Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.322
Filtrar
1.
Elife ; 122024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722314

RESUMO

Retinal pigment epithelium (RPE) cells show heterogeneous levels of pigmentation when cultured in vitro. To know whether their color in appearance is correlated with the function of the RPE, we analyzed the color intensities of human-induced pluripotent stem cell-derived RPE cells (iPSC-RPE) together with the gene expression profile at the single-cell level. For this purpose, we utilized our recent invention, Automated Live imaging and cell Picking System (ALPS), which enabled photographing each cell before RNA-sequencing analysis to profile the gene expression of each cell. While our iPSC-RPE were categorized into four clusters by gene expression, the color intensity of iPSC-RPE did not project any specific gene expression profiles. We reasoned this by less correlation between the actual color and the gene expressions that directly define the level of pigmentation, from which we hypothesized the color of RPE cells may be a temporal condition not strongly indicating the functional characteristics of the RPE.


The backs of our eyes are lined with retinal pigment epithelial cells (or RPE cells for short). These cells provide nutrition to surrounding cells and contain a pigment called melanin that absorbs excess light that might interfere with vision. By doing so, they support the cells that receive light to enable vision. However, with age, RPE cells can become damaged and less able to support other cells. This can lead to a disease called age-related macular degeneration, which can cause blindness. One potential way to treat this disease is to transplant healthy RPE cells into eyes that have lost them. These healthy cells can be grown in the laboratory from human pluripotent stem cells, which have the capacity to turn into various specialist cells. Stem cell-derived RPE cells growing in a dish contain varying amounts of melanin, resulting in some being darker than others. This raised the question of whether pigment levels affect the function of RPE cells. However, it was difficult to compare single cells containing various amounts of pigment as most previous studies only analyzed large numbers of RPE cells mixed together. Nakai-Futatsugi et al. overcame this hurdle using a technique called Automated Live imaging and cell Picking System (also known as ALPS). More than 2300 stem cell-derived RPE cells were photographed individually and the color of each cell was recorded. The gene expression of each cell was then measured to investigate whether certain genes being switched on or off affects pigment levels and cell function. Analysis did not find a consistent pattern of gene expression underlying the pigmentation of RPE cells. Even gene expression related to the production of melanin was only slightly linked to the color of the cells. These findings suggests that the RPE cell color fluctuates and is not primarily determined by which genes are switched on or off. Future experiments are required to determine whether the findings are the same for RPE cells grown naturally in the eyes and whether different pigment levels affect their capacity to protect the rest of the eye.


Assuntos
Células-Tronco Pluripotentes Induzidas , Pigmentação , Epitélio Pigmentado da Retina , Transcriptoma , Humanos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/fisiologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Pigmentação/genética , Perfilação da Expressão Gênica , Células Cultivadas , Diferenciação Celular/genética
2.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731826

RESUMO

Although Herpes simplex virus type 1 (HSV-1) has been deeply studied, significant gaps remain in the fundamental understanding of HSV-host interactions: our work focused on studying the Infected Cell Protein 27 (ICP27) as an inhibitor of the Absent-in-melanoma-2 (AIM 2) inflammasome pathway, leading to reduced pro-inflammatory cytokines that influence the activation of a protective innate immune response to infection. To assess the inhibition of the inflammasome by the ICP27, hTert-immortalized Retinal Pigment Epithelial cells (hTert-RPE 1) infected with HSV-1 wild type were compared to HSV-1 lacking functional ICP27 (HSV-1∆ICP27) infected cells. The activation of the inflammasome by HSV-1∆ICP27 was demonstrated by quantifying the gene and protein expression of the inflammasome constituents using real-time PCR and Western blot. The detection of the cleavage of the pro-caspase-1 into the active form was performed by using a bioluminescent assay, while the quantification of interleukins 1ß (IL-1ß) and 18 (IL-18)released in the supernatant was quantified using an ELISA assay. The data showed that the presence of the ICP27 expressed by HSV-1 induces, in contrast to HSV-1∆ICP27 vector, a significant downregulation of AIM 2 inflammasome constituent proteins and, consequently, the release of pro-inflammatory interleukins into the extracellular environment reducing an effective response in counteracting infection.


Assuntos
Citocinas , Herpesvirus Humano 1 , Proteínas Imediatamente Precoces , Inflamassomos , Epitélio Pigmentado da Retina , Humanos , Inflamassomos/metabolismo , Herpesvirus Humano 1/fisiologia , Citocinas/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Proteínas Imediatamente Precoces/genética , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/virologia , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Linhagem Celular , Herpes Simples/imunologia , Herpes Simples/metabolismo , Herpes Simples/virologia , Proteínas de Ligação a DNA
3.
Elife ; 122024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739438

RESUMO

The retina consumes massive amounts of energy, yet its metabolism and substrate exploitation remain poorly understood. Here, we used a murine explant model to manipulate retinal energy metabolism under entirely controlled conditions and utilised 1H-NMR spectroscopy-based metabolomics, in situ enzyme detection, and cell viability readouts to uncover the pathways of retinal energy production. Our experimental manipulations resulted in varying degrees of photoreceptor degeneration, while the inner retina and retinal pigment epithelium were essentially unaffected. This selective vulnerability of photoreceptors suggested very specific adaptations in their energy metabolism. Rod photoreceptors were found to rely strongly on oxidative phosphorylation, but only mildly on glycolysis. Conversely, cone photoreceptors were dependent on glycolysis but insensitive to electron transport chain decoupling. Importantly, photoreceptors appeared to uncouple glycolytic and Krebs-cycle metabolism via three different pathways: (1) the mini-Krebs-cycle, fuelled by glutamine and branched chain amino acids, generating N-acetylaspartate; (2) the alanine-generating Cahill-cycle; (3) the lactate-releasing Cori-cycle. Moreover, the metabolomics data indicated a shuttling of taurine and hypotaurine between the retinal pigment epithelium and photoreceptors, likely resulting in an additional net transfer of reducing power to photoreceptors. These findings expand our understanding of retinal physiology and pathology and shed new light on neuronal energy homeostasis and the pathogenesis of neurodegenerative diseases.


Assuntos
Ciclo do Ácido Cítrico , Glicólise , Fosforilação Oxidativa , Retina , Animais , Camundongos , Retina/metabolismo , Metabolismo Energético , Metabolômica , Epitélio Pigmentado da Retina/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Camundongos Endogâmicos C57BL , Células Fotorreceptoras Retinianas Cones/metabolismo
4.
Mol Biol Rep ; 51(1): 637, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727927

RESUMO

BACKGROUND: Retinal pigment epithelial cells (RPECs) are a type of retinal cells that structurally and physiologically support photoreceptors. However, hyperglycemia has been shown to play a critical role in the progression of diabetic retinopathy (DR), which is one of the leading causes of vision impairment. In the diabetic eye, the high glucose environment damages RPECs via the induction of oxidative stress, leading to the release of excess reactive oxygen species (ROS) and triggering apoptosis. In this study, we aim to investigate the antioxidant mechanism of Vitamin C in reducing hyperglycemia-induced stress and whether this mechanism can preserve the function of RPECs. METHODS AND RESULTS: ARPE-19 cells were treated with high glucose in the presence or absence of Vitamin C. Cell viability was measured by MTT assay. Cleaved poly ADP-ribose polymerase (PARP) was used to identify apoptosis in the cells. ROS were detected by the DCFH-DA reaction. The accumulation of sorbitol in the aldose reductase (AR) polyol pathway was determined using the sorbitol detection assay. Primary mouse RPECs were isolated from adult mice and identified by Rpe65 expression. The mitochondrial damage was measured by mitochondrial membrane depolarization. Our results showed that high glucose conditions reduce cell viability in RPECs while Vitamin C can restore cell viability, compared to the vehicle treatment. We also demonstrated that Vitamin C reduces hyperglycemia-induced ROS production and prevents cell apoptosis in RPECs in an AR-independent pathway. CONCLUSIONS: These results suggest that Vitamin C is not only a nutritional necessity but also an adjuvant that can be combined with AR inhibitors for alleviating hyperglycemic stress in RPECs.


Assuntos
Apoptose , Ácido Ascórbico , Sobrevivência Celular , Glucose , Hiperglicemia , Estresse Oxidativo , Espécies Reativas de Oxigênio , Epitélio Pigmentado da Retina , Ácido Ascórbico/farmacologia , Ácido Ascórbico/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Hiperglicemia/metabolismo , Hiperglicemia/tratamento farmacológico , Hiperglicemia/complicações , Animais , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Glucose/metabolismo , Humanos , Linhagem Celular , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Retinopatia Diabética/metabolismo , Retinopatia Diabética/tratamento farmacológico , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos
5.
Biochem Biophys Res Commun ; 718: 150078, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38735140

RESUMO

Among the environmental factors contributing to myopia, the role of correlated color temperature (CCT) of ambient light emerges as a key element warranting in-depth investigation. The choroid, a highly vascularized and dynamic structure, often undergoes thinning during the progression of myopia, though the precise mechanism remains elusive. The retinal pigment epithelium (RPE), the outermost layer of the retina, plays a pivotal role in regulating the transport of ion and fluid between the subretinal space and the choroid. A hypothesis suggests that variations in choroidal thickness (ChT) may be modulated by transepithelial fluid movement across the RPE. Our experimental results demonstrate that high CCT illumination significantly compromised the integrity of tight junctions in the RPE and disrupted chloride ion transport. This functional impairment of the RPE may lead to a reduction in fluid transfer across the RPE, consequently resulting in choroidal thinning and potentially accelerating axial elongation. Our findings provide support for the crucial role of the RPE in regulating ChT. Furthermore, we emphasize the potential hazards posed by high CCT artificial illumination on the RPE, the choroid, and refractive development, underscoring the importance of developing eye-friendly artificial light sources to aid in the prevention and control of myopia.


Assuntos
Cloretos , Corioide , Transporte de Íons , Epitélio Pigmentado da Retina , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/efeitos da radiação , Epitélio Pigmentado da Retina/patologia , Corioide/metabolismo , Corioide/efeitos da radiação , Corioide/patologia , Animais , Transporte de Íons/efeitos da radiação , Cloretos/metabolismo , Iluminação/métodos , Temperatura , Cor , Junções Íntimas/metabolismo , Miopia/metabolismo , Miopia/patologia , Miopia/etiologia
6.
Invest Ophthalmol Vis Sci ; 65(5): 27, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38758638

RESUMO

Purpose: To demonstrate the first near-infrared adaptive optics fluorescence lifetime imaging ophthalmoscopy (NIR-AOFLIO) measurements in vivo of the human retinal pigment epithelial (RPE) cellular mosaic and to visualize lifetime changes at different retinal eccentricities. Methods: NIR reflectance and autofluorescence were captured using a custom adaptive optics scanning light ophthalmoscope in 10 healthy subjects (23-64 years old) at seven eccentricities and in two eyes with retinal abnormalities. Repeatability was assessed across two visits up to 8 weeks apart. Endogenous retinal fluorophores and hydrophobic whole retinal extracts of Abca4-/- pigmented and albino mice were imaged to probe the fluorescence origin of NIR-AOFLIO. Results: The RPE mosaic was resolved at all locations in five of seven younger subjects (<35 years old). The mean lifetime across near-peripheral regions (8° and 12°) was longer compared to near-foveal regions (0° and 2°). Repeatability across two visits showed moderate to excellent correlation (intraclass correlation: 0.88 [τm], 0.75 [τ1], 0.65 [τ2], 0.98 [a1]). The mean lifetime across drusen-containing eyes was longer than in age-matched healthy eyes. Fluorescence was observed in only the extracts from pigmented Abca4-/- mouse. Conclusions: NIR-AOFLIO was repeatable and allowed visualization of the RPE cellular mosaic. An observed signal in only the pigmented mouse extract infers the fluorescence signal originates predominantly from melanin. Variations observed across the retina with intermediate age-related macular degeneration suggest NIR-AOFLIO may act as a functional measure of a biomarker for in vivo monitoring of early alterations in retinal health.


Assuntos
Oftalmoscopia , Imagem Óptica , Epitélio Pigmentado da Retina , Humanos , Epitélio Pigmentado da Retina/diagnóstico por imagem , Epitélio Pigmentado da Retina/metabolismo , Oftalmoscopia/métodos , Adulto , Pessoa de Meia-Idade , Animais , Feminino , Camundongos , Masculino , Adulto Jovem , Imagem Óptica/métodos , Reprodutibilidade dos Testes , Raios Infravermelhos , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Angiofluoresceinografia/métodos
7.
Elife ; 122024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727583

RESUMO

Retinitis pigmentosa (RP) is an inherited retinal disease in which there is a loss of cone-mediated daylight vision. As there are >100 disease genes, our goal is to preserve cone vision in a disease gene-agnostic manner. Previously we showed that overexpressing TXNIP, an α-arrestin protein, prolonged cone vision in RP mouse models, using an AAV to express it only in cones. Here, we expressed different alleles of Txnip in the retinal pigmented epithelium (RPE), a support layer for cones. Our goal was to learn more of TXNIP's structure-function relationships for cone survival, as well as determine the optimal cell type expression pattern for cone survival. The C-terminal half of TXNIP was found to be sufficient to remove GLUT1 from the cell surface, and improved RP cone survival, when expressed in the RPE, but not in cones. Knock-down of HSP90AB1, a TXNIP-interactor which regulates metabolism, improved the survival of cones alone and was additive for cone survival when combined with TXNIP. From these and other results, it is likely that TXNIP interacts with several proteins in the RPE to indirectly support cone survival, with some of these interactions different from those that lead to cone survival when expressed only in cones.


Assuntos
Proteínas de Transporte , Modelos Animais de Doenças , Células Fotorreceptoras Retinianas Cones , Retinose Pigmentar , Animais , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Camundongos , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Mutação de Sentido Incorreto , Sobrevivência Celular , Alelos , Deleção de Genes , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Epitélio Pigmentado da Retina/metabolismo
8.
Biochem Biophys Res Commun ; 717: 150061, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38718570

RESUMO

Epithelial mesenchymal transition (EMT) is a critical process implicated in the pathogenesis of retinal fibrosis and the exacerbation of diabetic retinopathy (DR) within retinal pigment epithelium (RPE) cells. Apigenin (AP), a potential dietary supplement for managing diabetes and its associated complications, has demonstrated inhibitory effects on EMT in various diseases. However, the specific impact and underlying mechanisms of AP on EMT in RPE cells remain poorly understood. In this study, we have successfully validated the inhibitory effects of AP on high glucose-induced EMT in ARPE-19 cells and diabetic db/db mice. Notably, our findings have identified CBP/p300 as a potential therapeutic target for EMT in RPE cells and have further substantiated that AP effectively downregulates the expression of EMT-related genes by attenuating the activity of CBP/p300, consequently reducing histone acetylation alterations within the promoter region of these genes. Taken together, our results provide novel evidence supporting the inhibitory effect of AP on EMT in RPE cells, and highlight the potential of specifically targeting CBP/p300 as a strategy for inhibiting retinal fibrosis in the context of DR.


Assuntos
Apigenina , Transição Epitelial-Mesenquimal , Glucose , Histonas , Epitélio Pigmentado da Retina , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Animais , Apigenina/farmacologia , Acetilação/efeitos dos fármacos , Humanos , Glucose/metabolismo , Glucose/toxicidade , Histonas/metabolismo , Linhagem Celular , Camundongos , Fatores de Transcrição de p300-CBP/metabolismo , Fatores de Transcrição de p300-CBP/antagonistas & inibidores , Camundongos Endogâmicos C57BL , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Retinopatia Diabética/tratamento farmacológico , Proteína p300 Associada a E1A/metabolismo , Masculino , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Proteína de Ligação a CREB/metabolismo , Proteína de Ligação a CREB/genética
9.
Genome Biol ; 25(1): 123, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760655

RESUMO

BACKGROUND: Vision depends on the interplay between photoreceptor cells of the neural retina and the underlying retinal pigment epithelium (RPE). Most genes involved in inherited retinal diseases display specific spatiotemporal expression within these interconnected retinal components through the local recruitment of cis-regulatory elements (CREs) in 3D nuclear space. RESULTS: To understand the role of differential chromatin architecture in establishing tissue-specific expression at inherited retinal disease loci, we mapped genome-wide chromatin interactions using in situ Hi-C and H3K4me3 HiChIP on neural retina and RPE/choroid from human adult donor eyes. We observed chromatin looping between active promoters and 32,425 and 8060 candidate CREs in the neural retina and RPE/choroid, respectively. A comparative 3D genome analysis between these two retinal tissues revealed that 56% of 290 known inherited retinal disease genes were marked by differential chromatin interactions. One of these was ABCA4, which is implicated in the most common autosomal recessive inherited retinal disease. We zoomed in on retina- and RPE-specific cis-regulatory interactions at the ABCA4 locus using high-resolution UMI-4C. Integration with bulk and single-cell epigenomic datasets and in vivo enhancer assays in zebrafish revealed tissue-specific CREs interacting with ABCA4. CONCLUSIONS: Through comparative 3D genome mapping, based on genome-wide, promoter-centric, and locus-specific assays of human neural retina and RPE, we have shown that gene regulation at key inherited retinal disease loci is likely mediated by tissue-specific chromatin interactions. These findings do not only provide insight into tissue-specific regulatory landscapes at retinal disease loci, but also delineate the search space for non-coding genomic variation underlying unsolved inherited retinal diseases.


Assuntos
Cromatina , Retina , Doenças Retinianas , Epitélio Pigmentado da Retina , Humanos , Epitélio Pigmentado da Retina/metabolismo , Cromatina/metabolismo , Doenças Retinianas/genética , Doenças Retinianas/metabolismo , Retina/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Regiões Promotoras Genéticas , Loci Gênicos , Peixe-Zebra/genética , Sequências Reguladoras de Ácido Nucleico , Genoma Humano
10.
FASEB J ; 38(9): e23638, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38713098

RESUMO

Diabetic retinopathy (DR) is associated with ocular inflammation leading to retinal barrier breakdown, vascular leakage, macular edema, and vision loss. DR is not only a microvascular disease but also involves retinal neurodegeneration, demonstrating that pathological changes associated with neuroinflammation precede microvascular injury in early DR. Macrophage activation plays a central role in neuroinflammation. During DR, the inflammatory response depends on the polarization of retinal macrophages, triggering pro-inflammatory (M1) or anti-inflammatory (M2) activity. This study aimed to determine the role of macrophages in vascular leakage through the tight junction complexes of retinal pigment epithelium, which is the outer blood-retinal barrier (BRB). Furthermore, we aimed to assess whether interleukin-10 (IL-10), a representative M2-inducer, can decrease inflammatory macrophages and alleviate outer-BRB disruption. We found that modulation of macrophage polarization affects the structural and functional integrity of ARPE-19 cells in a co-culture system under high-glucose conditions. Furthermore, we demonstrated that intravitreal IL-10 injection induces an increase in the ratio of anti-inflammatory macrophages and effectively suppresses outer-BRB disruption and vascular leakage in a mouse model of early-stage streptozotocin-induced diabetes. Our results suggest that modulation of macrophage polarization by IL-10 administration during early-stage DR has a promising protective effect against outer-BRB disruption and vascular leakage. This finding provides valuable insights for early intervention in DR.


Assuntos
Barreira Hematorretiniana , Diabetes Mellitus Experimental , Retinopatia Diabética , Interleucina-10 , Macrófagos , Camundongos Endogâmicos C57BL , Animais , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Barreira Hematorretiniana/metabolismo , Barreira Hematorretiniana/patologia , Interleucina-10/metabolismo , Camundongos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/metabolismo , Masculino , Humanos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Estreptozocina , Ativação de Macrófagos/efeitos dos fármacos , Modelos Animais de Doenças , Polaridade Celular/efeitos dos fármacos
11.
Dis Model Mech ; 17(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691000

RESUMO

Mechanical stimulation as a mimic of drusen formation in the eye increases the expression of angiogenic factors in retinal pigment epithelial (RPE) cells, but the underlying molecular mechanisms remain unclear. We investigated and characterized the effects of mechanical stimulation on the expression of angiogenic factors in RPE cells both in vitro and in a mouse model. Mechanical stimulation increased the expression of vascular endothelial growth factor (VEGF, encoded by VEGFA) and other angiogenesis-related genes in cultured RPE1 cells. The presence of hypoxia-inducible factor 1α (HIF-1α, encoded by HIF1A) was also increased, and both knockdown of HIF-1α and treatment with the HIF-1α inhibitor CAY10585 attenuated the effect of mechanical stimulation on angiogenesis factor gene expression. Signaling by the tyrosine kinase SRC and p38 mitogen-activated protein kinase was involved in HIF-1α activation and consequent angiogenesis-related gene expression induced by mechanical stimulation. Our results suggest that SRC-p38 and HIF-1α signaling are involved in the upregulation of angiogenic factors in RPE cells by mechanical stimulation. Such in vivo suppression of upregulated expression of angiogenesis-related genes by pharmacological inhibitors of HIF-1α suggests a new potential approach to the treatment of age-related macular degeneration.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia , Camundongos Endogâmicos C57BL , Epitélio Pigmentado da Retina , Regulação para Cima , Proteínas Quinases p38 Ativadas por Mitógeno , Quinases da Família src , Epitélio Pigmentado da Retina/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Animais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Quinases da Família src/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Estresse Mecânico , Transdução de Sinais , Camundongos , Linhagem Celular , Indutores da Angiogênese/metabolismo , Células Epiteliais/metabolismo , Humanos
12.
Nat Commun ; 15(1): 3780, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710714

RESUMO

Recombinant adeno-associated viruses (rAAVs) have emerged as promising gene therapy vectors due to their proven efficacy and safety in clinical applications. In non-human primates (NHPs), rAAVs are administered via suprachoroidal injection at a higher dose. However, high doses of rAAVs tend to increase additional safety risks. Here, we present a novel AAV capsid (AAVv128), which exhibits significantly enhanced transduction efficiency for photoreceptors and retinal pigment epithelial (RPE) cells, along with a broader distribution across the layers of retinal tissues in different animal models (mice, rabbits, and NHPs) following intraocular injection. Notably, the suprachoroidal delivery of AAVv128-anti-VEGF vector completely suppresses the Grade IV lesions in a laser-induced choroidal neovascularization (CNV) NHP model for neovascular age-related macular degeneration (nAMD). Furthermore, cryo-EM analysis at 2.1 Å resolution reveals that the critical residues of AAVv128 exhibit a more robust advantage in AAV binding, the nuclear uptake and endosome escaping. Collectively, our findings highlight the potential of AAVv128 as a next generation ocular gene therapy vector, particularly using the suprachoroidal delivery route.


Assuntos
Neovascularização de Coroide , Dependovirus , Terapia Genética , Vetores Genéticos , Epitélio Pigmentado da Retina , Animais , Dependovirus/genética , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Terapia Genética/métodos , Camundongos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/virologia , Neovascularização de Coroide/terapia , Neovascularização de Coroide/genética , Coelhos , Humanos , Técnicas de Transferência de Genes , Degeneração Macular/terapia , Degeneração Macular/genética , Degeneração Macular/patologia , Modelos Animais de Doenças , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Transdução Genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Camundongos Endogâmicos C57BL , Retina/metabolismo , Retina/virologia , Masculino , Células HEK293
13.
Nat Commun ; 15(1): 3773, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710738

RESUMO

Bietti crystalline corneoretinal dystrophy (BCD) is an autosomal recessive chorioretinal degenerative disease without approved therapeutic drugs. It is caused by mutations in CYP4V2 gene, and about 80% of BCD patients carry mutations in exon 7 to 11. Here, we apply CRISPR/Cas9 mediated homology-independent targeted integration (HITI)-based gene editing therapy in HEK293T cells, BCD patient derived iPSCs, and humanized Cyp4v3 mouse model (h-Cyp4v3mut/mut) using two rAAV2/8 vectors via sub-retinal administration. We find that sgRNA-guided Cas9 generates double-strand cleavage on intron 6 of the CYP4V2 gene, and the HITI donor inserts the carried sequence, part of intron 6, exon 7-11, and a stop codon into the DNA break, achieving precise integration, effective transcription and translation both in vitro and in vivo. HITI-based editing restores the viability of iPSC-RPE cells from BCD patient, improves the morphology, number and metabolism of RPE and photoreceptors in h-Cyp4v3mut/mut mice. These results suggest that HITI-based editing could be a promising therapeutic strategy for those BCD patients carrying mutations in exon 7 to 11, and one injection will achieve lifelong effectiveness.


Assuntos
Sistemas CRISPR-Cas , Distrofias Hereditárias da Córnea , Família 4 do Citocromo P450 , Edição de Genes , Terapia Genética , Células-Tronco Pluripotentes Induzidas , Doenças Retinianas , Humanos , Edição de Genes/métodos , Animais , Células HEK293 , Distrofias Hereditárias da Córnea/genética , Distrofias Hereditárias da Córnea/terapia , Distrofias Hereditárias da Córnea/patologia , Distrofias Hereditárias da Córnea/metabolismo , Camundongos , Células-Tronco Pluripotentes Induzidas/metabolismo , Terapia Genética/métodos , Família 4 do Citocromo P450/genética , Família 4 do Citocromo P450/metabolismo , Modelos Animais de Doenças , Mutação , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Vetores Genéticos/genética , Íntrons/genética , Éxons/genética
14.
Exp Eye Res ; 243: 109899, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636802

RESUMO

Virus-like particles (VLP) are a promising tool for intracellular gene delivery, yet their potential in ocular gene therapy remains underexplored. In this study, we bridged this knowledge gap by demonstrating the successful generation and application of vesicular stomatitis virus glycoprotein (VSVG)-pseudotyped mouse PEG10 (MmPEG10)-VLP for intraocular mRNA delivery. Our findings revealed that PEG10-VLP can efficiently deliver GFP mRNA to adult retinal pigment epithelial cell line-19 (ARPE-19) cells, leading to transient expression. Moreover, we showed that MmPEG10-VLP can transfer SMAD7 to inhibit epithelial-mesenchymal transition (EMT) in RPE cells effectively. In vivo experiments further substantiated the potential of these vectors, as subretinal delivery into adult mice resulted in efficient transduction of retinal pigment epithelial (RPE) cells and GFP reporter gene expression without significant immune response. However, intravitreal injection did not yield efficient ocular expression. We also evaluated the transduction characteristics of MmPEG10-VLP following intracameral delivery, revealing transient GFP protein expression in corneal endothelial cells without significant immunotoxicities. In summary, our study established that VSVG pseudotyped MmPEG10-based VLP can transduce mitotically inactive RPE cells and corneal endothelial cells in vivo without triggering an inflammatory response, underscoring their potential utility in ocular gene therapy.


Assuntos
Técnicas de Transferência de Genes , RNA Mensageiro , Epitélio Pigmentado da Retina , Animais , Camundongos , Epitélio Pigmentado da Retina/metabolismo , RNA Mensageiro/genética , Terapia Genética/métodos , Vetores Genéticos , Camundongos Endogâmicos C57BL , Humanos , Proteínas de Fluorescência Verde/genética , Transição Epitelial-Mesenquimal , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo
15.
Eur J Pharm Biopharm ; 199: 114296, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636882

RESUMO

Small interfering RNA (siRNA) is emerging as a promising treatment for retinal neovascularization due to its specific inhibition of the expression of target genes. However, the clinical translation of siRNA drugs is hindered by the efficiency and safety of delivery vectors. Here, we describe the properties of a new bioreducible ionizable lipid nanoparticle (LNP) 2N12H, which is based on a rationally designed novel ionizable lipid called 2N12B. 2N12H exhibited degradation in response to the mimic cytoplasmic glutathione condition and ionization with a pKa value of 6.5, which remaining neutral at pH 7.4. At a nitrogen to phosphorus ratio of 5, 2N12H efficiently encapsulated and protected siRNA from degradation. Compared to the commercial vehicle Lipofectamine 2000, 2N12H demonstrated similar silencing efficiency and improved safety in the in vitro cell experiments. 2N12H/siVEGFA reduced the expression of VEGFA in retinal pigment epithelium cells and mouse retina, consequently suppressing cell migration and retinal neovascularization. In the mouse model, the therapeutic effect of 2N12H/siVEGFA was comparable to that of the clinical drug ranibizumab. Together, these results suggest the potential of this novel ionizable LNP to facilitate the development of nonviral ocular gene delivery systems.


Assuntos
Lipídeos , Camundongos Endogâmicos C57BL , Nanopartículas , RNA Interferente Pequeno , Neovascularização Retiniana , Fator A de Crescimento do Endotélio Vascular , Animais , Nanopartículas/química , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/farmacologia , Neovascularização Retiniana/tratamento farmacológico , Camundongos , Lipídeos/química , Humanos , Fator A de Crescimento do Endotélio Vascular/genética , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Movimento Celular/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Ranibizumab/administração & dosagem , Técnicas de Transferência de Genes , Retina/metabolismo , Retina/efeitos dos fármacos
16.
J Cell Mol Med ; 28(8): e18051, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38571282

RESUMO

We previously showed that mice with knockout in the peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A) gene encoding the PGC-1α protein, and nuclear factor erythroid 2 like 2 (NFE2L2) gene, exhibited some features of the age-related macular degeneration (AMD) phenotype. To further explore the mechanism behind the involvement of PGC-1α in AMD pathogenesis we used young (3-month) and old (12-month) mice with knockout in the PPARGC1A gene and age-matched wild-type (WT) animals. An immunohistochemical analysis showed age-dependent different expression of markers of oxidative stress defence, senescence and autophagy in the retinal pigment epithelium of KO animals as compared with their WT counterparts. Multivariate inference testing showed that senescence and autophagy proteins had the greatest impact on the discrimination between KO and WT 3-month animals, but proteins of antioxidant defence also contributed to that discrimination. A bioinformatic analysis showed that PGC-1α might coordinate the interplay between genes encoding proteins involved in antioxidant defence, senescence and autophagy in the ageing retina. These data support importance of PGC-1α in AMD pathogenesis and confirm the utility of mice with PGC-1α knockout as an animal model to study AMD pathogenesis.


Assuntos
Antioxidantes , Degeneração Macular , Camundongos , Animais , Antioxidantes/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Envelhecimento , Degeneração Macular/metabolismo , Autofagia/genética , Epitélio Pigmentado da Retina/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo
17.
PLoS One ; 19(4): e0301239, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635505

RESUMO

The retinal pigment epithelium (RPE) is essential to maintain retinal function, and RPE cell death represents a key pathogenic stage in the progression of several blinding ocular diseases, including age-related macular degeneration (AMD). To identify pathways and compounds able to prevent RPE cell death, we developed a phenotypic screening pipeline utilizing a compound library and high-throughput screening compatible assays on the human RPE cell line, ARPE-19, in response to different disease relevant cytotoxic stimuli. We show that the metabolic by-product of the visual cycle all-trans-retinal (atRAL) induces RPE apoptosis, while the lipid peroxidation by-product 4-hydroxynonenal (4-HNE) promotes necrotic cell death. Using these distinct stimuli for screening, we identified agonists of the aryl hydrocarbon receptor (AhR) as a consensus target able to prevent both atRAL mediated apoptosis and 4-HNE-induced necrotic cell death. This works serves as a framework for future studies dedicated to screening for inhibitors of cell death, as well as support for the discussion of AhR agonism in RPE pathology.


Assuntos
Ensaios de Triagem em Larga Escala , Epitélio Pigmentado da Retina , Humanos , Epitélio Pigmentado da Retina/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Apoptose , Morte Celular , Estresse Oxidativo
18.
Biosci Rep ; 44(4)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38567515

RESUMO

The complex metabolic relationship between the retinal pigment epithelium (RPE) and photoreceptors is essential for maintaining retinal health. Recent evidence indicates the RPE acts as an adjacent lactate sink, suppressing glycolysis in the epithelium in order to maximize glycolysis in the photoreceptors. Dysregulated metabolism within the RPE has been implicated in the pathogenesis of age-related macular degeneration (AMD), a leading cause of vision loss. In the present study, we investigate the effects of four cytokines associated with AMD, TNFα, TGF-ß2, IL-6, and IL-1ß, as well as a cocktail containing all four cytokines, on RPE metabolism using ARPE-19 cells, primary human RPE cells, and ex vivo rat eyecups. Strikingly, we found cytokine-specific changes in numerous metabolic markers including lactate production, glucose consumption, extracellular acidification rate, and oxygen consumption rate accompanied by increases in total mitochondrial volume and ATP production. Together, all four cytokines could potently override the constitutive suppression of glycolysis in the RPE, through a mechanism independent of PI3K/AKT, MEK/ERK, or NF-κB. Finally, we observed changes in glycolytic gene expression with cytokine treatment, including in lactate dehydrogenase subunit and glucose transporter expression. Our findings provide new insights into the metabolic changes in the RPE under inflammatory conditions and highlight potential therapeutic targets for AMD.


Assuntos
Degeneração Macular , Epitélio Pigmentado da Retina , Humanos , Ratos , Animais , Epitélio Pigmentado da Retina/metabolismo , Reprogramação Metabólica , Citocinas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Degeneração Macular/genética , Degeneração Macular/metabolismo , Lactatos/metabolismo
19.
Exp Eye Res ; 242: 109889, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593971

RESUMO

Dry age-related macular degeneration (AMD) is a prevalent clinical condition that leads to permanent damage to central vision and poses a significant threat to patients' visual health. Although the pathogenesis of dry AMD remains unclear, there is consensus on the role of retinal pigment epithelium (RPE) damage. Oxidative stress and chronic inflammation are major contributors to RPE cell damage, and the NOD-like receptor thermoprotein structural domain-associated protein 3 (NLRP3) inflammasome mediates the inflammatory response leading to apoptosis in RPE cells. Furthermore, lipofuscin accumulation results in oxidative stress, NLRP3 activation, and the development of vitelliform lesions, a hallmark of dry AMD, all of which may contribute to RPE dysfunction. The process of autophagy, involving the encapsulation, recognition, and transport of accumulated proteins and dead cells to the lysosome for degradation, is recognized as a significant pathway for cellular self-protection and homeostasis maintenance. Recently, RPE cell autophagy has been discovered to be closely linked to the development of macular degeneration, positioning autophagy as a cutting-edge research area in the realm of dry AMD. In this review, we present an overview of how lipofuscin, oxidative stress, and the NLRP3 inflammasome damage the RPE through their respective causal mechanisms. We summarized the connection between autophagy, oxidative stress, and NLRP3 inflammatory cytokines. Our findings suggest that targeting autophagy improves RPE function and sustains visual health, offering new perspectives for understanding the pathogenesis and clinical management of dry AMD.


Assuntos
Autofagia , Estresse Oxidativo , Epitélio Pigmentado da Retina , Humanos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Autofagia/fisiologia , Estresse Oxidativo/fisiologia , Inflamassomos/metabolismo , Lipofuscina/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Atrofia Geográfica/metabolismo , Atrofia Geográfica/patologia
20.
Exp Eye Res ; 242: 109879, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38570182

RESUMO

Because the selective estrogen receptor modulator tamoxifen was shown to be retina-protective in the light damage and rd10 models of retinal degeneration, the purpose of this study was to test whether tamoxifen is retina-protective in a model where retinal pigment epithelium (RPE) toxicity appears to be the primary insult: the sodium iodate (NaIO3) model. C57Bl/6J mice were given oral tamoxifen (in the diet) or the same diet lacking tamoxifen, then given an intraperitoneal injection of NaIO3 at 25 mg/kg. The mice were imaged a week later using optical coherence tomography (OCT). ImageJ with a custom macro was utilized to measure retinal thicknesses in OCT images. Electroretinography (ERG) was used to measure retinal function one week post-injection. After euthanasia, quantitative real-time PCR (qRT-PCR) was performed. Tamoxifen administration partially protected photoreceptors. There was less photoreceptor layer thinning in OCT images of tamoxifen-treated mice. qRT-PCR revealed, in the tamoxifen-treated group, less upregulation of antioxidant and complement factor 3 mRNAs, and less reduction in the rhodopsin and short-wave cone opsin mRNAs. Furthermore, ERG results demonstrated preservation of photoreceptor function for the tamoxifen-treated group. Cone function was better protected than rods. These results indicate that tamoxifen provided structural and functional protection to photoreceptors against NaIO3. RPE cells were not protected. These neuroprotective effects suggest that estrogen-receptor modulation may be retina-protective. The fact that cones are particularly protected is intriguing given their importance for human visual function and their survival until the late stages of retinitis pigmentosa. Further investigation of this protective pathway could lead to new photoreceptor-protective therapeutics.


Assuntos
Modelos Animais de Doenças , Eletrorretinografia , Iodatos , Camundongos Endogâmicos C57BL , Degeneração Retiniana , Tamoxifeno , Tomografia de Coerência Óptica , Animais , Iodatos/toxicidade , Camundongos , Tomografia de Coerência Óptica/métodos , Tamoxifeno/farmacologia , Degeneração Retiniana/prevenção & controle , Degeneração Retiniana/induzido quimicamente , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Reação em Cadeia da Polimerase em Tempo Real , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/patologia , Rodopsina/metabolismo , Rodopsina/genética , Moduladores Seletivos de Receptor Estrogênico/farmacologia , RNA Mensageiro/genética , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/patologia , Epitélio Pigmentado da Retina/metabolismo , Opsinas de Bastonetes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA