about initial diagnosis and evaluation, 200 about updated diagnosis, 191 about management, and 189 about prior clinical experience. Most providers (135, 64%) suspected seizure, whereas fewer suspected movement disorders (29, 14%) or were unsure of the diagnosis (37, 22%). EEG was recommended by 180 (85%). After EEG, 189 (95%) diagnosed epilepsy, 111 of whom specifically diagnosed Sunflower syndrome. The majority (149, 78%) recommended antiseizure medications (ASMs) and sun avoidance (181, 95%). Only 103 (55%) had managed Sunflower syndrome. Epileptologists and those with prior clinical experience were more likely to suspect a seizure, order an EEG, and offer ASMs than those without prior experience. CONCLUSIONS: Although many providers had not managed Sunflower syndrome, the majority recognized this presentation as concerning for epilepsy. Epilepsy training and prior clinical experience are associated with improved recognition and appropriate treatment. Educational initiatives that increase awareness of Sunflower syndrome may improve patient care.


Assuntos
Epilepsia Reflexa , Helianthus , Transtornos dos Movimentos , Humanos , Criança , Convulsões/diagnóstico , Síndrome , Eletroencefalografia/métodos , Inquéritos e Questionários
9.
Epilepsia ; 65(3): 569-582, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37925609

RESUMO

Catamenial epilepsy is the best described and most researched sex steroid-specific seizure exacerbation. Yet despite this there are no current evidence-based treatments, nor an accepted diagnostic tool. The best tool we currently have is tracking seizures over menstrual cycles; however, the reality of tracking seizures and menstrual cycles is fraught with challenges. In Part 1 of this two-part review, we outlined the often complex and reciprocal relationship between seizures and sex steroids. An adaptable means of tracking is required. In this review, we outline the extent and limitations of current knowledge on catamenial epilepsy. We use sample data to show how seizure exacerbations can be tracked in short/long and even irregular menstrual cycles. We describe how seizure severity, an often overlooked and underresearched form of catamenial seizure exacerbation, can also be tracked. Finally, given the lack of treatment options for females profoundly affected by catamenial epilepsy, Section 3 focuses on current methods and models for researching sex steroids and seizures as well as limitations and future directions. To permit more informative, mechanism-focused research in humans, the need for both a consistent classification of catamenial epilepsy and an objective biomarker is highlighted.


Assuntos
Anticonvulsivantes , Epilepsia Reflexa , Humanos , Feminino , Anticonvulsivantes/uso terapêutico , Convulsões/tratamento farmacológico , Ciclo Menstrual , Esteroides , Epilepsia Reflexa/tratamento farmacológico
10.
Epilepsy Behav ; 150: 109559, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38035537

RESUMO

PURPOSE: The purpose of this study was to identify the factors associated with insomnia in patients with epilepsy (PWE) and provide evidence for clinical prevention and treatment. METHODS: PWE who visited our epilepsy clinic from December 2021 to December 2022 were enrolled in our study. All participants completed the Insomnia Severity Index (ISI), Epworth Sleepiness Scale (ESS), Self-rating Anxiety Scale (SAS), and Self-rating Depression Scale (SDS). Based on their ISI scores, they were categorized into two groups: PWE with insomnia (ISI score ≥ 10) and PWE without insomnia (ISI score < 10). Univariate analysis and stepwise logistic regression analysis were conducted to identify the factors associated with insomnia in PWE. RESULTS: A total of 196 Chinese PWE were recruited in this study(men, 39.8 %). Of these, 39 PWE(19.9 %) had insomnia.The incidence of nocturnal seizures (43.6 %vs19.7 %), depression (46.2 %vs9.6 %), anxiety (59.0 %vs11.5 %), and excessive daytime sleepiness(EDS,28.2 %vs5.7 %) in PWE with insomnia were significantly higher than in those without insomnia(all p<0.01). Univariate regression analysis showed that seizures greater than or equal to once per month, nocturnal seizures, anxiety, depression, and EDS may associate with insomnia in PWE(all p<0.05). Stepwise logistic regression analysis demonstrated that nocturnal seizures (OR = 2.611,95 % CI 1.040-6.478, P = 0.038) and anxiety (mild OR = 4.830,95 %CI 1.741-13.186, P = 0.002;moderate OR = 24.239,95 %CI 4.719-183.935, P<0.001; severe OR = 37.653,95 %CI 4.931-782.741, P = 0.002) were independently associated with insomnia in PWE. CONCLUSION: PWE with insomnia are more likely to experience depression and EDS. Nocturnal seizures and anxiety are identified as independent factors associated with insomnia in PWE. Furthermore, Anxiety has a greater impact on insomnia in PWE and the likelihood of insomnia has increased significantly with the aggravation of anxiety levels.


Assuntos
Epilepsia Reflexa , Distúrbios do Início e da Manutenção do Sono , Masculino , Humanos , Distúrbios do Início e da Manutenção do Sono/complicações , Distúrbios do Início e da Manutenção do Sono/epidemiologia , Convulsões/complicações , Convulsões/epidemiologia , Convulsões/tratamento farmacológico , Ansiedade/complicações , Ansiedade/epidemiologia , Transtornos de Ansiedade
11.
J Pediatr ; 266: 113871, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38092087
12.
Seizure ; 114: 70-78, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38088013

RESUMO

In recent years, imaging has emerged as a promising source of several intriguing biomarkers in epilepsy, due to the impressive growth of imaging technology, supported by methodological advances and integrations of post-processing techniques. Bearing in mind the mutually influencing connection between sleep and epilepsy, we focused on sleep-related hypermotor epilepsy (SHE) and sudden unexpected death in epilepsy (SUDEP), aiming to make order and clarify possible clinical utility of emerging multimodal imaging biomarkers of these two epilepsy-related entities commonly occurring during sleep. Regarding SHE, advanced structural techniques might soon emerge as a promising source of diagnostic and predictive biomarkers, tailoring a targeted therapeutic (surgical) approach for MRI-negative subjects. Functional and metabolic imaging may instead unveil SHE's extensive and night-related altered brain networks, providing insights into distinctions and similarities with non-epileptic sleep phenomena, such as parasomnias. SUDEP is considered a storm that strikes without warning signals, but objective subtle structural and functional alterations in autonomic, cardiorespiratory, and arousal centers are present in patients eventually experiencing SUDEP. These alterations could be seen both as susceptibility and diagnostic biomarkers of the underlying pathological ongoing loop ultimately ending in death. Finally, given that SHE and SUDEP are rare phenomena, most evidence on the topic is derived from small single-center experiences with scarcely comparable results, hampering the possibility of performing any meta-analytic approach. Multicenter, longitudinal, well-designed studies are strongly encouraged.


Assuntos
Epilepsia Reflexa , Morte Súbita Inesperada na Epilepsia , Humanos , Morte Súbita/etiologia , Sono , Biomarcadores , Estudos Multicêntricos como Assunto
13.
Epilepsia ; 65(3): 779-791, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38088023

RESUMO

OBJECTIVE: Epilepsy with eyelid myoclonia (EEM) spectrum is a generalized form of epilepsy characterized by eyelid myoclonia with or without absences, eye closure-induced seizures with electroencephalographic paroxysms, and photosensitivity. Based on the specific clinical features, age at onset, and familial occurrence, a genetic cause has been postulated. Pathogenic variants in CHD2, SYNGAP1, NEXMIF, RORB, and GABRA1 have been reported in individuals with photosensitivity and eyelid myoclonia, but whether other genes are also involved, or a single gene is uniquely linked with EEM, or its subtypes, is not yet known. We aimed to dissect the genetic etiology of EEM. METHODS: We studied a cohort of 105 individuals by using whole exome sequencing. Individuals were divided into two groups: EEM- (isolated EEM) and EEM+ (EEM accompanied by intellectual disability [ID] or any other neurodevelopmental/psychiatric disorder). RESULTS: We identified nine variants classified as pathogenic/likely pathogenic in the entire cohort (8.57%); among these, eight (five in CHD2, one in NEXMIF, one in SYNGAP1, and one in TRIM8) were found in the EEM+ subcohort (28.57%). Only one variant (IFIH1) was found in the EEM- subcohort (1.29%); however, because the phenotype of the proband did not fit with published data, additional evidence is needed before considering IFIH1 variants and EEM- an established association. Burden analysis did not identify any single burdened gene or gene set. SIGNIFICANCE: Our results suggest that for EEM, as for many other epilepsies, the identification of a genetic cause is more likely with comorbid ID and/or other neurodevelopmental disorders. Pathogenic variants were mostly found in CHD2, and the association of CHD2 with EEM+ can now be considered a reasonable gene-disease association. We provide further evidence to strengthen the association of EEM+ with NEXMIF and SYNGAP1. Possible new associations between EEM+ and TRIM8, and EEM- and IFIH1, are also reported. Although we provide robust evidence for gene variants associated with EEM+, the core genetic etiology of EEM- remains to be elucidated.


Assuntos
Epilepsia Generalizada , Epilepsia Reflexa , Mioclonia , Humanos , Sequenciamento do Exoma , Helicase IFIH1 Induzida por Interferon/genética , Epilepsia Reflexa/genética , Eletroencefalografia , Pálpebras , Proteínas de Transporte/genética , Proteínas do Tecido Nervoso/genética
14.
Seizure ; 116: 100-106, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37741786

RESUMO

BACKGROUND: NPRL2-related epilepsy, caused by pathogenic germline variants of the NPRL2 gene, is a newly discovered childhood epilepsy linked to enhanced mTORC1 signalling. However, the phenotype and genotype of NPRL2 variants are still poorly understood. Here, we summarize the association between the phenotype and genotype of NPRL2-related epilepsy. METHODS: A retrospective analysis was conducted for four Chinese children with epilepsy due to likely pathogenic NPRL2 variants identified through whole-exome sequencing (WES). Previous reports of patients with NPRL2-related epilepsy were reviewed systematically. RESULTS: One of our patients presented focal epilepsy involving the central region, which should be distinguished from self-limited epilepsy with centrotemporal spikes (SeLECTS). The four novel likely pathogenic NPRL2 variants consisted of two nonsense variants, one frameshift variant, and one copy number variant (CNV). Bioinformatics analysis revealed the two nonsense variants to be highly conserved and cause alterations in protein structure. Including our four cases, a total of 33 patients with NPRL2-related epilepsy have been identified to date. The most common presentation is focal epilepsy (70%), including sleep-related hypermotor epilepsy (SHE), temporal lobe epilepsy (TLE), and frontal lobe epilepsy (FLE). Infantile epileptic spasms syndrome (IESS) is also a notable feature of NPRL2-related epilepsy. Malformations of cortical development (MCD, 8/20), especially focal cortical dysplasia (FCD, 6/20), are common neuroimaging abnormalities. Two-thirds of the NPRL2 variants reported are loss of function (LoF) (14/21). Among these mutations, c.100C>T (p.Arg34*) and c.314T>C (p.Leu105Pro) have been detected in two families (likely due to a founder effect). CONCLUSION: NPRL2-related epilepsy shows high phenotypic and genotypic heterogeneity. Our study expands the genotype spectrum of NPRL2-related epilepsy, and the phenotype of focal epilepsy involving the central region should be clearly distinguished with SeLECTS, with reference value for clinical diagnosis.


Assuntos
Epilepsias Parciais , Epilepsia Reflexa , Criança , Humanos , Estudos Retrospectivos , Proteínas Ativadoras de GTPase/genética , Epilepsias Parciais/genética , Epilepsias Parciais/diagnóstico , Genótipo , Fenótipo , Proteínas Supressoras de Tumor/genética
15.
Epilepsia Open ; 9(1): 33-40, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37902097

RESUMO

Nitrogen permease regulator-like 3 (NPRL3) has been reported to play a role in seizure onset. The principal manifestation of NPRL3-related epilepsy is a range of epilepsy-associated syndromes, such as familial focal epilepsy with variable foci (FFEVF), sleep-related hypermotor epilepsy (SHE), and temporal lobe epilepsy (TLE). The association between phenotype and genotype of NPRL3 mutations remains inadequately described. This study aimed to explore the phenotypic and genotypic spectra of NPRL3-related epilepsy. We reported two novel NPRL3 variants in two unrelated epilepsy cases, including a nonsense (c.1174C > T, p.Gln392*) and a missense variant (c.1322C > T, p.Thr441Met). Following a review of the literature, a total of 116 cases of NPRL3-related epilepsy were assessed, mostly with nonsense and frameshift mutations. Our findings suggest that patients harboring various NPRL3 variants exhibit variable clinical manifestations. In addition, it may be worthwhile to consider the existence of NPRL3 mutations in epilepsy patients with a family history. This study provides useful information for the treatment and prognosis by expanding the phenotypic and genotypic spectrum of NPRL3-related epilepsy. PLAIN LANGUAGE SUMMARY: This study expands the phenotypic and genotypic spectra of NPRL3-related epilepsy by reporting two cases with different novel variants. Following a review of the literature, it was observed that patients harboring various NPRL3 variants exhibited a variability of clinical manifestations. Also, patients carrying nonsense mutations are frequently prone to drug resistance and other severe comorbidities such as developmental delay, but more cases need to be collected to confirm these findings.


Assuntos
Epilepsias Parciais , Epilepsia Reflexa , Síndromes Epilépticas , Humanos , Proteínas Ativadoras de GTPase/genética , Epilepsias Parciais/genética , Genótipo , Fenótipo
16.
Epilepsia ; 65(3): 556-568, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38036939

RESUMO

Seizures, antiseizure medications, and the reproductive systems are reciprocally entwined. In Section 2 of this review, we outline how seizures may affect the hypothalamic-pituitary-gonadal axis, thereby altering sex steroids, and changes in sex steroids across the menstrual cycle and changes in pharmacokinetics during pregnancy may alter seizure susceptibility. The literature indicates that females with epilepsy experience increased rates of menstrual disturbances and reproductive endocrine disorders. The latter include polycystic ovary syndrome, especially for females on valproate. Studies of fertility have yielded mixed results. We aim to summarize and attempt to detangle the existing knowledge on these reciprocal interactions. The menstrual cycle causes changes in seizure intensity and frequency for many females. When this occurs perimenstrually, during ovulation, or in association with an inadequate luteal phase, it is termed catamenial epilepsy. There is a clear biophysiological rationale for how the key female reproductive neurosteroids interact with the brain to alter the seizure threshold, and Section 3 outlines this important relationship. Critically, what remains unknown is the specific pathophysiology of catamenial epilepsy that describes why not all females are affected. There is a need for mechanism-focused investigations in humans to uncover the complexity of the relationship between reproductive hormones, menstrual cycles, and the brain.


Assuntos
Epilepsia Reflexa , Esteroides , Gravidez , Feminino , Humanos , Ciclo Menstrual , Convulsões , Genitália
17.
Eur J Pharmacol ; 962: 176222, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38029871

RESUMO

Clinical studies documented that cenobamate (CNB) has a marked efficacy compared to other antiseizure medications (ASMs) in reducing focal seizures. To date, different aspects of CNB need to be clarified, including its efficacy against generalized seizures. Similarly, the pattern of drug-drug interactions between CNB and other ASMs also compels further investigation. This study aimed to detect the role of CNB on generalized seizures using the DBA/2 mouse model. We have also studied the effects of an adjunctive CNB treatment on the antiseizure properties of some ASMs against reflex seizures. The effects of this adjunctive treatment on motor performance, body temperature, and brain levels of ASMs were also evaluated. CNB was able to antagonize seizures in DBA/2 mice. CNB, at 5 mg/kg, enhanced the antiseizure activity of ASMs, such as diazepam, clobazam, levetiracetam, perampanel, phenobarbital, topiramate, and valproate. No synergistic effects were observed when CNB was co-administered with some Na+ channel blockers. The increase in antiseizure activity was associated with a comparable intensification in motor impairment; however, the therapeutic index of combined treatment of ASMs with CNB was more favorable than the combination with vehicle except for carbamazepine, phenytoin, and oxcarbazepine. Since CNB did not significantly influence the brain levels of the ASMs studied, we suggest that pharmacokinetic interactions seem not probable. Overall, this study shows the ability of CNB to counteract generalized reflex seizures in mice. Moreover, our data documented an evident synergistic antiseizure effect for the combination of CNB with ASMs including phenobarbital, benzodiazepines, valproate, perampanel, topiramate, and levetiracetam.


Assuntos
Anticonvulsivantes , Epilepsia Reflexa , Camundongos , Animais , Anticonvulsivantes/uso terapêutico , Anticonvulsivantes/farmacocinética , Epilepsia Reflexa/tratamento farmacológico , Ácido Valproico/farmacologia , Topiramato/uso terapêutico , Levetiracetam/farmacologia , Levetiracetam/uso terapêutico , Sinergismo Farmacológico , Camundongos Endogâmicos DBA , Convulsões/tratamento farmacológico , Fenobarbital/uso terapêutico
18.
Neuropharmacology ; 245: 109774, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37923121

RESUMO

There are no approved pharmacotherapies for fragile X syndrome (FXS), a rare neurodevelopmental disorder caused by a mutation in the FMR1 promoter region that leads to various symptoms, including intellectual disability and auditory hypersensitivity. The gene that encodes inhibitory serotonin 1A receptors (5-HT1ARs) is differentially expressed in embryonic brain tissue from individuals with FXS, and 5-HT1ARs are highly expressed in neural systems that are disordered in FXS, providing a rationale to focus on 5-HT1ARs as targets to treat symptoms of FXS. We examined agonist-labeled 5-HT1AR densities in male and female Fmr1 knockout mice and found no differences in whole-brain 5-HT1AR expression in adult control compared to Fmr1 knockout mice. However, juvenile Fmr1 knockout mice had lower whole-brain 5-HT1AR expression than age-matched controls. Consistent with these results, juvenile Fmr1 knockout mice showed reduced behavioral responses elicited by the 5-HT1AR agonist (R)-8-OH-DPAT, effects blocked by the selective 5-HT1AR antagonist, WAY-100635. Also, treatment with the selective 5-HT1AR agonist, NLX-112, dose-dependently prevented audiogenic seizures (AGS) in juvenile Fmr1 knockout mice, an effect reversed by WAY-100635. Suggestive of a potential role for 5-HT1ARs in regulating AGS, compared to males, female Fmr1 knockout mice had a lower prevalence of AGS and higher expression of antagonist-labeled 5-HT1ARs in the inferior colliculus and auditory cortex. These results provide preclinical support that 5-HT1AR agonists may be therapeutic for young individuals with FXS hypersensitive to auditory stimuli.


Assuntos
Epilepsia Reflexa , Síndrome do Cromossomo X Frágil , Colículos Inferiores , Animais , Feminino , Masculino , Camundongos , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Colículos Inferiores/metabolismo , Camundongos Knockout , Receptor 5-HT1A de Serotonina/genética , Receptor 5-HT1A de Serotonina/metabolismo , Serotonina
19.
Int J Mol Sci ; 24(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38069190

RESUMO

Epilepsy is a neurological disorder characterized by abnormal neuronal excitability, with glutamate playing a key role as the predominant excitatory neurotransmitter involved in seizures. Animal models of epilepsy are crucial in advancing epilepsy research by faithfully replicating the diverse symptoms of this disorder. In particular, the GASH/Sal (genetically audiogenic seizure-prone hamster from Salamanca) model exhibits seizures resembling human generalized tonic-clonic convulsions. A single nucleotide polymorphism (SNP; C9586732T, p.His289Tyr) in the Grik1 gene (which encodes the kainate receptor GluK1) has been previously identified in this strain. The H289Y mutation affects the amino-terminal domain of GluK1, which is related to the subunit assembly and trafficking. We used confocal microscopy in Xenopus oocytes to investigate how the H289Y mutation, compared to the wild type (WT), affects the expression and cell-surface trafficking of GluK1 receptors. Additionally, we employed the two-electrode voltage-clamp technique to examine the functional effects of the H289Y mutation. Our results indicate that this mutation increases the expression and incorporation of GluK1 receptors into an oocyte's membrane, enhancing kainate-evoked currents, without affecting their functional properties. Although further research is needed to fully understand the molecular mechanisms responsible for this epilepsy, the H289Y mutation in GluK1 may be part of the molecular basis underlying the seizure-prone circuitry in the GASH/Sal model.


Assuntos
Epilepsia Reflexa , Cricetinae , Animais , Humanos , Xenopus laevis/metabolismo , Epilepsia Reflexa/genética , Convulsões/metabolismo , Receptores de Ácido Caínico/metabolismo , Oócitos/metabolismo
20.
Int J Mol Sci ; 24(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38069426

RESUMO

Epilepsy is one of the common neurological diseases that affects not only adults but also infants and children. Because epilepsy has been studied for a long time, there are several pharmacologically effective anticonvulsants, which, however, are not suitable as therapy for all patients. The genesis of epilepsy has been extensively investigated in terms of its occurrence after injury and as a concomitant disease with various brain diseases, such as tumors, ischemic events, etc. However, in the last decades, there are multiple reports that both genetic and epigenetic factors play an important role in epileptogenesis. Therefore, there is a need for further identification of genes and loci that can be associated with higher susceptibility to epileptic seizures. Use of mouse knockout models of epileptogenesis is very informative, but it has its limitations. One of them is due to the fact that complete deletion of a gene is not, in many cases, similar to human epilepsy-associated syndromes. Another approach to generating mouse models of epilepsy is N-Ethyl-N-nitrosourea (ENU)-directed mutagenesis. Recently, using this approach, we generated a novel mouse strain, soc (socrates, formerly s8-3), with epileptiform activity. Using molecular biology methods, calcium neuroimaging, and immunocytochemistry, we were able to characterize the strain. Neurons isolated from soc mutant brains retain the ability to differentiate in vitro and form a network. However, soc mutant neurons are characterized by increased spontaneous excitation activity. They also demonstrate a high degree of Ca2+ activity compared to WT neurons. Additionally, they show increased expression of NMDA receptors, decreased expression of the Ca2+-conducting GluA2 subunit of AMPA receptors, suppressed expression of phosphoinositol 3-kinase, and BK channels of the cytoplasmic membrane involved in protection against epileptogenesis. During embryonic and postnatal development, the expression of several genes encoding ion channels is downregulated in vivo, as well. Our data indicate that soc mutation causes a disruption of the excitation-inhibition balance in the brain, and it can serve as a mouse model of epilepsy.


Assuntos
Epilepsia Reflexa , Criança , Animais , Humanos , Camundongos , Epilepsia Reflexa/genética , Epilepsia Reflexa/metabolismo , Etilnitrosoureia/toxicidade , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Anticonvulsivantes/farmacologia , Encéfalo/metabolismo , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA