Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
mBio ; 14(4): e0011723, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37409803

RESUMO

Chemoautotrophs within Campylobacterota, especially Sulfurovum and Sulfurimonas, are abundant in the seawater-sediment interface of the Formosa cold seep in the South China Sea. However, the in situ activity and function of Campylobacterota are unknown. In this study, the geochemical role of Campylobacterota in the Formosa cold seep was investigated with multiple means. Two members of Sulfurovum and Sulfurimonas were isolated for the first time from deep-sea cold seep. These isolates are new chemoautotrophic species that can use molecular hydrogen as an energy source and CO2 as a sole carbon source. Comparative genomics identified an important hydrogen-oxidizing cluster in Sulfurovum and Sulfurimonas. Metatranscriptomic analysis detected high expression of hydrogen-oxidizing gene in the RS, suggesting that H2 was likely an energy source in the cold seep. Genomic analysis indicated that the Sulfurovum and Sulfurimonas isolates possess a truncated sulfur-oxidizing system, and metatranscriptomic analysis revealed that Sulfurovum and Sulfurimonas with this genotype were active in the surface of RS and likely contributed to thiosulfate production. Furthermore, geochemical and in situ analyses revealed sharply decreased nitrate concentration in the sediment-water interface due to microbial consumption. Consistently, the denitrification genes of Sulfurimonas and Sulfurovum were highly expressed, suggesting an important contribution of these bacteria to nitrogen cycling. Overall, this study demonstrated that Campylobacterota played a significant role in the cycling of nitrogen and sulfur in a deep-sea cold seep. IMPORTANCE Chemoautotrophs within Campylobacterota, in particular Sulfurovum and Sulfurimonas, are ubiquitous in deep-sea cold seeps and hydrothermal vents. However, to date, no Sulfurovum or Sulfurimonas has been isolated from cold seeps, and the ecological roles of these bacteria in cold seeps remain to be investigated. In this study, we obtained two isolates of Sulfurovum and Sulfurimonas from Formosa cold seep, South China Sea. Comparative genomics, metatranscriptomics, geochemical analysis, and in situ experimental study indicated collectively that Campylobacterota played a significant part in nitrogen and sulfur cycling in cold seep and was the cause of thiosulfate accumulation and sharp reduction of nitrate level in the sediment-water interface. The findings of this study promoted our understanding of the in situ function and ecological role of deep-sea Campylobacterota.


Assuntos
Epsilonproteobacteria , Água , Tiossulfatos/metabolismo , Nitratos/metabolismo , Nitrogênio , Água do Mar/microbiologia , Enxofre/metabolismo , Epsilonproteobacteria/genética , Hidrogênio/metabolismo , RNA Ribossômico 16S/genética , Filogenia
2.
Microbiome ; 10(1): 170, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36242065

RESUMO

BACKGROUND: Geothermal systems have contributed greatly to both our understanding of the functions of extreme life and the evolutionary history of life itself. Shallow-sea hydrothermal systems are ecological intermediates of deep-sea systems and terrestrial springs, harboring unique and complexed ecosystems, which are well-lit and present physicochemical gradients. The microbial communities of deep-sea and terrestrial geothermal systems have been well-studied at the population genome level, yet little is known about the communities inhabiting the shallow-sea hydrothermal systems and how they compare to those inhabiting other geothermal systems. RESULTS: Here, we used genome-resolved metagenomic and metaproteomic approaches to probe into the genetic potential and protein expression of microorganisms from the shallow-sea vent fluids off Kueishantao Island. The families Nautiliaceae and Campylobacteraceae within the Epsilonbacteraeota and the Thiomicrospiraceae within the Gammaproteobacteria were prevalent in vent fluids over a 3-year sampling period. We successfully reconstructed the in situ metabolic modules of the predominant populations within the Epsilonbacteraeota and Gammaproteobacteria by mapping the metaproteomic data back to metagenome-assembled genomes. Those active bacteria could use the reductive tricarboxylic acid cycle or Calvin-Benson-Bassham cycle for autotrophic carbon fixation, with the ability to use reduced sulfur species, hydrogen or formate as electron donors, and oxygen as a terminal electron acceptor via cytochrome bd oxidase or cytochrome bb3 oxidase. Comparative metagenomic and genomic analyses revealed dramatic differences between submarine and terrestrial geothermal systems, including microbial functional potentials for carbon fixation and energy conversion. Furthermore, shallow-sea hydrothermal systems shared many of the major microbial genera that were first isolated from deep-sea and terrestrial geothermal systems, while deep-sea and terrestrial geothermal systems shared few genera. CONCLUSIONS: The metabolic machinery of the active populations within Epsilonbacteraeota and Gammaproteobacteria at shallow-sea vents can mirror those living at deep-sea vents. With respect to specific taxa and metabolic potentials, the microbial realm in the shallow-sea hydrothermal system presented ecological linkage to both deep-sea and terrestrial geothermal systems. Video Abstract.


Assuntos
Epsilonproteobacteria , Gammaproteobacteria , Fontes Hidrotermais , Microbiota , Citocromos/genética , Citocromos/metabolismo , Epsilonproteobacteria/genética , Formiatos/metabolismo , Gammaproteobacteria/genética , Gammaproteobacteria/metabolismo , Humanos , Hidrogênio/metabolismo , Fontes Hidrotermais/microbiologia , Oxirredutases , Oxigênio/metabolismo , Filogenia , Enxofre/metabolismo
3.
Environ Microbiol ; 24(12): 6164-6183, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36271901

RESUMO

Physiological and gene expression studies of deep-sea bacteria under pressure conditions similar to those experienced in their natural habitat are critical for understanding growth kinetics and metabolic adaptations to in situ conditions. The Campylobacterium (aka Epsilonproteobacterium) Nautilia sp. strain PV-1 was isolated from hydrothermal fluids released from an active deep-sea hydrothermal vent at 9° N on the East Pacific Rise. Strain PV-1 is a piezophilic, moderately thermophilic, chemolithoautotrophic anaerobe that conserves energy by coupling the oxidation of hydrogen to the reduction of nitrate or elemental sulfur. Using a high-pressure-high temperature continuous culture system, we established that strain PV-1 has the shortest generation time of all known piezophilic bacteria and we investigated its protein expression pattern in response to different hydrostatic pressure regimes. Proteogenomic analyses of strain PV-1 grown at 20 and 5 MPa showed that pressure adaptation is not restricted to stress response or homeoviscous adaptation but extends to enzymes involved in central metabolic pathways. Protein synthesis, motility, transport, and energy metabolism are all affected by pressure, although to different extents. In strain PV-1, low-pressure conditions induce the synthesis of phage-related proteins and an overexpression of enzymes involved in carbon fixation.


Assuntos
Epsilonproteobacteria , Fontes Hidrotermais , Fontes Hidrotermais/microbiologia , Água do Mar/microbiologia , RNA Ribossômico 16S/genética , Filogenia , Análise de Sequência de DNA , Epsilonproteobacteria/genética
4.
Mol Microbiol ; 117(1): 215-233, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34818434

RESUMO

Bacterial small RNAs (sRNAs) are widespread post-transcriptional regulators that control bacterial stress responses and virulence. Nevertheless, little is known about how they arise and evolve. Homologs can be difficult to identify beyond the strain level using sequence-based approaches, and similar functionalities can arise by convergent evolution. Here, we found that the virulence-associated CJnc190 sRNA of the foodborne pathogen Campylobacter jejuni resembles the RepG sRNA from the gastric pathogen Helicobacter pylori. However, while both sRNAs bind G-rich sites in their target mRNAs using a C/U-rich loop, they largely differ in their biogenesis. RepG is transcribed from a stand-alone gene and does not require processing, whereas CJnc190 is transcribed from two promoters as precursors that are processed by RNase III and also has a cis-encoded antagonist, CJnc180. By comparing CJnc190 homologs in diverse Campylobacter species, we show that RNase III-dependent processing of CJnc190 appears to be a conserved feature even outside of C. jejuni. We also demonstrate the CJnc180 antisense partner is expressed in C. coli, yet here might be derived from the 3'UTR (untranslated region) of an upstream flagella-related gene. Our analysis of G-tract targeting sRNAs in Epsilonproteobacteria demonstrates that similar sRNAs can have markedly different biogenesis pathways.


Assuntos
Infecções por Campylobacter/microbiologia , Campylobacter jejuni/genética , Epsilonproteobacteria/genética , Infecções por Helicobacter/microbiologia , Helicobacter pylori/genética , Pequeno RNA não Traduzido/genética , Regiões 3' não Traduzidas/genética , Campylobacter jejuni/patogenicidade , Epsilonproteobacteria/patogenicidade , Flagelos/genética , Helicobacter pylori/patogenicidade , Regiões Promotoras Genéticas/genética , RNA Bacteriano/genética , RNA Mensageiro/genética , Ribonuclease III/genética , Virulência
5.
PLoS One ; 15(12): e0241366, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33301463

RESUMO

A novel bacterium, strain EPR55-1T, was isolated from a deep-sea hydrothermal vent on the East Pacific Rise. The cells were motile rods. Growth was observed at temperatures between 50 and 60°C (optimum, 60°C), at pH values between 5.4 and 8.6 (optimum, pH 6.6) and in the presence of 2.4-3.2% (w/v) NaCl (optimum, 2.4%). The isolate used molecular hydrogen as its sole electron donor, carbon dioxide as its sole carbon source, ammonium as its sole nitrogen source, and thiosulfate, sulfite (0.01 to 0.001%, w/v) or elemental sulfur as its sole sulfur source. Nitrate, nitrous oxide (33%, v/v), thiosulfate, molecular oxygen (0.1%, v/v) or elemental sulfur could serve as the sole electron acceptor to support growth. Phylogenetic analyses based on both 16S rRNA gene sequences and whole genome sequences indicated that strain EPR55-1T belonged to the family Nitratiruptoraceae of the class "Campylobacteria", but it had the distinct phylogenetic relationship with the genus Nitratiruptor. On the basis of the physiological and molecular characteristics of the isolate, the name Nitrosophilus alvini gen. nov. sp. nov. is proposed, with EPR55-1T as the type strain (= JCM 32893T = KCTC 15925T). In addition, it is shown that "Nitratiruptor labii" should be transferred to the genus Nitrtosophilus; the name Nitrosophilus labii comb. nov. (JCM 34002T = DSM 111345T) is proposed for this organism. Furthermore, 16S rRNA gene-based and genome-based analyses showed that Cetia pacifica is phylogenetically associated with Caminibacter species. We therefore propose the reclassification of Cetia pacifica as Caminibacter pacificus comb. nov. (DSM 27783T = JCM 19563T). Additionally, AAI thresholds for genus classification and the reclassification of subordinate taxa within "Campylobacteria" are also evaluated, based on the analyses using publicly available genomes of all the campylobacterial species.


Assuntos
Epsilonproteobacteria/classificação , Fontes Hidrotermais/microbiologia , DNA Bacteriano/genética , Epsilonproteobacteria/genética , Epsilonproteobacteria/metabolismo , Genoma Bacteriano , Hidrogênio/metabolismo , Oxirredução , Oceano Pacífico , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Especificidade da Espécie , Terminologia como Assunto
6.
PLoS One ; 15(11): e0241784, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33206681

RESUMO

In recent years, methylene blue (MB) has attracted considerable interest as a potential drug for the treatment of methemoglobinemia and neurodegenerative diseases. MB is active against microorganisms from various taxonomic groups. However, no studies have yet been conducted on the effect of MB on the intestinal microbiome of model animals. The aim of this work was to study the effect of different concentrations of MB on the mouse gut microbiome and its relationship with the cognitive abilities of mice. We showed that a low MB concentration (15 mg/kg/day) did not cause significant changes in the microbiome composition. The Bacteroidetes/Firmicutes ratio decreased relative to the control on the 2nd and 3rd weeks. A slight decrease in the levels Actinobacteria was detected on the 3rd week of the experiment. Changes in the content of Delta, Gamma, and Epsilonproteobacteria have been also observed. We did not find significant alterations in the composition of intestinal microbiome, which could be an indication of the development of dysbiosis or other gut dysfunction. At the same time, a high concentration of MB (50 mg/kg/day) led to pronounced changes, primarily an increase in the levels of Delta, Gamma and Epsilonproteobacteria. Over 4 weeks of therapy, the treatment with high MB concentration has led to an increase in the median content of Proteobacteria to 7.49% vs. 1.61% in the control group. Finally, we found that MB at a concentration of 15 mg/kg/day improved the cognitive abilities of mice, while negative correlation between the content of Deferribacteres and cognitive parameters was revealed. Our data expand the understanding of the relationship between MB, cognitive abilities, and gut microbiome in respect to the antibacterial properties of MB.


Assuntos
Azul de Metileno/farmacologia , Animais , Bacteroidetes/genética , Bacteroidetes/metabolismo , Cognição/efeitos dos fármacos , Cognição/fisiologia , Epsilonproteobacteria/genética , Epsilonproteobacteria/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Sequenciamento de Nucleotídeos em Larga Escala , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Proteobactérias/genética , Proteobactérias/metabolismo
7.
Syst Appl Microbiol ; 43(5): 126108, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32847783

RESUMO

The proposal to restructure the genus Arcobacter into six distinct genera was critically examined using: comparative analyses of up to 80 Epsilonproteobacterial genome sequences (including 26 arcobacters); phylogenetic analyses of three housekeeping genes and also 342 core genes; and phenotypic criteria. Genome sequences were analysed with tools to calculate Percentage of Conserved Proteins, Average Amino-acid Identity, BLAST-based Average Nucleotide Identity, in silico DNA-DNA hybridisation values, genome-wide Average Nucleotide Identity, Alignment Fractions and G+C percentages. Genome analyses revealed the genus Arcobacter sensu lato to be relatively homogenous, and phylogenetic analyses clearly distinguished the group from other Epsilonproteobacteria. Genomic distinction of the genera proposed by Pérez-Cataluña et al. [2018] was not supported by any of the measures used and a subsequent risk of strain misidentification clearly identified. Similarly, phenotypic analyses supported the delineation of Arcobacter sensu lato but did not justify the position of the proposed novel genera. The present polyphasic taxonomic study strongly supports the continuance of the classification of "aerotolerant campylobacters" as Arcobacter and refutes the proposed genus-level subdivision of Pérez-Cataluña et al. [2018].


Assuntos
Arcobacter/classificação , Epsilonproteobacteria/classificação , Arcobacter/genética , Arcobacter/crescimento & desenvolvimento , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Técnicas de Tipagem Bacteriana , Sequência de Bases , DNA Bacteriano/genética , Epsilonproteobacteria/genética , Epsilonproteobacteria/crescimento & desenvolvimento , Genes Bacterianos , Genes de RNAr , Genoma Bacteriano , Genômica , Hibridização de Ácido Nucleico , Fenótipo , Filogenia , Proteoma , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
8.
Nucleic Acids Res ; 48(6): 3343-3355, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32016421

RESUMO

NrS-1 is the first known phage that can infect Epsilonproteobacteria, one of the predominant primary producers in the deep-sea hydrothermal vent ecosystems. NrS-1 polymerase is a multidomain enzyme and is one key component of the phage replisome. The N-terminal Prim/Pol and HBD domains are responsible for DNA polymerization and de novo primer synthesis activities of NrS-1 polymerase. However, the structure and function of the C-terminus (CTR) of NrS-1 polymerase are poorly understood. Here, we report two crystal structures, showing that NrS-1 CTR adopts one unique hexameric ring-shaped conformation. Although the central helicase domain of NrS-1 CTR shares structural similarity with the superfamily III helicases, the folds of the Head and Tail domains are completely novel. Via mutagenesis and in vitro biochemical analysis, we identified many residues important for the helicase and polymerization activities of NrS-1 polymerase. In addition to NrS-1 polymerase, our study may also help us identify and understand the functions of multidomain polymerases expressed by many NrS-1 related phages.


Assuntos
Bacteriófagos/enzimologia , Replicação do DNA/genética , DNA Polimerase Dirigida por DNA/ultraestrutura , Conformação Proteica , Sequência de Aminoácidos/genética , Bacteriófagos/genética , Bacteriófagos/ultraestrutura , Cristalografia por Raios X , DNA Polimerase Dirigida por DNA/química , Ecossistema , Epsilonproteobacteria/genética , Epsilonproteobacteria/virologia , Fontes Hidrotermais/química
9.
ISME J ; 14(1): 104-122, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31562384

RESUMO

Most autotrophs use the Calvin-Benson-Bassham (CBB) cycle for carbon fixation. In contrast, all currently described autotrophs from the Campylobacterota (previously Epsilonproteobacteria) use the reductive tricarboxylic acid cycle (rTCA) instead. We discovered campylobacterotal epibionts ("Candidatus Thiobarba") of deep-sea mussels that have acquired a complete CBB cycle and may have lost most key genes of the rTCA cycle. Intriguingly, the phylogenies of campylobacterotal CBB cycle genes suggest they were acquired in multiple transfers from Gammaproteobacteria closely related to sulfur-oxidizing endosymbionts associated with the mussels, as well as from Betaproteobacteria. We hypothesize that "Ca. Thiobarba" switched from the rTCA cycle to a fully functional CBB cycle during its evolution, by acquiring genes from multiple sources, including co-occurring symbionts. We also found key CBB cycle genes in free-living Campylobacterota, suggesting that the CBB cycle may be more widespread in this phylum than previously known. Metatranscriptomics and metaproteomics confirmed high expression of CBB cycle genes in mussel-associated "Ca. Thiobarba". Direct stable isotope fingerprinting showed that "Ca. Thiobarba" has typical CBB signatures, suggesting that it uses this cycle for carbon fixation. Our discovery calls into question current assumptions about the distribution of carbon fixation pathways in microbial lineages, and the interpretation of stable isotope measurements in the environment.


Assuntos
Epsilonproteobacteria/metabolismo , Fotossíntese , Animais , Bivalves/microbiologia , Ciclo do Carbono , Ciclo do Ácido Cítrico , Epsilonproteobacteria/classificação , Epsilonproteobacteria/genética , Gammaproteobacteria/genética , Filogenia , Simbiose
10.
Sci Rep ; 9(1): 11692, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31406214

RESUMO

Benthic foraminifera are known to play an important role in marine carbon and nitrogen cycles. Here, we report an enrichment of sulphur cycle -associated bacteria inside intertidal benthic foraminifera (Ammonia sp. (T6), Haynesina sp. (S16) and Elphidium sp. (S5)), using a metabarcoding approach targeting the 16S rRNA and aprA -genes. The most abundant intracellular bacterial groups included the genus Sulfurovum and the order Desulfobacterales. The bacterial 16S OTUs are likely to originate from the sediment bacterial communities, as the taxa found inside the foraminifera were also present in the sediment. The fact that 16S rRNA and aprA -gene derived intracellular bacterial OTUs were species-specific and significantly different from the ambient sediment community implies that bacterivory is an unlikely scenario, as benthic foraminifera are known to digest bacteria only randomly. Furthermore, these foraminiferal species are known to prefer other food sources than bacteria. The detection of sulphur-cycle related bacterial genes in this study suggests a putative role for these bacteria in the metabolism of the foraminiferal host. Future investigation into environmental conditions under which transcription of S-cycle genes are activated would enable assessment of their role and the potential foraminiferal/endobiont contribution to the sulphur-cycle.


Assuntos
Deltaproteobacteria/genética , Epsilonproteobacteria/genética , Foraminíferos/microbiologia , Gammaproteobacteria/genética , Enxofre/metabolismo , Simbiose/fisiologia , Bacteroidaceae/classificação , Bacteroidaceae/genética , Bacteroidaceae/isolamento & purificação , Campylobacter/classificação , Campylobacter/genética , Campylobacter/isolamento & purificação , Código de Barras de DNA Taxonômico/métodos , DNA Bacteriano/genética , Deltaproteobacteria/classificação , Deltaproteobacteria/isolamento & purificação , Epsilonproteobacteria/classificação , Epsilonproteobacteria/isolamento & purificação , Foraminíferos/fisiologia , Gammaproteobacteria/classificação , Gammaproteobacteria/isolamento & purificação , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Mar do Norte , Filogenia , Análise de Componente Principal , RNA Ribossômico 16S/genética , Água do Mar/química , Água do Mar/microbiologia , Serina Endopeptidases/genética , Enxofre/química
11.
J Biosci Bioeng ; 127(1): 45-51, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30082219

RESUMO

In the natural gas field located in central Japan, high concentrations of natural gases and iodide ions are dissolved in formation water and commercially produced in deep aquifers. In the iodine recovery process, the produced formation water is amended with sulfate, and this fluid is injected into gas-bearing aquifers, which may lead to infrastructure corrosion by hydrogen sulfide. In this study, we examined the microbial community in aquifers subjected to sulfate-containing fluid injection. Formation water samples were collected from production wells located at different distances from the injection wells. The chemical analysis showed that the injection fluid contained oxygen, nitrate, nitrite and sulfate, in contrast to the formation water, which had previously been shown to be depleted in these components. Sulfur isotopic analysis indicated that sulfate derived from the injection fluid was present in the sample collected from near the injection wells. Quantitative and sequencing analysis of dissimilatory sulfite reductase and 16S rRNA genes revealed that sulfate-reducing bacteria (SRB), sulfur-oxidizing bacteria, and anaerobic methanotrophic archaea (ANME) in the wells located near injection wells were more abundant than those in wells located far from the injection wells, suggesting that fluid injection stimulated these microorganisms through the addition of oxygen, nitrate, nitrite and sulfate to the methane-rich aquifers. The predominant taxa were assigned to the ANME-2 group, its sulfate-reducing partner SEEP-SRB1 cluster and sulfur-oxidizing Epsilonproteobacteria. These results provide important insights for future studies to support the development of natural gas and iodine resources in Japan.


Assuntos
Água Subterrânea/microbiologia , Fraturamento Hidráulico , Microbiota , Gás Natural/microbiologia , Campos de Petróleo e Gás/microbiologia , Sulfatos/química , Archaea/genética , Archaea/isolamento & purificação , Epsilonproteobacteria/genética , Epsilonproteobacteria/isolamento & purificação , Sedimentos Geológicos/microbiologia , Fraturamento Hidráulico/métodos , Japão , Metano/química , Microbiota/genética , Nitratos/metabolismo , Oxirredução , Filogenia , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética , Enxofre/metabolismo , Bactérias Redutoras de Enxofre/genética , Bactérias Redutoras de Enxofre/isolamento & purificação
12.
Int J Syst Evol Microbiol ; 68(7): 2183-2187, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29757127

RESUMO

A novel marine sulfur-oxidizing bacterium, designated strain eps51T, was isolated from a surface rock sample collected from the hydrothermal field of Suiyo Seamount on the Izu-Bonin Arc in the Western Pacific Ocean. This bacterium was Gram-staining-negative, non-motile and rod-shaped. Strain eps51T grew chemolithoautotrophically, by sulfur-oxidizing respiration with elemental sulfur and thiosulfate as electron donors and used only carbon dioxide as a carbon source. Oxygen and nitrate were used as its electron acceptors. The isolate grew optimally at 30 °C, at pH 7.0 and with 3 % NaCl. The predominant fatty acids were C16 : 1ω7c, C18 : 1ω7c and C16 : 0. The respiratory quinone was menaquinone-6 and the genomic DNA G+C content was 40.0 mol%. Phylogenetic analysis based on 16S rRNA gene sequence revealed that eps51T represented a member of the genus Sulfurovum and the closest relative was Sulfurovum aggregans (96.7 %). Based on its phylogenetic position along with its physiological and chemotaxonomic characteristics, the name Sulfurovum denitrificans sp. nov. is proposed, with the type strain eps51T (=NBRC 102602T=DSM 19611T).


Assuntos
Epsilonproteobacteria/classificação , Filogenia , Água do Mar/microbiologia , Enxofre/metabolismo , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Epsilonproteobacteria/genética , Epsilonproteobacteria/isolamento & purificação , Ácidos Graxos/química , Oxirredução , Oceano Pacífico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Bactérias Redutoras de Enxofre/classificação , Bactérias Redutoras de Enxofre/genética , Bactérias Redutoras de Enxofre/isolamento & purificação , Tiossulfatos/metabolismo , Vitamina K 2/análogos & derivados , Vitamina K 2/química
13.
Antonie Van Leeuwenhoek ; 111(6): 841-858, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29423768

RESUMO

The microbial diversity associated with diffuse venting deep-sea hydrothermal deposits is tightly coupled to the geochemistry of the hydrothermal fluids. Previous 16S rRNA gene amplicon sequencing (metabarcoding) of marine iron-hydroxide deposits along the Arctic Mid Ocean Ridge, revealed the presence of diverse bacterial communities associated with these deposits (Storesund and Øvreås in Antonie van Leeuwenhoek 104:569-584, 2013). One of the most abundant and diverse phyla detected was the enigmatic Planctomycetes. Here we report on the comparative analyses of the diversity and distribution patterns of Planctomycetes associated with metalliferous deposits from two diffuse-flow hydrothermal vent fields (Mariner and Vai Lili) from the Valu Fa Ridge in the Southwestern Pacific. Metabarcoding of 16S rRNA genes showed that the major prokaryotic phyla were Proteobacteria (51-73% of all 16S rRNA gene reads), Epsilonbacteraeota (0.5-19%), Bacteriodetes (5-17%), Planctomycetes (0.4-11%), Candidatus Latescibacteria (0-5%) and Marine Benthic Group E (Hydrothermarchaeota) (0-5%). The two different sampling sites differed considerably in overall community composition. The abundance of Planctomycetes also varied substantially between the samples and the sites, with the majority of the sequences affiliated with uncultivated members of the classes Planctomycetacia and Phycisphaerae, and other deep branching lineages. Seven different strains affiliated with the order Planctomycetales were isolated, mostly from the Vai Lili samples, where also the highest Planctomycetales diversity was seen. Most of the isolates were affiliated with the genera Gimesia, Rhodopirellula and Blastopirellula. One isolate was only distantly related to known cultured, but uncharacterized species within the Pir4 group. This study shows that the deep-sea Planctomycetes represent a very heterogeneous group with a high phylogenetic diversity and a substantial potential for novel organism discovery in these deep ocean environments.


Assuntos
Fontes Hidrotermais/microbiologia , Planctomycetales/genética , RNA Ribossômico 16S/genética , Epsilonproteobacteria/genética , Sedimentos Geológicos/microbiologia , Filogenia , Proteobactérias/genética , Água do Mar/microbiologia
14.
Microbiologyopen ; 7(4): e00586, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29423975

RESUMO

Chemoautotrophic bacteria belonging to the genus Sulfurimonas in the class Campylobacteria are widespread in many marine environments characterized by redox interfaces, yet little is known about their physiological adaptations to different environmental conditions. Here, we used liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) in a targeted metabolomics approach to study the adaptations of Sulfurimonas denitrificans to varying salt concentrations that are found in its natural habitat of tidal mudflats. Proline was identified as one of the most abundant internal metabolites and its concentration showed a strong positive correlation with ionic strength, suggesting that it acts as an important osmolyte in S. denitrificans. 2,3-dihydroxypropane-1-sulfonate was also positively correlated with ionic strength, indicating it might play a previously unrecognized role in osmoregulation. Furthermore, the detection of metabolites from the reductive tricarboxylic acid cycle at high internal concentrations reinforces the importance of this pathway for carbon fixation in Campylobacteria and as a hub for biosynthesis. As the first report of metabolomic data for an campylobacterial chemolithoautotroph, this study provides data that will be useful to understand the adaptations of Campylobacteria to their natural habitat at redox interfaces.


Assuntos
Epsilonproteobacteria/metabolismo , Prolina/metabolismo , Crescimento Quimioautotrófico , Cromatografia Líquida , Ecossistema , Epsilonproteobacteria/química , Epsilonproteobacteria/genética , Metabolômica , Oxirredução , Prolina/análise , Espectrometria de Massas em Tandem
15.
FEBS J ; 284(23): 4017-4034, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28977725

RESUMO

The uracil DNA glycosylase superfamily consists of at least six families with a diverse specificity toward DNA base damage. Family 1 uracil N-glycosylase (UNG) exhibits exclusive specificity on uracil-containing DNA. Here, we report a family 1 UNG homolog from Nitratifractor salsuginis with distinct biochemical features that differentiate it from conventional family 1 UNGs. Globally, the crystal structure of N. salsuginisUNG shows a few additional secondary structural elements. Biochemical and enzyme kinetic analysis, coupled with structural determination, molecular modeling, and molecular dynamics simulations, shows that N. salsuginisUNG contains a salt bridge network that plays an important role in DNA backbone interactions. Disruption of the amino acid residues involved in the salt bridges greatly impedes the enzymatic activity. A tyrosine residue in motif 1 (GQDPY) is one of the distinct sequence features setting family 1 UNG apart from other families. The crystal structure of Y81G mutant indicates that several subtle changes may account for its inactivity. Unlike the conventional family 1 UNG enzymes, N. salsuginisUNG is not inhibited by Ugi, a potent inhibitor specific for family 1 UNG. This study underscores the diversity of paths that a uracil DNA glycosylase may take to acquire its unique structural and biochemical properties during evolution. DATABASE: Structure data are available in the PDB under accession numbers 5X3G and 5X3H.


Assuntos
Proteínas de Bactérias/química , DNA/química , Epsilonproteobacteria/enzimologia , Uracila-DNA Glicosidase/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cristalografia por Raios X , DNA/genética , DNA/metabolismo , Epsilonproteobacteria/genética , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Ligação Proteica , Domínios Proteicos , Homologia de Sequência de Aminoácidos , Uracila-DNA Glicosidase/genética , Uracila-DNA Glicosidase/metabolismo
16.
FEMS Microbiol Lett ; 364(18)2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-28922839

RESUMO

Here, the first description is reported of an epsilon sulfur-oxidizing bacterium from sulfide-rich sediments of marine mangrove in the Caribbean. By transition electron microscopy it was shown that this new strain contains intracytoplasmic large internal sulfur granules, which was confirmed by energy-dispersive X-ray spectroscopy analyses performed using an environmental scanning electron microscope. The sulfur distribution obtained for this sulfur-oxidizing bacterial strain allowed us to conclude that elemental sulfur is formed as an intermediate oxidation product and stored intracellularly. By conventional scanning electron microscopy it was shown that the bacterial cells are ovoid and extremely motile by lophotrichous flagella. Phylogenetic analyses based on partial sequence of the 16S rRNA gene confirmed that the bacterial strain belongs to the Thiovulum cluster and could be a representative of a new species in this poorly studied genus of sulfur-oxidizing free-living bacteria. Thus, reduced sediment of marine mangrove represents a sulfide-rich environment sustaining development of both gamma and epsilon sulfur-oxidizing Proteobacteria.


Assuntos
Epsilonproteobacteria/classificação , Sedimentos Geológicos/microbiologia , Bactérias Redutoras de Enxofre/classificação , Enxofre/metabolismo , Áreas Alagadas , Região do Caribe , DNA Bacteriano/genética , Epsilonproteobacteria/genética , Epsilonproteobacteria/isolamento & purificação , Epsilonproteobacteria/ultraestrutura , Flagelos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Enxofre/química , Bactérias Redutoras de Enxofre/genética , Bactérias Redutoras de Enxofre/isolamento & purificação
17.
Syst Appl Microbiol ; 40(6): 352-356, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28690052

RESUMO

A moderately thermophilic, strictly anaerobic, chemoautotrophic bacterium, designated strain HS1857T, was isolated from a deep-sea hydrothermal vent at the Noho site in the Mid-Okinawa Trough. Strain HS1857T grew between 35 and 63°C (optimum 55°C), in the presence of 10-55gl-1 NaCl (optimum 25gl-1), and pH 5.5-7.1 (optimum 6.4). Growth occurred with molecular hydrogen as the electron donor and elemental sulfur, nitrate, or selenate as the electron acceptors. Formate could serve as an alternative electron donor with nitrate as an electron acceptor. During growth with nitrate as the electron acceptor, strain HS1857T produced ammonium and formed a biofilm. CO2 was utilized as the sole carbon source. The G+C content of the genomic DNA was 33.2mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain HS1857T is a member of the order Nautiliales, showing a sequence similarity of 95.0% with Lebetimonas acidiphila Pd55T. The fatty acid composition was similar to that of L. acidiphila, which was dominated by C18:0 (47.0%) and C18:1 (23.7%). Based on the genomic, chemotaxonomic, phenotypic characteristics, the name Lebetimonas natsushimae sp. nov., is proposed. The type strain is HS1857T (=NBRC 112478T=DSM 104102T).


Assuntos
Epsilonproteobacteria/classificação , Epsilonproteobacteria/isolamento & purificação , Fontes Hidrotermais/microbiologia , Água do Mar/microbiologia , Microbiologia da Água , Bactérias Anaeróbias , Composição de Bases , Epsilonproteobacteria/genética , Epsilonproteobacteria/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Genoma Bacteriano , Filogenia , RNA Ribossômico 16S/genética
18.
J Biotechnol ; 255: 33-36, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28648395

RESUMO

Sulfurospirillum halorespirans is a bacterium that couples the reductive dehalogenation of chlorinated ethenes to growth. This process is called organohalide respiration (OHR), which can be of importance for bioremediation. Here, we report the complete genome of S. halorespirans, the second one of an organohalide-respiring Epsilonproteobacterium after that of Sulfurospirillum multivorans. With both genomes at hand, we were able to ascertain that the genomic region encoding OHR proteins in Epsilonproteobacteria differs from that found in organohalide-respiring bacteria (OHRB) affiliated to other phyla and that the production of a unique cobamide, norpseudo-B12, might not be limited to the model organism S. multivorans. The OHR region is virtually identical in both organisms with differences only in the gene sequence of the key enzyme of OHR, the PCE reductive dehalogenase (PceA), and in regulatory regions. This is of interest, since the availability of natural, closely related variants opens an avenue to study the poorly understood OHRB, which withstand systematic genetic manipulation so far.


Assuntos
Epsilonproteobacteria/genética , Genoma Bacteriano , Proteínas de Bactérias/genética , Tamanho do Genoma , Filogenia , Análise de Sequência de DNA/métodos
19.
Environ Microbiol ; 19(7): 2754-2768, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28474482

RESUMO

While mechanisms of different carbon dioxide (CO2 ) assimilation pathways in chemolithoautotrohic prokaryotes are well understood for many isolates under laboratory conditions, the ecological significance of diverse CO2 fixation strategies in the environment is mostly unexplored. Six stratified freshwater lakes were chosen to study the distribution and diversity of the Calvin-Benson-Bassham (CBB) cycle, the reductive tricarboxylic acid (rTCA) cycle, and the recently discovered archaeal 3-hydroxypropionate/4-hydroxybutyrate (HP/HB) pathway. Eleven primer sets were used to amplify and sequence genes coding for selected key enzymes in the three pathways. Whereas the CBB pathway with different forms of RubisCO (IA, IC and II) was ubiquitous and related to diverse bacterial taxa, encompassing a wide range of potential physiologies, the rTCA cycle in Epsilonproteobacteria and Chloribi was exclusively detected in anoxic water layers. Nitrifiying Nitrosospira and Thaumarchaeota, using the rTCA and HP/HB cycle respectively, are important residents in the aphotic and (micro-)oxic zone of deep lakes. Both taxa were of minor importance in surface waters and in smaller lakes characterized by an anoxic hypolimnion. Overall, this study provides a first insight on how different CO2 fixation strategies and chemical gradients in lakes are associated to the distribution of chemoautotrophic prokaryotes with different functional traits.


Assuntos
Ciclo do Carbono/fisiologia , Dióxido de Carbono/metabolismo , Crescimento Quimioautotrófico/fisiologia , Chlorobi/metabolismo , Ciclo do Ácido Cítrico/fisiologia , Epsilonproteobacteria/metabolismo , Fotossíntese/fisiologia , Archaea/metabolismo , Chlorobi/genética , Epsilonproteobacteria/genética , Hidroxibutiratos/metabolismo , Ácido Láctico/análogos & derivados , Ácido Láctico/metabolismo , Lagos/química , Lagos/microbiologia , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo
20.
Mol Microbiol ; 105(1): 127-138, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28388834

RESUMO

Members of the multihaem cytochrome c family such as pentahaem cytochrome c nitrite reductase (NrfA) or octahaem hydroxylamine oxidoreductase (Hao) are involved in various microbial respiratory electron transport chains. Some members of the Hao subfamily, here called εHao proteins, have been predicted from the genomes of nitrate/nitrite-ammonifying bacteria that usually lack NrfA. Here, εHao proteins from the host-associated Epsilonproteobacteria Campylobacter fetus and Campylobacter curvus and the deep-sea hydrothermal vent bacteria Caminibacter mediatlanticus and Nautilia profundicola were purified as εHao-maltose binding protein fusions produced in Wolinella succinogenes. All four proteins were able to catalyze reduction of nitrite (yielding ammonium) and hydroxylamine whereas hydroxylamine oxidation was negligible. The introduction of a tyrosine residue at a position known to cause covalent trimerization of Hao proteins did neither stimulate hydroxylamine oxidation nor generate the Hao-typical absorbance maximum at 460 nm. In most cases, the εHao-encoding gene haoA was situated downstream of haoC, which predicts a tetrahaem cytochrome c of the NapC/NrfH family. This suggested the formation of a membrane-bound HaoCA assembly reminiscent of the menaquinol-oxidizing NrfHA complex. The results indicate that εHao proteins form a subfamily of ammonifying cytochrome c nitrite reductases that represents a 'missing link' in the evolution of NrfA and Hao enzymes.


Assuntos
Citocromos c/metabolismo , Oxirredutases/metabolismo , Proteínas de Bactérias/metabolismo , Grupo dos Citocromos c , Citocromos a1/metabolismo , Citocromos c1/metabolismo , Epsilonproteobacteria/genética , Epsilonproteobacteria/metabolismo , Nitrato Redutases/metabolismo , Nitritos/metabolismo , Oxirredução , Oxirredutases/genética , Wolinella/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA