Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(5): e0227523, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32459825

RESUMO

Barriers between islands often inhibit gene flow creating patterns of isolation by distance. In island species, the majority of genetic diversity should be distributed among isolated populations. However, a self-incompatible mating system leads to higher genetic variation within populations and very little between-population subdivision. We examine these two contrasting predictions in Erysimum teretifolium, a rare self-incompatible plant endemic to island-like sandhill habitats in Santa Cruz County, California. We used genome skimming and nuclear microsatellites to assess the distribution of genetic diversity within and among eight of the 13 remaining populations. Phylogenetic analyses of the chloroplast genomes revealed a deep separation of three of the eight populations. The nuclear ribosomal DNA cistron showed no genetic subdivision. Nuclear microsatellites suggest 83% of genetic variation resides within populations. Despite this, 18 of 28 between-population comparisons exhibited significant population structure (mean FST = 0.153). No isolation by distance existed among all populations, however when one outlier population was removed from the analysis due to uncertain provenance, significant isolation by distance emerged (r2 = 0.5611, p = 0.005). Population census size did not correlate with allelic richness as predicted on islands. Bayesian population assignment detected six genetic groupings with substantial admixture. Unique genetic clusters were concentrated at the periphery of the species' range. Since the overall distribution of nuclear genetic diversity reflects E. tereifolium's self-incompatible mating system, the vast majority of genetic variation could be sampled within any individual population. Yet, the chloroplast genome results suggest a deep split and some of the nuclear microsatellite analyses indicate some island-like patterns of genetic diversity. Restoration efforts intending to maximize genetic variation should include representatives from both lineages of the chloroplast genome and, for maximum nuclear genetic diversity, should include representatives of the smaller, peripheral populations.


Assuntos
Erysimum/genética , Variação Genética/genética , Repetições de Microssatélites/genética , Filogenia , Alelos , Ecossistema , Erysimum/crescimento & desenvolvimento , Fluxo Gênico , Genética Populacional , Genoma de Planta/genética , Ilhas , Densidade Demográfica
2.
Am J Bot ; 104(2): 252-260, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28202454

RESUMO

PREMISE OF THE STUDY: Local ecological conditions influence the impact of species interactions on evolution and community structure. We investigated whether pollinator-mediated interactions between coflowering plants vary with plant density, coflowering neighbor identity, and flowering season. METHODS: We conducted a field experiment in which flowering time and floral neighborhood were manipulated in a factorial design. Early- and late-flowering Clarkia unguiculata plants were placed into arrays with C. biloba neighbors, noncongeneric neighbors, additional conspecific plants, or no additional plants as a density control. We compared whole-plant pollen limitation of seed set, pollinator behavior, and pollen deposition among treatments. KEY RESULTS: Interactions mediated by shared pollinators depended on the identity of the neighbor and possibly changed through time, although flowering-season comparisons were compromised by low early-season plant survival. Interactions with conspecific neighbors were likely competitive late in the season. Interactions with C. biloba appeared to involve facilitation or neutral interactions. Interactions with noncongeners were more consistently competitive. The community composition of pollinators varied among treatment combinations. CONCLUSIONS: Pollinator-mediated interactions involved competition and likely facilitation, depending on coflowering neighbor. Experimental manipulation helped to reveal context-dependent variation in indirect biotic interactions.


Assuntos
Abelhas/fisiologia , Clarkia/parasitologia , Himenópteros/fisiologia , Polinização/fisiologia , Animais , Clarkia/classificação , Clarkia/crescimento & desenvolvimento , Ecossistema , Erysimum/crescimento & desenvolvimento , Erysimum/parasitologia , Flores/crescimento & desenvolvimento , Flores/parasitologia , Pólen/crescimento & desenvolvimento , Pólen/parasitologia , Densidade Demográfica , Raphanus/crescimento & desenvolvimento , Raphanus/parasitologia , Reprodução/fisiologia , Estações do Ano , Especificidade da Espécie
3.
Am J Bot ; 103(11): 1979-1989, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27864264

RESUMO

PREMISE OF THE STUDY: Self incompatibility (SI) in rare plants presents a unique challenge-SI protects plants from inbreeding depression, but requires a sufficient number of mates and xenogamous pollination. Does SI persist in an endangered polyploid? Is pollinator visitation sufficient to ensure reproductive success? Is there evidence of inbreeding/outbreeding depression? We characterized the mating system, primary pollinators, pollen limitation, and inbreeding/outbreeding depression in Erysimum teretifolium to guide conservation efforts. METHODS: We compared seed production following self pollination and within- and between-population crosses. Pollen tubes were visualized after self pollinations and between-population pollinations. Pollen limitation was tested in the field. Pollinator observations were quantified using digital video. Inbreeding/outbreeding depression was assessed in progeny from self and outcross pollinations at early and later developmental stages. KEY RESULTS: Self-pollination reduced seed set by 6.5× and quadrupled reproductive failure compared with outcross pollination. Pollen tubes of some self pollinations were arrested at the stigmatic surface. Seed-set data indicated strong SI, and fruit-set data suggested partial SI. Pollinator diversity and visitation rates were high, and there was no evidence of pollen limitation. Inbreeding depression (δ) was weak for early developmental stages and strong for later developmental stages, with no evidence of outbreeding depression. CONCLUSIONS: The rare hexaploid E. teretifolium is largely self incompatible and suffers from late-acting inbreeding depression. Reproductive success in natural populations was accomplished through high pollinator visitation rates consistent with a lack of pollen limitation. Future reproductive health for this species will require large population sizes with sufficient mates and a robust pollinator community.


Assuntos
Erysimum/fisiologia , Insetos/fisiologia , Polinização , Animais , Erysimum/genética , Erysimum/crescimento & desenvolvimento , Flores/genética , Flores/crescimento & desenvolvimento , Flores/fisiologia , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/fisiologia , Depressão por Endogamia , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/fisiologia , Tubo Polínico/genética , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/fisiologia , Poliploidia , Reprodução , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Autofertilização , Autoincompatibilidade em Angiospermas
4.
BMC Plant Biol ; 16: 77, 2016 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-27039085

RESUMO

BACKGROUND: In many species floral senescence is coordinated by ethylene. Endogenous levels rise, and exogenous application accelerates senescence. Furthermore, floral senescence is often associated with increased reactive oxygen species, and is delayed by exogenously applied cytokinin. However, how these processes are linked remains largely unresolved. Erysimum linifolium (wallflower) provides an excellent model for understanding these interactions due to its easily staged flowers and close taxonomic relationship to Arabidopsis. This has facilitated microarray analysis of gene expression during petal senescence and provided gene markers for following the effects of treatments on different regulatory pathways. RESULTS: In detached Erysimum linifolium (wallflower) flowers ethylene production peaks in open flowers. Furthermore senescence is delayed by treatments with the ethylene signalling inhibitor silver thiosulphate, and accelerated with ethylene released by 2-chloroethylphosphonic acid. Both treatments with exogenous cytokinin, or 6-methyl purine (which is an inhibitor of cytokinin oxidase), delay petal senescence. However, treatment with cytokinin also increases ethylene biosynthesis. Despite the similar effects on senescence, transcript abundance of gene markers is affected differentially by the treatments. A significant rise in transcript abundance of WLS73 (a putative aminocyclopropanecarboxylate oxidase) was abolished by cytokinin or 6-methyl purine treatments. In contrast, WFSAG12 transcript (a senescence marker) continued to accumulate significantly, albeit at a reduced rate. Silver thiosulphate suppressed the increase in transcript abundance both of WFSAG12 and WLS73. Activity of reactive oxygen species scavenging enzymes changed during senescence. Treatments that increased cytokinin levels, or inhibited ethylene action, reduced accumulation of hydrogen peroxide. Furthermore, although auxin levels rose with senescence, treatments that delayed early senescence did not affect transcript abundance of WPS46, an auxin-induced gene. CONCLUSIONS: A model for the interaction between cytokinins, ethylene, reactive oxygen species and auxin in the regulation of floral senescence in wallflowers is proposed. The combined increase in ethylene and reduction in cytokinin triggers the initiation of senescence and these two plant growth regulators directly or indirectly result in increased reactive oxygen species levels. A fall in conjugated auxin and/or the total auxin pool eventually triggers abscission.


Assuntos
Erysimum/crescimento & desenvolvimento , Erysimum/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Citocininas/metabolismo , Erysimum/genética , Etilenos/metabolismo , Flores/crescimento & desenvolvimento , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Transdução de Sinais , Fatores de Tempo
5.
New Phytol ; 196(3): 945-954, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22988918

RESUMO

Symmetry is an important feature of floral structure, and floral symmetries are diverse and often complex. We use a new morphometric approach for analysing shapes with complex types of symmetry, which partitions shape variation into a component of symmetric variation and different components of asymmetry. This approach, based on the mathematical theory of symmetry groups, can be used for landmark configurations with any type of symmetry and is therefore promising as a general framework for morphometric analyses of floral symmetry and asymmetry. We demonstrate this approach by quantifying floral shape variation in a wild population of Erysimum mediohispanicum (Brassicaceae). Flowers of this species are disymmetric, so that the symmetry in the left-right and adaxial-abaxial directions can be considered separately and in combination. Both principal component analysis and Procrustes ANOVA indicate that symmetric variation accounts for most of the total variance and that adaxial-abaxial asymmetry is the dominant component of fluctuating asymmetry. Each component is associated with specific patterns of shape variation. These results illustrate the potential of the new method and suggest new areas for future research. The new morphometric approach is promising for further analyses of floral symmetry and asymmetry in evolutionary and developmental contexts.


Assuntos
Biologia Computacional/métodos , Erysimum/anatomia & histologia , Flores/anatomia & histologia , Desenvolvimento Vegetal , Análise de Variância , Evolução Biológica , Erysimum/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Análise de Componente Principal , Especificidade da Espécie
6.
Am J Bot ; 98(11): 1752-61, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21984617

RESUMO

PREMISE OF THE STUDY: Distinguishing the contributions of phenotypic plasticity vs. population differentiation to variation in the life history of plants throughout their range is important for predicting their performance after dispersal or their responses to environmental change. In Erysimum capitatum, plants in alpine environments are iteroparous perennials, but those below tree line are semelparous perennials. We tested population differentiation and plasticity of life-history variation and explored the effects of plastic responses at the prereproductive stage on life-history expression. METHODS: Plants from alpine and below tree-line populations were grown in a common greenhouse environment. Soil water content at the prereproductive stage was manipulated to simulate field condition. Because rosette ontogeny of E. capitatum (i.e., production of multiple rosettes, reproductive allocation, and degeneration of rosettes) was highly associated with in situ life-history variation, water effects on rosette ontogeny and life history were assessed. KEY RESULTS: Plants from alpine populations showed higher postreproductive survival than those from low-elevation populations in the greenhouse environment, and such difference can be explained by differential rosette ontogeny at both the prereproductive and reproductive stage. In addition, rosette development at the reproductive stage was plastic to water availability at the prereproductive stage, which influences life-history expression as adults. CONCLUSIONS: Because water availability is lower at low-elevation sites, in situ population differentiation is likely caused by plasticity to water availability as well as by genetic differentiation or maternal effects. Plastic or evolutionary changes of prereproductive traits are expected to influence adult life-history expression, which possibly influence population demography.


Assuntos
Altitude , Erysimum/crescimento & desenvolvimento , Erysimum/genética , Flores/crescimento & desenvolvimento , Água , Adaptação Fisiológica , Evolução Biológica , Meio Ambiente , Variação Genética , Fenótipo
7.
Plant Physiol ; 147(4): 1898-912, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18539778

RESUMO

Petals and leaves share common evolutionary origins but perform very different functions. However, few studies have compared leaf and petal senescence within the same species. Wallflower (Erysimum linifolium), an ornamental species closely related to Arabidopsis (Arabidopsis thaliana), provide a good species in which to study these processes. Physiological parameters were used to define stages of development and senescence in leaves and petals and to align these stages in the two organs. Treatment with silver thiosulfate confirmed that petal senescence in wallflower is ethylene dependent, and treatment with exogenous cytokinin and 6-methyl purine, an inhibitor of cytokinin oxidase, suggests a role for cytokinins in this process. Subtractive libraries were created, enriched for wallflower genes whose expression is up-regulated during leaf or petal senescence, and used to create a microarray, together with 91 senescence-related Arabidopsis probes. Several microarray hybridization classes were observed demonstrating similarities and differences in gene expression profiles of these two organs. Putative functions were ascribed to 170 sequenced DNA fragments from the libraries. Notable similarities between leaf and petal senescence include a large proportion of remobilization-related genes, such as the cysteine protease gene SENESCENCE-ASSOCIATED GENE12 that was up-regulated in both tissues with age. Interesting differences included the up-regulation of chitinase and glutathione S-transferase genes in senescing petals while their expression remained constant or fell with age in leaves. Semiquantitative reverse transcription-polymerase chain reaction of selected genes from the suppression subtractive hybridization libraries revealed more complex patterns of expression compared with the array data.


Assuntos
Erysimum/genética , Expressão Gênica , Genes de Plantas , Arabidopsis/genética , Northern Blotting , Erysimum/anatomia & histologia , Erysimum/crescimento & desenvolvimento , Flores/anatomia & histologia , Flores/genética , Flores/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Biblioteca Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade da Espécie
8.
Ann Bot ; 101(9): 1413-20, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18424472

RESUMO

BACKGROUND AND AIMS: Floral rewards may be associated with certain morphological floral traits and thus act as underlying factors promoting selection on these traits. This study investigates whether some traits that are under pollinator-mediated selection (flower number, stalk height, corolla diameter, corolla tube length and corolla tube width) in the Mediterranean herb E. mediohispanicum (Brassicaceae) are associated with rewards (pollen and nectar). METHODS: During 2005 the phenotypic traits and the visitation rate of the main pollinator functional groups were quantified in 720 plants belonging to eight populations in south-east Spain, and during 2006 the same phenotypic traits and the reward production were quantified in 400 additional plants from the same populations. KEY RESULTS: A significant correlation was found between nectar production rate and corolla tube length, and between pollen production and corolla diameter. Visitation rates of large bees and butterflies were significantly higher in plants exhibiting larger flowers with longer corolla tubes. CONCLUSIONS: The association between reward production and floral traits may be a factor underlying the pattern of visitation rate displayed by some pollinators.


Assuntos
Erysimum/fisiologia , Flores/fisiologia , Erysimum/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Pólen/fisiologia , Polinização/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA