Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 7(1): 13745, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-29062117

RESUMO

To better understand the patterns and processes shaping large-scale phenotypic diversification, I integrate palaeobiological and phylogenetic perspectives to investigate a ~200-million-year radiation using a global sample of Palaeozoic crinoid echinoderms. Results indicate the early history of crinoid diversification is characterized by early burst dynamics with decelerating morphologic rates. However, in contrast with expectation for a single "early burst" model, morphospace continued to expand following a slowdown in rates. In addition, I find evidence for an isolated peak in morphologic rates occurring late in the clade's history. This episode of elevated rates is not associated with increased disparity, morphologic novelty, or the radiation of a single subclade. Instead, this episode of elevated rates involved multiple subclade radiations driven by environmental change toward a pre-existing adaptive optimum. The decoupling of morphologic disparity with rates of change suggests phenotypic rates are primarily shaped by ecologic factors rather than the origination of morphologic novelty alone. These results suggest phenotypic diversification is far more complex than models commonly assumed in comparative biology. Furthermore, palaeontological disparity patterns are not a reliable proxy for rates after an initial diversifying phase. These issues highlight the need for continued synthesis between fossil and phylogenetic approaches to macroevolution.


Assuntos
Adaptação Fisiológica/efeitos da radiação , Equinodermos/fisiologia , Equinodermos/efeitos da radiação , Evolução Molecular , Fenótipo , Animais , Equinodermos/classificação
2.
PLoS One ; 9(9): e107815, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25229547

RESUMO

The capacity to withstand and repair DNA damage differs among species and plays a role in determining an organism's resistance to genotoxicity, life history, and susceptibility to disease. Environmental stressors that affect organisms at the genetic level are of particular concern in ecotoxicology due to the potential for chronic effects and trans-generational impacts on populations. Echinoderms are valuable organisms to study the relationship between DNA repair and resistance to genotoxic stress due to their history and use as ecotoxicological models, little evidence of senescence, and few reported cases of neoplasia. Coelomocytes (immune cells) have been proposed to serve as sensitive bioindicators of environmental stress and are often used to assess genotoxicity; however, little is known about how coelomocytes from different echinoderm species respond to genotoxic stress. In this study, DNA damage was assessed (by Fast Micromethod) in coelomocytes of four echinoderm species (sea urchins Lytechinus variegatus, Echinometra lucunter lucunter, and Tripneustes ventricosus, and a sea cucumber Isostichopus badionotus) after acute exposure to H2O2 (0-100 mM) and UV-C (0-9999 J/m2), and DNA repair was analyzed over a 24-hour period of recovery. Results show that coelomocytes from all four echinoderm species have the capacity to repair both UV-C and H2O2-induced DNA damage; however, there were differences in repair capacity between species. At 24 hours following exposure to the highest concentration of H2O2 (100 mM) and highest dose of UV-C (9999 J/m2) cell viability remained high (>94.6 ± 1.2%) but DNA repair ranged from 18.2 ± 9.2% to 70.8 ± 16.0% for H2O2 and 8.4 ± 3.2% to 79.8 ± 9.0% for UV-C exposure. Species-specific differences in genotoxic susceptibility and capacity for DNA repair are important to consider when evaluating ecogenotoxicological model organisms and assessing overall impacts of genotoxicants in the environment.


Assuntos
Dano ao DNA , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/efeitos da radiação , Equinodermos/genética , Equinodermos/imunologia , Mutagênicos/toxicidade , Animais , Equinodermos/efeitos dos fármacos , Equinodermos/efeitos da radiação , Ecotoxicologia , Peróxido de Hidrogênio/toxicidade , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Leucócitos/efeitos da radiação , Especificidade da Espécie , Raios Ultravioleta/efeitos adversos
3.
Adv Mar Biol ; 59: 145-87, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21724020

RESUMO

There is general consensus that solar ultraviolet radiation (UVR) negatively impacts many marine species. Echinoderms are ubiquitous within the marine environment, with members of the phyla often long-lived and numerically dominant within the benthic macrofauna, consequently the impact of UVR on the population dynamics of these organisms will influence marine communities and ecosystems. Research to date has shown that exposure of echinoderms to solar UVR can, affect reproduction and development, change behaviour, cause numerous biochemical and physiological changes and potentially cause increased mutation rates, by causing DNA damage. There is also considerable evidence that echinoderms utilise several different mechanisms to protect themselves against excessive UVR and subsequent UVR-induced damage. However, these protective mechanisms may pose conflicting selection pressures on echinoderms, as UVR is an additional stressor in oceans subjected to anthropogenic-induced climate change. This review summarises our knowledge of the effects of UVR on the Echinodermata. We outline the research conducted to date, highlight key studies on UVR that have utilised echinoderms and look to the future of UVR research in a rapidly changing ocean.


Assuntos
Equinodermos/efeitos da radiação , Ecotoxicologia/métodos , Monitoramento Ambiental/métodos , Raios Ultravioleta , Animais , Equinodermos/fisiologia , Ecotoxicologia/tendências
4.
J Cell Biol ; 49(3): 906-12, 1971 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-5104726

RESUMO

Sea urchin eggs were cut into halves. The nucleate and anucleate halves and whole eggs were irradiated with gamma-rays and then fertilized with normal sperm. The first mitosis of the diploid half-egg was more delayed than the division of the whole egg. There was a small, but highly significant, delay of the mitosis of the haploid half-egg, thus demonstrating cytoplasmic sensitivity to ionizing radiation. Since the sensitivity of nucleate cells is influenced by cytoplasmic volume, the problem of the role of cytoplasm in repair is considered in relation to these data and other reports in the literature.


Assuntos
Núcleo Celular/efeitos da radiação , Citoplasma/efeitos da radiação , Mitose/efeitos da radiação , Óvulo/efeitos da radiação , Efeitos da Radiação , Animais , Diploide , Equinodermos/efeitos da radiação , Feminino , Fertilização , Haploidia , Métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA