Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 2909, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32076048

RESUMO

Equine arteritis virus (EAV) is maintained in the horse populations through persistently infected stallions. The aims of the study were to monitor the spread of EAV among Polish Hucul horses, to analyse the variability of circulating EAVs both between- and within-horses, and to identify allelic variants of the serving stallions EqCXCL16 gene that had been previously shown to strongly correlate with long-term EAV persistence in stallions. Serum samples (n = 221) from 62 horses including 46 mares and 16 stallions were collected on routine basis between December 2010 and May 2013 and tested for EAV antibodies. In addition, semen from 11 stallions was tested for EAV RNA. A full genomic sequence of EAV from selected breeding stallions was determined using next generation sequencing. The proportion of seropositive mares among the tested population increased from 7% to 92% during the study period, while the proportion of seropositive stallions remained similar (64 to 71%). The EAV genomes from different stallions were 94.7% to 99.6% identical to each other. A number (41 to 310) of single nucleotide variants were identified within EAV sequences from infected stallions. Four stallions possessed EqCXCL16S genotype correlated with development of long-term carrier status, three of which were persistent shedders and the shedder status of the remaining one was undetermined. None of the remaining 12 stallions with EqCXCL16R genotype was identified as a persistent shedder.


Assuntos
Quimiocina CXCL16/genética , Equartevirus/fisiologia , Cavalos/genética , Cavalos/virologia , Quase-Espécies/genética , Sêmen/virologia , Alelos , Animais , Infecções por Arterivirus/sangue , Infecções por Arterivirus/genética , Infecções por Arterivirus/veterinária , Feminino , Genoma Viral , Genótipo , Doenças dos Cavalos/genética , Doenças dos Cavalos/virologia , Cavalos/sangue , Masculino , Filogenia , Polimorfismo de Nucleotídeo Único/genética
2.
J Virol ; 93(12)2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30944180

RESUMO

Equine arteritis virus (EAV) and porcine reproductive and respiratory syndrome virus (PRRSV) represent two members of the family Arteriviridae and pose major threats for the horse- and swine-breeding industries worldwide. A previous study suggested that PRRSV nsp4, a 3C-like protease, antagonizes interferon beta (IFN-ß) production by cleaving the NF-κB essential modulator (NEMO) at a single site, glutamate 349 (E349). Here, we demonstrated that EAV nsp4 also inhibited virus-induced IFN-ß production by targeting NEMO for proteolytic cleavage and that the scission occurred at four sites: E166, E171, glutamine 205 (Q205), and E349. Additionally, we found that, besides the previously reported cleavage site E349 in NEMO, scission by PRRSV nsp4 took place at two additional sites, E166 and E171. These results imply that while cleaving NEMO is a common strategy utilized by EAV and PRRSV nsp4 to antagonize IFN induction, EAV nsp4 adopts a more complex substrate recognition mechanism to target NEMO. By analyzing the abilities of the eight different NEMO fragments resulting from EAV or PRRSV nsp4 scission to induce IFN-ß production, we serendipitously found that a NEMO fragment (residues 1 to 349) could activate IFN-ß transcription more robustly than full-length NEMO, whereas all other NEMO cleavage products were abrogated for the IFN-ß-inducing capacity. Thus, NEMO cleavage at E349 alone may not be sufficient to completely inactivate the IFN response via this signaling adaptor. Altogether, our findings suggest that EAV and PRRSV nsp4 cleave NEMO at multiple sites and that this strategy is critical for disarming the innate immune response for viral survival.IMPORTANCE The arterivirus nsp4-encoded 3C-like protease (3CLpro) plays an important role in virus replication and immune evasion, making it an attractive target for antiviral therapeutics. Previous work suggested that PRRSV nsp4 suppresses type I IFN production by cleaving NEMO at a single site. In contrast, the present study demonstrates that both EAV and PRRSV nsp4 cleave NEMO at multiple sites and that this strategy is essential for disruption of type I IFN production. Moreover, we reveal that EAV nsp4 also cleaves NEMO at glutamine 205 (Q205), which is not targeted by PRRSV nsp4. Notably, targeting a glutamine in NEMO for cleavage has been observed only with picornavirus 3C proteases (3Cpro) and coronavirus 3CLpro In aggregate, our work expands knowledge of the innate immune evasion mechanisms associated with NEMO cleavage by arterivirus nsp4 and describes a novel substrate recognition characteristic of EAV nsp4.


Assuntos
Equartevirus/metabolismo , Interferon beta/biossíntese , Proteínas não Estruturais Virais/metabolismo , Animais , Arteriviridae/metabolismo , Arterivirus/metabolismo , Linhagem Celular , Equartevirus/fisiologia , Células HEK293 , Cavalos , Humanos , Quinase I-kappa B/metabolismo , Quinase I-kappa B/fisiologia , Evasão da Resposta Imune , Imunidade Inata , Interferon beta/metabolismo , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Proteólise , Transdução de Sinais , Suínos , Replicação Viral
3.
J Virol ; 92(9)2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29444949

RESUMO

Equine arteritis virus (EAV) can establish long-term persistent infection in the reproductive tract of stallions and is shed in the semen. Previous studies showed that long-term persistence is associated with a specific allele of the CXCL16 gene (CXCL16S) and that persistent infection is maintained despite the presence of a local inflammatory and humoral and mucosal antibody responses. In this study, we demonstrated that equine seminal exosomes (SEs) are enriched in a small subset of microRNAs (miRNAs). Most importantly, we demonstrated that long-term EAV persistence is associated with the downregulation of an SE-associated miRNA (eca-mir-128) and with an enhanced expression of CXCL16 in the reproductive tract, a putative target of eca-mir-128. The findings presented here suggest that SE eca-mir-128 is implicated in the regulation of the CXCL16/CXCR6 axis in the reproductive tract of persistently infected stallions, a chemokine axis strongly implicated in EAV persistence. This is a novel finding and warrants further investigation to identify its specific mechanism in modulating the CXCL16/CXCR6 axis in the reproductive tract of the EAV long-term carrier stallion.IMPORTANCE Equine arteritis virus (EAV) has the ability to establish long-term persistent infection in the stallion reproductive tract and to be shed in semen, which jeopardizes its worldwide control. Currently, the molecular mechanisms of viral persistence are being unraveled, and these are essential for the development of effective therapeutics to eliminate persistent infection. Recently, it has been determined that long-term persistence is associated with a specific allele of the CXCL16 gene (CXCL16S) and is maintained despite induction of local inflammatory, humoral, and mucosal antibody responses. This study demonstrated that long-term persistence is associated with the downregulation of seminal exosome miRNA eca-mir-128 and enhanced expression of its putative target, CXCL16, in the reproductive tract. For the first time, this study suggests complex interactions between eca-mir-128 and cellular elements at the site of EAV persistence and implicates this miRNA in the regulation of the CXCL16/CXCR6 axis in the reproductive tract during long-term persistence.


Assuntos
Infecções por Arterivirus/veterinária , Quimiocina CXCL16/biossíntese , Equartevirus/fisiologia , Exossomos/genética , Doenças dos Cavalos/virologia , MicroRNAs/biossíntese , Receptores CXCR6/biossíntese , Sêmen/citologia , Animais , Infecções por Arterivirus/virologia , Regulação para Baixo/genética , Genitália Masculina/metabolismo , Genitália Masculina/virologia , Cavalos , Masculino , MicroRNAs/genética
4.
Curr Opin Virol ; 27: 57-70, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29172072

RESUMO

Equine arteritis virus (EAV) and porcine reproductive and respiratory syndrome virus (PRRSV) are the most economically important members of the family Arteriviridae. EAV and PRRSV cause reproductive and respiratory disease in equids and swine, respectively and constitute a significant economic burden to equine and swine industries around the world. Furthermore, they both cause abortion in pregnant animals and establish persistent infection in their natural hosts, which fosters viral shedding in semen leading to sexual transmission. The primary focus of this article is to provide an update on the effects of these two viruses on the reproductive tract of their natural hosts and provide a comparative analysis of clinical signs, virus-host interactions, mechanisms of viral pathogenesis and viral persistence.


Assuntos
Infecções por Arterivirus/veterinária , Equartevirus/patogenicidade , Interações Hospedeiro-Patógeno , Síndrome Respiratória e Reprodutiva Suína/transmissão , Vírus da Síndrome Respiratória e Reprodutiva Suína/patogenicidade , Complicações Infecciosas na Gravidez/veterinária , Animais , Infecções por Arterivirus/transmissão , Infecções por Arterivirus/virologia , Equartevirus/fisiologia , Feminino , Doenças dos Cavalos/economia , Doenças dos Cavalos/transmissão , Doenças dos Cavalos/virologia , Cavalos , Masculino , Síndrome Respiratória e Reprodutiva Suína/virologia , Gravidez , Complicações Infecciosas na Gravidez/virologia , Suínos , Doenças dos Suínos/economia , Doenças dos Suínos/transmissão , Doenças dos Suínos/virologia
5.
J Virol ; 91(13)2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28424285

RESUMO

Equine arteritis virus (EAV) has a global impact on the equine industry as the causative agent of equine viral arteritis (EVA), a respiratory, systemic, and reproductive disease of equids. A distinctive feature of EAV infection is that it establishes long-term persistent infection in 10 to 70% of infected stallions (carriers). In these stallions, EAV is detectable only in the reproductive tract, and viral persistence occurs despite the presence of high serum neutralizing antibody titers. Carrier stallions constitute the natural reservoir of the virus as they continuously shed EAV in their semen. Although the accessory sex glands have been implicated as the primary sites of EAV persistence, the viral host cell tropism and whether viral replication in carrier stallions occurs in the presence or absence of host inflammatory responses remain unknown. In this study, dual immunohistochemical and immunofluorescence techniques were employed to unequivocally demonstrate that the ampulla is the main EAV tissue reservoir rather than immunologically privileged tissues (i.e., testes). Furthermore, we demonstrate that EAV has specific tropism for stromal cells (fibrocytes and possibly tissue macrophages) and CD8+ T and CD21+ B lymphocytes but not glandular epithelium. Persistent EAV infection is associated with moderate, multifocal lymphoplasmacytic ampullitis comprising clusters of B (CD21+) lymphocytes and significant infiltration of T (CD3+, CD4+, CD8+, and CD25+) lymphocytes, tissue macrophages, and dendritic cells (Iba-1+ and CD83+), with a small number of tissue macrophages expressing CD163 and CD204 scavenger receptors. This study suggests that EAV employs complex immune evasion mechanisms that warrant further investigation.IMPORTANCE The major challenge for the worldwide control of EAV is that this virus has the distinctive ability to establish persistent infection in the stallion's reproductive tract as a mechanism to ensure its maintenance in equid populations. Therefore, the precise identification of tissue and cellular tropism of EAV is critical for understanding the molecular basis of viral persistence and for development of improved prophylactic or treatment strategies. This study significantly enhances our understanding of the EAV carrier state in stallions by unequivocally identifying the ampullae as the primary sites of viral persistence, combined with the fact that persistence involves continuous viral replication in fibrocytes (possibly including tissue macrophages) and T and B lymphocytes in the presence of detectable inflammatory responses, suggesting the involvement of complex viral mechanisms of immune evasion. Therefore, EAV persistence provides a powerful new natural animal model to study RNA virus persistence in the male reproductive tract.


Assuntos
Linfócitos B/virologia , Linfócitos T CD8-Positivos/virologia , Epitélio/virologia , Equartevirus/fisiologia , Genitália/virologia , Células Estromais/virologia , Tropismo Viral , Animais , Infecções por Arterivirus/veterinária , Infecções por Arterivirus/virologia , Imunofluorescência , Doenças dos Cavalos/virologia , Cavalos , Imuno-Histoquímica , Masculino
6.
Virus Res ; 220: 104-11, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27117322

RESUMO

Equine herpesvirus 1 (EHV-1) and equine arteritis virus (EAV) induce respiratory problems and abortion in horses and are considered as two serious threats to equine industry. Both EHV-1 and EAV misuse patrolling leukocytes in the upper respiratory tract to breach the basement membrane (BM) and to migrate to blood vessels. So far, the behavior and impact of a double infection in the respiratory mucosa of a horse are unknown. In the present study, the outcome of double infections with EHV-1 and the low virulent EAV strain 08P187 (superinfection with an interval of 12h or co-infection) were compared with single infections in fully susceptible RK-13 cells and equine upper respiratory mucosa explants. When RK-13 cells were inoculated with either EHV-1 or EAV 12h prior to the subsequent EAV or EHV-1 inoculation, the latter EAV or EHV-1 infection was clearly suppressed at 24hpi or 36hpi, respectively, without EHV-1 and EAV co-infecting the same RK-13 cells. After simultaneous infection with EHV-1 and EAV, higher numbers of EAV infected cells but similar numbers of EHV-1 infected cells were found compared to the single infections, with a low number of EHV-1 and EAV co-infected RK-13 cells at 48hpi and 72hpi. In the upper respiratory mucosa exposed to EAV 12h prior to EHV-1, the number and size of the EHV-1-induced plaques were similar to those of the EHV-1 single infected mucosa explants. In nasal and nasopharyngeal mucosae, EAV and EHV-1 pre-infections slightly reduced the number of EHV-1 and EAV infected leukocytes compared to the single infections and co-infection. In double EAV and EHV-1 infected explants, no co-infected leukocytes were detected. From these results, it can be concluded that EAV and EHV-1 are only slightly influencing each other's infection and that they do not infect the same mucosal leukocytes.


Assuntos
Infecções por Arterivirus/veterinária , Equartevirus/fisiologia , Infecções por Herpesviridae/veterinária , Herpesvirus Equídeo 1/fisiologia , Doenças dos Cavalos/virologia , Mucosa Respiratória/virologia , Animais , Infecções por Arterivirus/virologia , Linhagem Celular , Coinfecção , Células Epiteliais/virologia , Equartevirus/patogenicidade , Infecções por Herpesviridae/virologia , Herpesvirus Equídeo 1/patogenicidade , Cavalos , Leucócitos/virologia , Técnicas de Cultura de Tecidos , Carga Viral , Replicação Viral
7.
J Virol ; 90(7): 3366-84, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26764004

RESUMO

UNLABELLED: Previous studies in our laboratory have identified equine CXCL16 (EqCXCL16) to be a candidate molecule and possible cell entry receptor for equine arteritis virus (EAV). In horses, the CXCL16 gene is located on equine chromosome 11 (ECA11) and encodes a glycosylated, type I transmembrane protein with 247 amino acids. Stable transfection of HEK-293T cells with plasmid DNA carrying EqCXCL16 (HEK-EqCXCL16 cells) increased the proportion of the cell population permissive to EAV infection from <3% to almost 100%. The increase in permissiveness was blocked either by transfection of HEK-EqCXCL16 cells with small interfering RNAs (siRNAs) directed against EqCXCL16 or by pretreatment with guinea pig polyclonal antibody against EqCXCL16 protein (Gp anti-EqCXCL16 pAb). Furthermore, using a virus overlay protein-binding assay (VOPBA) in combination with far-Western blotting, gradient-purified EAV particles were shown to bind directly to the EqCXCL16 protein in vitro. The binding of biotinylated virulent EAV strain Bucyrus at 4°C was significantly higher in HEK-EqCXCL16 cells than nontransfected HEK-293T cells. Finally, the results demonstrated that EAV preferentially infects subpopulations of horse CD14(+) monocytes expressing EqCXCL16 and that infection of these cells is significantly reduced by pretreatment with Gp anti-EqCXCL16 pAb. The collective data from this study provide confirmatory evidence that the transmembrane form of EqCXCL16 likely plays a major role in EAV host cell entry processes, possibly acting as a primary receptor molecule for this virus. IMPORTANCE: Outbreaks of EVA can be a source of significant economic loss for the equine industry from high rates of abortion in pregnant mares, death in young foals, establishment of the carrier state in stallions, and trade restrictions imposed by various countries. Similar to other arteriviruses, EAV primarily targets cells of the monocyte/macrophage lineage, which, when infected, are believed to play a critical role in EVA pathogenesis. To this point, however, the host-specified molecules involved in EAV binding and entry into monocytes/macrophages have not been identified. Identification of the cellular receptors for EAV may provide insights to design antivirals and better prophylactic reagents. In this study, we have demonstrated that EqCXCL16 acts as an EAV entry receptor in EAV-susceptible cells, equine monocytes. These findings represent a significant advance in our understanding of the fundamental mechanisms associated with the entry of EAV into susceptible cells.


Assuntos
Quimiocinas CXC/fisiologia , Equartevirus/fisiologia , Especificidade de Hospedeiro/genética , Receptores Virais/genética , Internalização do Vírus , Sequência de Aminoácidos , Animais , Anticorpos Antivirais/imunologia , Infecções por Arterivirus/virologia , Sequência de Bases , Linhagem Celular , Quimiocinas CXC/antagonistas & inibidores , Quimiocinas CXC/genética , Cricetinae , Equartevirus/genética , Cobaias , Células HEK293 , Doenças dos Cavalos/virologia , Cavalos , Humanos , Interferência de RNA , RNA Interferente Pequeno/genética , Coelhos , Receptores Virais/metabolismo , Análise de Sequência de DNA , Ligação Viral
8.
Nucleic Acids Res ; 43(17): 8416-34, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26304538

RESUMO

RNA viruses encode an RNA-dependent RNA polymerase (RdRp) that catalyzes the synthesis of their RNA(s). In the case of positive-stranded RNA viruses belonging to the order Nidovirales, the RdRp resides in a replicase subunit that is unusually large. Bioinformatics analysis of this non-structural protein has now revealed a nidoviral signature domain (genetic marker) that is N-terminally adjacent to the RdRp and has no apparent homologs elsewhere. Based on its conservation profile, this domain is proposed to have nucleotidylation activity. We used recombinant non-structural protein 9 of the arterivirus equine arteritis virus (EAV) and different biochemical assays, including irreversible labeling with a GTP analog followed by a proteomics analysis, to demonstrate the manganese-dependent covalent binding of guanosine and uridine phosphates to a lysine/histidine residue. Most likely this was the invariant lysine of the newly identified domain, named nidovirus RdRp-associated nucleotidyltransferase (NiRAN), whose substitution with alanine severely diminished the described binding. Furthermore, this mutation crippled EAV and prevented the replication of severe acute respiratory syndrome coronavirus (SARS-CoV) in cell culture, indicating that NiRAN is essential for nidoviruses. Potential functions supported by NiRAN may include nucleic acid ligation, mRNA capping and protein-primed RNA synthesis, possibilities that remain to be explored in future studies.


Assuntos
Nidovirales/enzimologia , Nucleotidiltransferases/química , RNA Polimerase Dependente de RNA/química , Proteínas Virais/química , Sítios de Ligação , Sequência Conservada , Equartevirus/enzimologia , Equartevirus/fisiologia , Guanosina/química , Guanosina Trifosfato/metabolismo , Manganês/química , Nidovirales/genética , Nucleotídeos/metabolismo , Nucleotidiltransferases/metabolismo , Fosfatos/química , Poliproteínas/química , Poliproteínas/metabolismo , Estrutura Terciária de Proteína , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/enzimologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , Uridina/química , Uridina Trifosfato/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral
9.
Virus Res ; 194: 16-36, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25278143

RESUMO

Arteriviruses, such as equine arteritis virus (EAV) and porcine reproductive and respiratory syndrome virus (PRRSV), are important pathogens in veterinary medicine. Despite their limited genome size, arterivirus particles contain a multitude of membrane proteins, the Gp5/M and the Gp2/3/4 complex, the small and hydrophobic E protein and the ORF5a protein. Their function during virus entry and budding is understood only incompletely. We summarize current knowledge of their primary structure, membrane topology, (co-translational) processing and intracellular targeting to membranes of the exocytic pathway, which are the budding site. We profoundly describe experimental data that led to widely believed conceptions about the function of these proteins and also report new results about processing steps for each glycoprotein. Further, we depict the location and characteristics of epitopes in the membrane proteins since the late appearance of neutralizing antibodies may lead to persistence, a characteristic hallmark of arterivirus infection. Some molecular features of the arteriviral proteins are rare or even unique from a cell biological point of view, particularly the prevention of signal peptide cleavage by co-translational glycosylation, discovered in EAV-Gp3, and the efficient use of overlapping sequons for glycosylation. This article reviews the molecular mechanisms of these cellular processes. Based on this, we present hypotheses on the structure and variability of arteriviral membrane proteins and their role during virus entry and budding.


Assuntos
Equartevirus/fisiologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Modificação Traducional de Proteínas , Proteínas da Matriz Viral/metabolismo , Internalização do Vírus , Liberação de Vírus , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Epitopos/imunologia , Equartevirus/genética , Equartevirus/imunologia , Modelos Biológicos , Modelos Moleculares , Vírus da Síndrome Respiratória e Reprodutiva Suína/química , Conformação Proteica , Transporte Proteico , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/imunologia
10.
Virology ; 462-463: 388-403, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24913633

RESUMO

The advent of recombinant DNA technology, development of infectious cDNA clones of RNA viruses, and reverse genetic technologies have revolutionized how viruses are studied. Genetic manipulation of full-length cDNA clones has become an especially important and widely used tool to study the biology, pathogenesis, and virulence determinants of both positive and negative stranded RNA viruses. The first full-length infectious cDNA clone of equine arteritis virus (EAV) was developed in 1996 and was also the first full-length infectious cDNA clone constructed from a member of the order Nidovirales. This clone was extensively used to characterize the molecular biology of EAV and other Nidoviruses. The objective of this review is to summarize the characterization of the virulence (or attenuation) phenotype of the recombinant viruses derived from several infectious cDNA clones of EAV in horses, as well as their application for characterization of the molecular basis of viral neutralization, persistence, and cellular tropism.


Assuntos
Clonagem Molecular , DNA Complementar/genética , Equartevirus/genética , Equartevirus/fisiologia , Animais , Equartevirus/patogenicidade , Cavalos , Genética Reversa , Virulência
11.
Virus Res ; 183: 81-4, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24518298

RESUMO

Equine Arteritis Virus (EAV) has been shown to induce apoptosis in vitro but the induction of this mechanism has not been previously associated with any viral gene product. In this work, we found a cytotoxicity effect of the EAV gP5 protein on baculovirus-insect cells and a low yield of protein recovery. Besides, different morphological features by electron transmission microscopy, DNA fragmentation in agarose gel, TUNEL analysis and caspase 3 activity were found. All these findings indicate that the EAV gP5 protein induces apoptosis in insect cells.


Assuntos
Antígenos Virais/metabolismo , Apoptose , Equartevirus/fisiologia , Proteínas do Envelope Viral/metabolismo , Fatores de Virulência/metabolismo , Animais , Antígenos Virais/genética , Baculoviridae/genética , Equartevirus/patogenicidade , Expressão Gênica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Sf9 , Spodoptera , Proteínas do Envelope Viral/genética , Fatores de Virulência/genética
12.
Virus Res ; 183: 107-11, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24556360

RESUMO

The disulphide-linked GP2/3/4 spike of equine arteritis virus (EAV) is essential for virus entry. We showed recently that in transfected cells carbohydrates attached adjacent to the signal peptide of GP3 inhibit cleavage. Here we confirm this unique phenomenon in recombinant viruses with disabled glycosylation sites. Surprisingly, the infectivity of EAV containing GP3 with cleaved signal peptide was not impaired and GP3 with cleaved signal peptide associates with GP2/4 in virus particles. In contrast, viruses containing GP3 with deleted hydrophobic C-terminus rapidly reverted back to wild type. The data support our model that the signal peptide is exposed to the lumen of the ER and the C-terminus peripherally attaches GP3 to membranes.


Assuntos
Equartevirus/fisiologia , Sinais Direcionadores de Proteínas , Proteínas do Envelope Viral/metabolismo , Replicação Viral , Animais , Linhagem Celular , Cricetinae , Glicosilação , Modelos Biológicos , Proteólise , Carga Viral , Ensaio de Placa Viral
13.
Vet Microbiol ; 167(1-2): 93-122, 2013 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-23891306

RESUMO

Equine arteritis virus (EAV) is the causative agent of equine viral arteritis (EVA), a respiratory and reproductive disease of equids. There has been significant recent progress in understanding the molecular biology of EAV and the pathogenesis of its infection in horses. In particular, the use of contemporary genomic techniques, along with the development and reverse genetic manipulation of infectious cDNA clones of several strains of EAV, has generated significant novel information regarding the basic molecular biology of the virus. Therefore, the objective of this review is to summarize current understanding of EAV virion architecture, replication, evolution, molecular epidemiology and genetic variation, pathogenesis including the influence of host genetics on disease susceptibility, host immune response, and potential vaccination and treatment strategies.


Assuntos
Infecções por Arterivirus/veterinária , Equartevirus/fisiologia , Doenças dos Cavalos/virologia , Animais , Infecções por Arterivirus/imunologia , Infecções por Arterivirus/virologia , Equartevirus/genética , Equartevirus/imunologia , Genoma Viral/genética , Doenças dos Cavalos/imunologia , Cavalos , Interações Hospedeiro-Patógeno , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vírion/fisiologia
14.
Vet Res ; 44: 22, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23537375

RESUMO

The upper respiratory tract mucosa represents the first line of defense, which has to be overcome by pathogens before invading the host. Considering the economic and ethical aspects involved in using experimental animals for pathogenesis studies, respiratory mucosal explants, in which the tissue's three-dimensional architecture is preserved, may be ideal alternatives. Different respiratory mucosal explant cultures have been developed. However, none of them could be inoculated with pathogens solely at the epithelium side. In the present study, equine nasal and nasopharyngeal explants were embedded in agarose (3%), leaving the epithelium side exposed to allow apical inoculation. Morphometric analysis did not show degenerative changes during 72 h of cultivation. The number of apoptotic cells in the mucosa slightly increased over time. After validation, the system was used for apical infection with a European strain (08P178) of equine arteritis virus (EAV) (107.6TCID50/mL per explant). Impermeability of agarose to virus particles was demonstrated by the absence of labeled microspheres (40 nm) and a lack of EAV-antigens in RK13 cells seeded underneath the agarose layer in which inoculated explants were embedded. At 72 hpi, 27% of the EAV-positive cells were CD172a+ and 19% were CD3+ in nasal explants and 45% of the EAV-positive cells were CD172a+ and 15% were CD3+ in nasopharyngeal explants. Only a small percentage of EAV-positive cells were IgM+. This study validates the usefulness of a polarized mucosal explant system and shows that CD172a+ myeloid cells and CD3+ T lymphocytes represent important EAV-target cells in the respiratory mucosa.


Assuntos
Infecções por Arterivirus/veterinária , Equartevirus/fisiologia , Doenças dos Cavalos/virologia , Mucosa Nasal/virologia , Replicação Viral , Animais , Infecções por Arterivirus/virologia , Sobrevivência Celular , Feminino , Cavalos , Técnicas In Vitro , Masculino , Células Mieloides/citologia , Células Mieloides/virologia , Sefarose/química , Linfócitos T/citologia , Linfócitos T/virologia , Proteínas Virais/genética , Proteínas Virais/fisiologia
15.
Proc Natl Acad Sci U S A ; 110(9): E838-47, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23401522

RESUMO

Protein ubiquitination regulates important innate immune responses. The discovery of viruses encoding deubiquitinating enzymes (DUBs) suggests they remove ubiquitin to evade ubiquitin-dependent antiviral responses; however, this has never been conclusively demonstrated in virus-infected cells. Arteriviruses are economically important positive-stranded RNA viruses that encode an ovarian tumor (OTU) domain DUB known as papain-like protease 2 (PLP2). This enzyme is essential for arterivirus replication by cleaving a site within the viral replicase polyproteins and also removes ubiquitin from cellular proteins. To dissect this dual specificity, which relies on a single catalytic site, we determined the crystal structure of equine arteritis virus PLP2 in complex with ubiquitin (1.45 Å). PLP2 binds ubiquitin using a zinc finger that is uniquely integrated into an exceptionally compact OTU-domain fold that represents a new subclass of zinc-dependent OTU DUBs. Notably, the ubiquitin-binding surface is distant from the catalytic site, which allowed us to mutate this surface to significantly reduce DUB activity without affecting polyprotein cleavage. Viruses harboring such mutations exhibited WT replication kinetics, confirming that PLP2-mediated polyprotein cleavage was intact, but the loss of DUB activity strikingly enhanced innate immune signaling. Compared with WT virus infection, IFN-ß mRNA levels in equine cells infected with PLP2 mutants were increased by nearly an order of magnitude. Our findings not only establish PLP2 DUB activity as a critical factor in arteriviral innate immune evasion, but the selective inactivation of DUB activity also opens unique possibilities for developing improved live attenuated vaccines against arteriviruses and other viruses encoding similar dual-specificity proteases.


Assuntos
Endopeptidases/metabolismo , Equartevirus/enzimologia , Fibroblastos/imunologia , Fibroblastos/virologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Papaína/metabolismo , Animais , Proteases Semelhantes à Papaína de Coronavírus , Endopeptidases/química , Endopeptidases/genética , Equartevirus/fisiologia , Células HEK293 , Vírus da Febre Hemorrágica da Crimeia-Congo/enzimologia , Cavalos , Humanos , Interferon beta/genética , Modelos Moleculares , Mutação/genética , Papaína/química , Papaína/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/enzimologia , Transdução de Sinais/imunologia , Especificidade por Substrato , Ubiquitina/química , Replicação Viral , Dedos de Zinco
16.
Virus Res ; 171(1): 222-6, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23079113

RESUMO

Equine arteritis virus (EAV) causes a respiratory and reproductive disease in horses, equine viral arteritis. Though cell death in infection with EAV is considered to occur by apoptosis, the underlying molecular mechanism has not been extensively elucidated. We investigated the expression of mRNA of pro-apoptotic and caspase genes during EAV infection in BHK21 cells, a well-established cell type for EAV replication. Using a SYBR Green real-time PCR, mRNA of p53, Bax, caspase 3 and caspase 9 were found up-regulated in a time dependent manner in EAV infected cells. Western blot analysis for caspase 3 and caspase 9 showed expression of cleaved forms of these proteins during EAV infection. In addition, a luminescence-based cell assay for caspase 3/7 activation as a hallmark in apoptosis confirmed apoptotic cell death. The findings demonstrate that cell death in EAV infected BHK21 cells results from apoptosis mediated through the intrinsic signalling pathway.


Assuntos
Apoptose , Infecções por Arterivirus/veterinária , Equartevirus/fisiologia , Doenças dos Cavalos/metabolismo , Transdução de Sinais , Animais , Caspases/genética , Caspases/metabolismo , Morte Celular , Linhagem Celular , Cricetinae , Doenças dos Cavalos/genética , Cavalos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
17.
Arch Virol ; 158(3): 701-5, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23151818

RESUMO

NF-κB, a family of transcription factors involved in different cell functions and immune responses is targeted by viruses. The mechanism of NF-κB signalling and its role in replication of EAV have not been investigated. We demonstrate that EAV infection in BHK-21 cells activates NF-κB, and this activation was found to be mediated through the MyD88 pathway. Infection of IKKß(-/-) murine embryo fibroblasts (MEFs), which are deficient in NF-κB signalling, resulted in lower virus titre, less cytopathic effect, and reduced expression of viral proteins. These findings implicate the MyD88 pathway in EAV-induced NF-κB activation and suggest that NF-κB activation is essential for efficient replication of EAV.


Assuntos
Equartevirus/genética , Equartevirus/fisiologia , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Replicação Viral , Animais , Linhagem Celular , Cricetinae , Efeito Citopatogênico Viral , Equartevirus/metabolismo , Fibroblastos/virologia , Regulação Viral da Expressão Gênica , Quinase I-kappa B/deficiência , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Camundongos , Transdução de Sinais , Proteínas Virais/biossíntese , Proteínas Virais/genética
18.
J Virol ; 87(3): 1454-64, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23152531

RESUMO

Virus replication strongly depends on cellular factors, in particular, on host proteins. Here we report that the replication of the arteriviruses equine arteritis virus (EAV) and porcine reproductive and respiratory syndrome virus (PRRSV) is strongly affected by low-micromolar concentrations of cyclosporine A (CsA), an inhibitor of members of the cyclophilin (Cyp) family. In infected cells, the expression of a green fluorescent protein (GFP) reporter gene inserted into the PRRSV genome was inhibited with a half-maximal inhibitory concentration (IC(50)) of 5.2 µM, whereas the GFP expression of an EAV-GFP reporter virus was inhibited with an IC(50) of 0.95 µM. Debio-064, a CsA analog that lacks its undesirable immunosuppressive properties, inhibited EAV replication with an IC(50) that was 3-fold lower than that of CsA, whereas PRRSV-GFP replication was inhibited with an IC(50) similar to that of CsA. The addition of 4 µM CsA after infection prevented viral RNA and protein synthesis in EAV-infected cells, and CsA treatment resulted in a 2.5- to 4-log-unit reduction of PRRSV or EAV infectious progeny. A complete block of EAV RNA synthesis was also observed in an in vitro assay using isolated viral replication structures. The small interfering RNA-mediated knockdown of Cyp family members revealed that EAV replication strongly depends on the expression of CypA but not CypB. Furthermore, upon fractionation of intracellular membranes in density gradients, CypA was found to cosediment with membranous EAV replication structures, which could be prevented by CsA treatment. This suggests that CypA is an essential component of the viral RNA-synthesizing machinery.


Assuntos
Antivirais/farmacologia , Ciclofilinas/antagonistas & inibidores , Ciclosporina/farmacologia , Equartevirus/fisiologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Replicação Viral/efeitos dos fármacos , Animais , Linhagem Celular , Técnicas de Silenciamento de Genes , Genes Reporter , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Concentração Inibidora 50 , Lepidópteros , Testes de Sensibilidade Microbiana , RNA Viral/biossíntese , Proteínas Virais/biossíntese
19.
Autophagy ; 9(2): 164-74, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23182945

RESUMO

Equine arteritis virus (EAV) is an enveloped, positive-strand RNA virus. Genome replication of EAV has been associated with modified intracellular membranes that are shaped into double-membrane vesicles (DMVs). We showed by immuno-electron microscopy that the DMVs induced in EAV-infected cells contain double-strand (ds)RNA molecules, presumed RNA replication intermediates, and are decorated with the autophagy marker protein microtubule-associated protein 1 light chain 3 (LC3). Replication of EAV, however, was not affected in autophagy-deficient cells lacking autophagy-related protein 7 (ATG7). Nevertheless, colocalization of DMVs and LC3 was still observed in these knockout cells, which only contain the nonlipidated form of LC3. Although autophagy is not required, depletion of LC3 markedly reduced the replication of EAV. EAV replication could be fully restored in these cells by expression of a nonlipidated form of LC3. These findings demonstrate an autophagy-independent role for LC3 in EAV replication. Together with the observation that EAV-induced DMVs are also positive for ER degradation-enhancing α-mannosidase-like 1 (EDEM1), our data suggested that this virus, similarly to the distantly-related mouse hepatitis coronavirus, hijacks the ER-derived membranes of EDEMosomes to ensure its efficient replication.


Assuntos
Autofagia , Equartevirus/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Replicação Viral/fisiologia , Animais , Infecções por Arterivirus/metabolismo , Infecções por Arterivirus/patologia , Infecções por Arterivirus/virologia , Linhagem Celular , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Equartevirus/ultraestrutura , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Transporte de RNA , RNA de Cadeia Dupla/metabolismo , Vesículas Transportadoras/metabolismo , Vesículas Transportadoras/ultraestrutura , Proteínas Virais/metabolismo
20.
Virology ; 432(1): 99-109, 2012 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-22739441

RESUMO

Equine arteritis virus (EAV) and porcine reproductive and respiratory syndrome virus (PRRSV) are members of family Arteriviridae; they are highly species specific and differ significantly in cellular tropism in cultured cells. In this study we examined the role of the two major envelope proteins (GP5 and M) of EAV and PRRSV in determining their cellular tropism. We generated three viable EAV/PRRSV chimeric viruses by swapping the N-terminal ectodomains of these two proteins from PRRSV IA1107 strain into an infectious cDNA clone of EAV (rMLVB4/5 GP5ecto, rMLVB4/5/6 Mecto and rMLVB4/5/6 GP5&Mecto). The three chimeric viruses could only infect EAV susceptible cell lines but not PRRSV susceptible cells in culture. Therefore, these data unequivocally demonstrate that the ectodomains of GP5 and M are not the major determinants of cellular tropism, further supporting the recent findings that the minor envelope proteins are the critical proteins in mediating cellular tropism (Tian et al., 2012).


Assuntos
Equartevirus/fisiologia , Proteínas do Envelope Viral/genética , Proteínas da Matriz Viral/genética , Tropismo Viral , Animais , Linhagem Celular , DNA Complementar , Equartevirus/genética , Cavalos , Dados de Sequência Molecular , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Estrutura Terciária de Proteína , Recombinação Genética , Análise de Sequência de DNA , Suínos , Proteínas do Envelope Viral/metabolismo , Proteínas da Matriz Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA