Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 190: 114612, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945620

RESUMO

Iron deficiency is widespread throughout the world, supplementing sufficient iron or improving the bioavailability of iron is the fundamental strategy to solve the problem of iron scarcity. Herein, we explored a new form of iron supplement, iron chelates of silver carp scales (SCSCP-Fe) were prepared from collagen peptide of silver carp scales (SCSCP) and FeCl2·4H2O, the effects of external environment and simulated gastrointestinal digestive environment on the stability of SCSCP-Fe and the structural changes of peptide iron chelates during digestion were investigated. The results of in vitro iron absorption promotion showed that the iron bioavailability of SCSCP-Fe was higher than that of FeSO4. Two potential high iron chelating peptides DTSGGYDEY (DY) and LQGSNEIEIR (LR) were screened and synthesized from the SCSCP sequence by molecular dynamics and LC-MS/MS techniques. The FTIR results displayed that the binding sites of DY and LR for Fe2+ were the carboxyl group, the amino group, and the nitrogen atom on the amide group on the peptide. ITC results indicated that the chelation reactions of DY and LR with Fe2+ were mainly dominated by electrostatic interactions, forming chelates in stoichiometric ratios of 1:2 and 1:1, respectively. Both DY and LR had a certain ability to promote iron absorption. The transport of DY-Fe chelate may be a combination of the three pathways: PepT1 vector pathway, cell bypass, and endocytosis, while LR-Fe chelate was dominated by bivalent metal ion transporters. This study is expected to provide theoretical reference and technical support for the high-value utilization of silver carp scales and the development of novel iron supplements.


Assuntos
Carpas , Colágeno , Digestão , Quelantes de Ferro , Carpas/metabolismo , Animais , Quelantes de Ferro/química , Colágeno/química , Colágeno/metabolismo , Ferro/química , Ferro/metabolismo , Escamas de Animais/química , Escamas de Animais/metabolismo , Disponibilidade Biológica , Peptídeos/química , Peptídeos/metabolismo , Absorção Intestinal , Humanos , Proteínas de Peixes/metabolismo , Proteínas de Peixes/química , Compostos Ferrosos/química , Compostos Ferrosos/metabolismo , Espectrometria de Massas em Tandem
2.
BMC Genomics ; 25(1): 535, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38816837

RESUMO

BACKGROUND: Setae on the pad lamellae of the Japanese gecko Gekko japonicus (Schlegel, 1836), a vital epidermal derivative, are primarily composed of cornified beta-proteins (CBPs) and play a pivotal role in adhesion and climbing. The amino acid composition of CBPs might be a determining factor influencing their functional properties. However, the molecular mechanisms governed by CBP genes with diverse amino acid compositions in setae development remain unexplored. RESULTS: Based on RNA-seq analyses, this study confirmed that all G. japonicus CBPs (GjCBPs) are involved in setae formation. Cysteine-rich CBPs encoding genes (ge-cprp-17 to ge-cprp-26) and glycine-rich CBPs encoding genes (ge-gprp-17 to ge-gprp-22) were haphazardly selected, with quantitative real-time PCR revealing their expression patterns in embryonic pad lamellae and dorsal epidermis. It is inferred that glycine-rich CBPs are integral to the formation of both dorsal scales and lamellar setae, cysteine-rich CBPs are primarily associated with setae development. Additionally, fluorescence in situ hybridization revealed spatiotemporal differences in the expression of a glycine-rich CBP encoding gene (ge-gprp-19) and a cysteine-rich CBP encoding gene (ge-cprp-17) during dorsal scales and/or lamellar development. CONCLUSIONS: All 66 CBPs are involved in the formation of setae. Glycine-rich CBPs hold a significant role in the development of dorsal scales and lamellar setae, whereas most cysteine-rich CBPs appear to be essential components of G. japonicus setae. Even GjCBPs with similar amino acid compositions may play diverse functions. The clear spatio-temporal expression differences between the glycine-rich and cysteine-rich CBP encoding genes during epidermal scale and/or setae formation were observed. Embryonic developmental stages 39 to 42 emerged as crucial phases for setae development. These findings lay the groundwork for deeper investigation into the function of GjCBPs in the development of G. japonicus setae.


Assuntos
Cisteína , Glicina , Lagartos , Animais , Lagartos/genética , Lagartos/metabolismo , Glicina/metabolismo , Cisteína/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Escamas de Animais/metabolismo , Perfilação da Expressão Gênica
3.
Nat Commun ; 15(1): 4073, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769302

RESUMO

Vivid structural colours in butterflies are caused by photonic nanostructures scattering light. Structural colours evolved for numerous biological signalling functions and have important technological applications. Optically, such structures are well understood, however insight into their development in vivo remains scarce. We show that actin is intimately involved in structural colour formation in butterfly wing scales. Using comparisons between iridescent (structurally coloured) and non-iridescent scales in adult and developing H. sara, we show that iridescent scales have more densely packed actin bundles leading to an increased density of reflective ridges. Super-resolution microscopy across three distantly related butterfly species reveals that actin is repeatedly re-arranged during scale development and crucially when the optical nanostructures are forming. Furthermore, actin perturbation experiments at these later developmental stages resulted in near total loss of structural colour in H. sara. Overall, this shows that actin plays a vital and direct templating role during structural colour formation in butterfly scales, providing ridge patterning mechanisms that are likely universal across lepidoptera.


Assuntos
Citoesqueleto de Actina , Actinas , Borboletas , Pigmentação , Asas de Animais , Animais , Borboletas/metabolismo , Borboletas/fisiologia , Borboletas/ultraestrutura , Asas de Animais/ultraestrutura , Asas de Animais/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Actinas/metabolismo , Cor , Escamas de Animais/metabolismo , Escamas de Animais/ultraestrutura
4.
Sci Rep ; 13(1): 12548, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37532809

RESUMO

Melanoma is a type of cancer with abnormal proliferation of melanocytes and is one of the most diagnosed cancer types. In traditional Chinese medicine, pangolin scales have been used to treat various diseases, including human cancers. However, its efficacy has not been scientifically proven. Here we studied the anticancer effect and mechanism of pangolin scale extract (PSE) on melanoma cell lines using scientific approaches. Our cell viability assay shows that PSE exhibits up to approximately 50-80% inhibition on SK-MEL-103 and A375 melanoma cell lines. Mechanically, PSE inhibits melanoma cell proliferation, migration, and causes changes in cell morphology. The apoptosis assay showed a significant chromosomal condensation inside the PSE-treated melanoma cells. The sequencing and analysis of A375 melanoma cell transcriptomes revealed 3077 differentially expressed genes in the 6 h treatment group and 8027 differentially expressed genes in the 72 h treatment group. Transcriptome analysis suggests that PSE may cause cell cycle arrest in melanoma cells and promote apoptosis mainly by up-regulating the p53 signaling pathway and down-regulating the PI3K-Akt signaling pathway. In this study, the anticancer effect of PSE was demonstrated by molecular biological means. PSE shows a significant inhibition effect on melanoma cell proliferation and cell migration in vitro, causes cell cycle arrest and promotes apoptosis through p53 and PI3K-AKT pathways. This study provides better insights into the anti-cancer efficacy and underlying mechanism of PSE and a theoretical basis for mining anticancer compounds or the development of new treatments for melanoma in the future. It is worth noting that this study does not advocate the use of the pangolin scale for disease treatment, but only to confirm its usefulness from a scientific research perspective and to encourage subsequent research around the development of active compounds to replace pangolin scales to achieve the conservation of this endangered species.


Assuntos
Escamas de Animais , Melanoma , Animais , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Escamas de Animais/metabolismo , Pangolins/metabolismo , Linhagem Celular Tumoral , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Proliferação de Células , Apoptose
5.
Sci Rep ; 12(1): 126, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34997067

RESUMO

The growth of skin appendages, such as hair, feathers and scales, depends on terminal differentiation of epidermal keratinocytes. Here, we investigated keratinocyte differentiation in avian scutate scales. Cells were isolated from the skin on the legs of 1-day old chicks and subjected to single-cell transcriptomics. We identified two distinct populations of differentiated keratinocytes. The first population was characterized by mRNAs encoding cysteine-rich keratins and corneous beta-proteins (CBPs), also known as beta-keratins, of the scale type, indicating that these cells form hard scales. The second population of differentiated keratinocytes contained mRNAs encoding cysteine-poor keratins and keratinocyte-type CBPs, suggesting that these cells form the soft interscale epidermis. We raised an antibody against keratin 9-like cysteine-rich 2 (KRT9LC2), which is encoded by an mRNA enriched in the first keratinocyte population. Immunostaining confirmed expression of KRT9LC2 in the suprabasal epidermal layers of scutate scales but not in interscale epidermis. Keratinocyte differentiation in chicken leg skin resembled that in human skin with regard to the transcriptional upregulation of epidermal differentiation complex genes and genes involved in lipid metabolism and transport. In conclusion, this study defines gene expression programs that build scutate scales and interscale epidermis of birds and reveals evolutionarily conserved keratinocyte differentiation genes.


Assuntos
Escamas de Animais/metabolismo , Proteínas Aviárias/genética , Diferenciação Celular/genética , Galinhas/genética , Perfilação da Expressão Gênica , Queratinócitos/metabolismo , Análise de Célula Única , Transcriptoma , Escamas de Animais/citologia , Animais , Animais Recém-Nascidos , Proteínas Aviárias/metabolismo , Galinhas/metabolismo , Evolução Molecular , Extremidades , RNA-Seq , Especificidade da Espécie , Transcrição Gênica
6.
Biochemistry (Mosc) ; 86(10): 1192-1200, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34903151

RESUMO

Omeprazole suppresses excessive secretion of gastric acid via irreversible inhibition of H+/K+-ATPase in the gastric parietal cells. Recent meta-analysis of data revealed an association between the use of proton pump inhibitors (PPIs) and increased risk of bone fractures, but the underlying molecular mechanism of PPI action remains unclear. In this study, we demonstrated that omeprazole directly influences bone metabolism using a unique in vitro bioassay system with teleost scales, as well as the in vivo model. The in vitro study showed that omeprazole significantly increased the activities of alkaline phosphatase and tartrate-resistant acid phosphatase after 6 h of incubation with this PPI. Expression of mRNAs for several osteoclastic markers was upregulated after 3-h incubation of fish scales with 10-7 M omeprazole. The in vivo experiments revealed that the plasma calcium levels significantly increased in the omeprazole-treated group. The results of in vitro and in vivo studies suggest that omeprazole affects bone cells by increasing bone resorption by upregulating expression of osteoclastic genes and promoting calcium release to the circulation. The suggested in vitro bioassay in fish scales is a practical model that can be used to study the effects of drugs on bone metabolism.


Assuntos
Escamas de Animais/efeitos dos fármacos , Carpa Dourada/metabolismo , Omeprazol/farmacologia , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Escamas de Animais/citologia , Escamas de Animais/metabolismo , Animais , Antiulcerosos/farmacologia , Cálcio/metabolismo , Linfocinas/metabolismo , Modelos Animais , Osteoblastos/metabolismo , Osteoclastos/metabolismo
7.
Int J Biol Macromol ; 186: 145-154, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34246667

RESUMO

Herein, three types of silver carp scale gelatins were extracted, and their molecular weight distribution, structural properties, functional properties and emulsifying properties were investigated and discussed. Acetic acid-extracted gelatin (AAG), hot water-extracted gelatin (HWG), and pepsin enzyme-extracted gelatin (PEG) showed similar and four clear bands in sodium dodecyl sulfate-polyacrylamide gel electrophoresis pattern, whereas they showed different ß chain amounts and ß-sheet percentages. The water-holding capacity values (g/g of gelatin) were: AAG (16.8 ± 1.1) > HWG (14.0 ± 0.7) ≈ PEG (13.5 ± 1.6). The fat-binding capacity values (g/g of gelatin) were: AAG (11.8 ± 0.3) > HWG (9.5 ± 1.3) > PEG (5.3 ± 0.4). Emulsion droplet sizes and creaming index values decreased with the increase of gelatin concentrations for all the fish oil-loaded emulsions stabilized by three types of gelatins. Compared with PEG, AAG and HWG show similar and higher emulsion stability at high gelatin concentration (10 mg/mL). The stabilization mechanism of fish oil-loaded silver carp scale gelatin-stabilized emulsions involved an "extraction method-protein molecular weight distribution-protein molecular structure-molecular interaction-emulsibility-droplet structure-emulsion stability" route. This work would be beneficial for the research on the relationship of structure and function of gelatin and to the comprehensive utilization of aquatic products.


Assuntos
Escamas de Animais/metabolismo , Carpas/metabolismo , Excipientes/química , Óleos de Peixe/química , Proteínas de Peixes/química , Gelatina/química , Animais , Fracionamento Químico , Composição de Medicamentos , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Emulsões , Excipientes/isolamento & purificação , Óleos de Peixe/farmacologia , Proteínas de Peixes/isolamento & purificação , Gelatina/isolamento & purificação , Concentração de Íons de Hidrogênio , Peso Molecular , Tamanho da Partícula , Fatores de Tempo
8.
Commun Biol ; 4(1): 554, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976379

RESUMO

Glyphosate is widely used as a herbicide, but recent studies begin to reveal its detrimental side effects on animals by targeting the shikimate pathway of associated gut microorganisms. However, its impact on nutritional endosymbionts in insects remains poorly understood. Here, we sequenced the tiny, shikimate pathway encoding symbiont genome of the sawtoothed grain beetle Oryzaephilus surinamensis. Decreased titers of the aromatic amino acid tyrosine in symbiont-depleted beetles underscore the symbionts' ability to synthesize prephenate as the precursor for host tyrosine synthesis and its importance for cuticle sclerotization and melanization. Glyphosate exposure inhibited symbiont establishment during host development and abolished the mutualistic benefit on cuticle synthesis in adults, which could be partially rescued by dietary tyrosine supplementation. Furthermore, phylogenetic analyses indicate that the shikimate pathways of many nutritional endosymbionts likewise contain a glyphosate sensitive 5-enolpyruvylshikimate-3-phosphate synthase. These findings highlight the importance of symbiont-mediated tyrosine supplementation for cuticle biosynthesis in insects, but also paint an alarming scenario regarding the use of glyphosate in light of recent declines in insect populations.


Assuntos
Besouros/metabolismo , Glicina/análogos & derivados , Simbiose/fisiologia , Escamas de Animais/metabolismo , Animais , Besouros/fisiologia , Glicina/metabolismo , Glicina/farmacologia , Herbicidas , Filogenia , Ácido Chiquímico/metabolismo , Simbiose/efeitos dos fármacos , Glifosato
9.
Nat Commun ; 12(1): 2433, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33893277

RESUMO

We previously showed that the adult ocellated lizard skin colour pattern is effectively generated by a stochastic cellular automaton (CA) of skin scales. We additionally suggested that the canonical continuous 2D reaction-diffusion (RD) process of colour pattern development is transformed into this discrete CA by reduced diffusion coefficients at the borders of scales (justified by the corresponding thinning of the skin). Here, we use RD numerical simulations in 3D on realistic lizard skin geometries and demonstrate that skin thickness variation on its own is sufficient to cause scale-by-scale coloration and CA dynamics during RD patterning. In addition, we show that this phenomenon is robust to RD model variation. Finally, using dimensionality-reduction approaches on large networks of skin scales, we show that animal growth affects the scale-colour flipping dynamics by causing a substantial decrease of the relative length scale of the labyrinthine colour pattern of the lizard skin.


Assuntos
Escamas de Animais/fisiologia , Lagartos/fisiologia , Fenômenos Fisiológicos da Pele , Pigmentação da Pele/fisiologia , Algoritmos , Escamas de Animais/metabolismo , Animais , Difusão , Lagartos/metabolismo , Modelos Biológicos , Pele/metabolismo
10.
Mol Biol Rep ; 48(3): 2399-2410, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33742327

RESUMO

BACKGROUND: Teleost scale not only provides a protective layer resisting penetration and pathogens but also participate in coloration. It is interesting to study the mechanism of teleost scale formation. Furthermore, whether there existed consensus genes between scale coloration and skin coloration has not been examined yet. METHODS AND RESULTS: We analyzed the transcriptome profiles of red scale, white scale, red skin, and white skin of common carp (Cyprinus carpio). Pair-wise comparison identified 3391 differentially expressed genes (DEGs) between scale and skin, respectively. The 1765 up-regulated genes (UEGs) in scale, as the down-regulated genes in skin, preferred mineralization and other scale development-related processes. The 1626 skin UEGs were enriched in the morphogenesis of skin and appendages. We also identified 195 UEGs in white scale and 223 UEGs in red scale. The white scale UEGs primarily participated in regulation of growth and cell migration. The UEGs in red scale preferred pigment cell differentiation and retinoid metabolic process. A total of 22 DEGs had consensus expression patterns in skin and scale of the same coloration. The expression levels of these DEGs clearly grouped skin and scale of the same coloration together with principle component analysis and correlation analysis. Eleven consensus DEGs were homologous to the orthologs of Poropuntius huangchuchieni, 82% of which were under strong purifying selection. Eight processes including lipid storage and lipid catabolism were shared in both scale pigmentation and skin pigmentation. CONCLUSIONS: We identified consensus DEGs and biological processes in scale and skin pigmentation. Our transcriptome analysis will contribute to further elucidation of mechanisms of teleost scale formation and coloration.


Assuntos
Carpas/genética , Análise de Sequência de RNA , Pigmentação da Pele/genética , Transcriptoma/genética , Escamas de Animais/metabolismo , Animais , Sequência Conservada/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genoma , Especificidade de Órgãos/genética , Pele/metabolismo
11.
J Fish Biol ; 98(1): 17-32, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32964432

RESUMO

The elasmoid scales of anadromous sea trout Salmo trutta L. represent a significant internal reservoir of Ca2+ . Although more is known about long-term remodelling of scales in response to calciotropic challenges encountered during smoltification and migration, very little is known about the contribution made by scales to the short-term, minute-to-minute regulation of Ca2+ homeostasis in the extracellular fluid (ECF) during these phases of the life cycle. This gap in the knowledge is partly due to the technical challenges involved in measuring small Ca2+ fluxes around the scales of live fish in real time. Here, this study describes exfoliating, mounting and culturing scales and their resident cells from parr, smolt and adult sea trout from a freshwater environment, as well as from adult sea trout caught in sea or brackish water. All the scales were then examined using an extracellular, non-invasive, surface-scanning Ca2+ -sensitive microelectrode. The authors quantified the Ca2+ fluxes, in the absence of any systemic or local regulators, into and out of scales on both the episquamal and hyposquamal sides under different extracellular calcemic challenges set to mimic a variety of ECF-Ca2+ concentrations. Scales from the life-cycle stages as well as from adult fish taken from sea, brackish or fresh water all showed a consistent efflux or influx of Ca2+ under hypo- or hypercalcemic conditions, respectively. What were considered to be isocalcemic conditions resulted in minimal flux of Ca2+ in either direction, or in the case of adult scales, a consistent but small influx. Indeed, adult scales appeared to display the largest flux densities in either direction. These new data extend the current understanding of the role played by fish scales in the short-term, minute-to-minute homeostatic regulation of ECF-Ca2+ concentration, and are similar to those recently reported from zebrafish Danio rerio scales. This suggests that this short-term regulatory response might be a common feature of teleost scales.


Assuntos
Migração Animal/fisiologia , Escamas de Animais/metabolismo , Cálcio/metabolismo , Líquido Extracelular/química , Homeostase , Truta/fisiologia , Animais , Cálcio/sangue , Água Doce , Água do Mar , Truta/sangue
12.
ACS Appl Bio Mater ; 4(1): 462-469, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35014297

RESUMO

A biodegradable composite nanofiber containing polyhydroxyalkanoate (PHA) or modified PHA (MPHA) and treated fish-scale powder (TFSP) was prepared and characterized. The powder (20-80 nm) was prepared by grinding after treating FSP with water, acid, and heat (450 °C) to yield the TFSP. Composite nanofibers (100-500 nm long) of TFSP/PHA and TFSP/MPHA were fabricated by electrospinning using a biaxial feed method. The TFSP, which had a high hydroxyapatite content, was suitable as a filler for composites. The Ca/P ratio of the TFSP was similar to that of the human bone. Particle size analysis and analysis of scanning electron microscopy images indicated that, compared with the PHA/TFSP composite, the MPHA/TFSP nanofibers were more uniform and bonded more strongly in the matrix. The tensile strength at failure of the MPHA/TFSP specimens was enhanced and increased with increasing TFSP content. The elongation at failure was lower and decreased with increasing TFSP concentration. The water contact angle decreased with increasing TFSP content in PHA/TFSP and MPHA/TFSP nanofiber membranes. The TFSP enhanced the hydrophilic effect of the PHA/TFSP and MPHA/TFSP nanofiber membranes and provided a more suitable environment for cell growth. This composite nanofiber has potential in many biomedical applications.


Assuntos
Escamas de Animais/metabolismo , Materiais Biocompatíveis/química , Nanofibras/química , Animais , Materiais Biocompatíveis/metabolismo , Materiais Biocompatíveis/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Durapatita/química , Peixes/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Tamanho da Partícula , Poli-Hidroxialcanoatos/química , Propriedades de Superfície , Resistência à Tração , Água/química
13.
Int J Biol Macromol ; 164: 626-637, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32668308

RESUMO

Acute full-thickness wounds require a more extended healing period, thus increasing the risk of infection. Severe infection frequently resulted in wound ulceration, necrosis, and even life-threatening complications. Here, a hybrid hydrogel comprising aminated collagen (AC), oxidized sodium alginate (OSA), and antimicrobial peptides (polymyxin B sulfate and bacitracin) was developed to enhance full-thickness wound healing. The AC with low immunogenicity and high biocompatibility was made from marine fish scales, which are eco-friendly, low-cost, and sustainable. The cross-linked hydrogel was formed by a Schiff base reaction without any catalysts and additional procedures. As expected, the presented hybrid hydrogel can effectively against E. coli and S. aureus, as well as promote cell growth and angiogenesis in vitro. In addition, the hydrogel can promote full-thickness wound healing in a rat model through accelerating reepithelialization, collagen deposition, and angiogenesis. Our work demonstrated that the hybrid hydrogel has promising applications in the field of wound healing, which would prompt the utilization of marine fish resources during food processing.


Assuntos
Alginatos/química , Colágeno/química , Peixes/metabolismo , Proteínas Citotóxicas Formadoras de Poros/administração & dosagem , Cicatrização/efeitos dos fármacos , Aminação , Escamas de Animais/metabolismo , Animais , Bacitracina/administração & dosagem , Bacitracina/síntese química , Bacitracina/química , Bacitracina/farmacologia , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Escherichia coli/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Hidrogéis , Testes de Sensibilidade Microbiana , Neovascularização Fisiológica/efeitos dos fármacos , Polimixina B/administração & dosagem , Polimixina B/síntese química , Polimixina B/química , Polimixina B/farmacologia , Proteínas Citotóxicas Formadoras de Poros/síntese química , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Ratos , Bases de Schiff/química , Staphylococcus aureus/efeitos dos fármacos
14.
Commun Biol ; 3(1): 190, 2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32327701

RESUMO

Differentiation of osteoclasts (OCs) from hematopoietic cells requires cellular interaction with osteoblasts (OBs). Due to the difficulty of live-imaging in the bone, however, the cellular and molecular mechanisms underlying intercellular communication involved in OC differentiation are still elusive. Here, we develop a fracture healing model using the scale of trap:GFP; osterix:mCherry transgenic zebrafish to visualize the interaction between OCs and OBs. Transplantation assays followed by flow cytometric analysis reveal that most trap:GFPhigh OCs in the fractured scale are detected in the osterix:mCherry+ fraction because of uptake of OB-derived extracellular vesicles (EVs). In vivo live-imaging shows that immature OCs actively interact with osterix:mCherry+ OBs and engulf EVs prior to convergence at the fracture site. In vitro cell culture assays show that OB-derived EVs promote OC differentiation via Rankl signaling. Collectively, these data suggest that EV-mediated intercellular communication with OBs plays an important role in the differentiation of OCs in bone tissue.


Assuntos
Escamas de Animais/metabolismo , Diferenciação Celular , Vesículas Extracelulares/transplante , Consolidação da Fratura , Osteoblastos/transplante , Osteoclastos/metabolismo , Osteogênese , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Células Cultivadas , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Modelos Animais , Osteoblastos/metabolismo , Peixe-Zebra/genética , Proteína Vermelha Fluorescente
15.
BMC Evol Biol ; 20(1): 21, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019492

RESUMO

BACKGROUND: The hybridizing field crickets, Gryllus firmus and Gryllus pennsylvanicus have several barriers that prevent gene flow between species. The behavioral pre-zygotic mating barrier, where males court conspecifics more intensely than heterospecifics, is important because by acting earlier in the life cycle it has the potential to prevent a larger fraction of hybridization. The mechanism behind such male mate preference is unknown. Here we investigate if the female cuticular hydrocarbon (CHC) profile could be the signal behind male courtship. RESULTS: While males of the two species display nearly identical CHC profiles, females have different, albeit overlapping profiles and some females (between 15 and 45%) of both species display a male-like profile distinct from profiles of typical females. We classified CHC females profile into three categories: G. firmus-like (F; including mainly G. firmus females), G. pennsylvanicus-like (P; including mainly G. pennsylvanicus females), and male-like (ML; including females of both species). Gryllus firmus males courted ML and F females more often and faster than they courted P females (p < 0.05). Gryllus pennsylvanicus males were slower to court than G. firmus males, but courted ML females more often (p < 0.05) than their own conspecific P females (no difference between P and F). Both males courted heterospecific ML females more often than other heterospecific females (p < 0.05, significant only for G. firmus males). CONCLUSIONS: Our results suggest that male mate preference is at least partially informed by female CHC profile and that ML females elicit high courtship behavior in both species. Since ML females exist in both species and are preferred over other heterospecific females, it is likely that this female type is responsible for most hybrid offspring production.


Assuntos
Escamas de Animais/química , Corte , Gryllidae/fisiologia , Hibridização Genética/fisiologia , Hidrocarbonetos/análise , Comportamento Sexual Animal/fisiologia , Escamas de Animais/metabolismo , Animais , Feminino , Gryllidae/genética , Hidrocarbonetos/metabolismo , Masculino , Reprodução/fisiologia
16.
Mol Phylogenet Evol ; 143: 106695, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31805344

RESUMO

The large and diverse P450 (CYP) superfamily encodes enzymes with a wide spectrum of monooxygenase and related activities. Insect P450 enzymes of the CYP4G subfamily are known to catalyze the synthesis of cuticular hydrocarbons that serve multiple functions from desiccation resistance to chemical communication. These functions are essential for survival. In order to understand the evolution of insect CYP4G genes, 368 sequences from 24 insect orders and 167 species were mined and analyzed. The genomes of most species of Neoptera carry at least two CYP4G genes that are paralogs of the two Drosophila CYP4G genes. The duplication of the original CYP4G is basal to Neoptera and no CYP4G is found in Paleoptera, or beyond the class Insecta. The sequences of CYP4G and particularly their active site have been highly conserved over 400 MY, but all CYP4G sequences are characterized by a +44 residue insertion between the G and H helices, which protrudes from the globular structure of the enzyme distally from the membrane anchor. Although it is generally considered that genes with highly conserved sequence and function are evolutionarily "stable", the evidence from the CYP4G subfamily shows that since their initial duplication over 400 MYA, these genes have experienced many gene births and deaths. The CYP4G1 homolog has been lost several times, and is missing in five orders of insects. These losses are both ancient, as in all Hemiptera and Thysanoptera, and more recent as in honey bees. Serial duplications leading to CYP4G gene clusters have also been observed, as in house flies and in fireflies. The detailed evolutionary history of CYP4G genes does not support the "stability" of these essential genes, but rather a "revolving door" pattern where their essential function is maintained despite an apparently random birth and death process. The dual function of cuticular hydrocarbons, in desiccation resistance achieved mainly by the quantity of hydrocarbons produced and in chemical communication, achieved by the blend of hydrocarbons produced, may explain the apparently paradoxical evolution of CYP4G genes.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Evolução Molecular , Hidrocarbonetos/metabolismo , Proteínas de Insetos/metabolismo , Insetos/genética , Escamas de Animais/metabolismo , Animais , Abelhas/classificação , Abelhas/genética , Sistema Enzimático do Citocromo P-450/classificação , Sistema Enzimático do Citocromo P-450/genética , Drosophila/classificação , Drosophila/genética , Proteínas de Insetos/química , Proteínas de Insetos/classificação , Insetos/classificação , Filogenia
17.
J Forensic Sci ; 64(6): 1720-1725, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31674674

RESUMO

One of the most important contributions of forensic entomology is to assist criminal expertise to determine the postmortem interval, which depends on the duration of the immature stages of insects of forensic interest. On the other hand, the time of development of the different stages varies according to the species; therefore, its identification is essential. Currently, few studies have investigated the use of cuticular hydrocarbons, and none regarding fatty acids, as complementary taxonomic tools to expedite species identification. Therefore, we evaluated whether cuticular hydrocarbons together with fatty acids of eggs of flies of the family Calliphoridae, main group of forensic interest, can be used to distinguish species. The analyses were performed by chromatographic techniques. The results show that there are significant differences between the composition of cuticular hydrocarbons and fatty acids between species and, therefore, they can be used to provide a complementary taxonomic tool to expedite the forensic expertise.


Assuntos
Dípteros/metabolismo , Ácidos Graxos/metabolismo , Hidrocarbonetos/metabolismo , Óvulo/metabolismo , Escamas de Animais/metabolismo , Animais , Cromatografia , Análise Discriminante , Entomologia/métodos , Ciências Forenses , Especificidade da Espécie
18.
J Steroid Biochem Mol Biol ; 195: 105448, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31421232

RESUMO

Teleost fish scales play important roles in animal protection and homeostasis. They can be targeted by endogenous estrogens and by environmental estrogenic endocrine disruptors. The phytoestrogen genistein is ubiquitous in the environment and in aquaculture feeds and is a disruptor of estrogenic processes in vertebrates. To test genistein disrupting actions in teleost fish we used a minimally invasive approach by analysing scales plucked from the skin of sea bass (Dicentrarchus labrax). Genistein transactivated all three fish nuclear estrogen receptors and was most potent with the Esr2, had the highest efficacy with Esr1, but reached, in all cases, transactivation levels lower than those of estradiol. RNA-seq revealed 254 responsive genes in the sea bass scales transcriptome with an FDR < 0.05 and more than 2-fold change in expression, 1 or 5 days after acute exposure to estradiol or to genistein. 65 genes were specifically responsive to estradiol and 106 by genistein while 83 genes were responsive to both compounds. Estradiol specifically regulated genes of protein/matrix turnover and genistein affected sterol biosynthesis and regeneration, while innate immune responses were affected by both compounds. This comprehensive study revealed the impact on the fish scale transcriptome of estradiol and genistein, providing a solid background to further develop fish scales as a practical screening tool for endocrine disrupting chemicals in teleosts.


Assuntos
Escamas de Animais/efeitos dos fármacos , Bass/genética , Disruptores Endócrinos/farmacologia , Estradiol/farmacologia , Genisteína/farmacologia , Pele/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Escamas de Animais/metabolismo , Animais , Células HEK293 , Humanos , Receptores de Estrogênio/genética , Pele/metabolismo
19.
J R Soc Interface ; 16(150): 20180775, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30958147

RESUMO

Fish scales are laminated composites that consist of plies of unidirectional collagen fibrils with twisted-plywood stacking arrangement. Owing to their composition, the toughness of scales is dependent on the intermolecular bonding within and between the collagen fibrils. Adjusting the extent of this bonding with an appropriate stimulus has implications for the design of next-generation bioinspired flexible armours. In this investigation, scales were exposed to environments of water or a polar solvent (i.e. ethanol) to influence the extent of intermolecular bonding, and their mechanical behaviour was evaluated in uniaxial tension and transverse puncture. Results showed that the resistance to failure of the scales increased with loading rate in both tension and puncture and that the polar solvent treatment increased both the strength and toughness through interpeptide bonding; the largest increase occurred in the puncture resistance of scales from the tail region (a factor of nearly 7×). The increase in strength and damage tolerance with stronger intermolecular bonding is uncommon for structural materials and is a unique characteristic of the low mineral content. Scales from regions of the body with higher mineral content underwent less strengthening, which is most likely the result of interference posed by the mineral crystals to intermolecular bonding. Overall, the results showed that flexible bioinspired composite materials for puncture resistance should enrol constituents and complementary processing that capitalize on interfibril bonds.


Assuntos
Escamas de Animais , Carpas , Colágeno , Estresse Mecânico , Escamas de Animais/anatomia & histologia , Escamas de Animais/química , Escamas de Animais/metabolismo , Animais , Carpas/anatomia & histologia , Carpas/metabolismo , Colágeno/química , Colágeno/metabolismo , Ligação de Hidrogênio , Minerais/química , Minerais/metabolismo
20.
Proc Natl Acad Sci U S A ; 116(12): 5597-5606, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30842287

RESUMO

Oxytocin/vasopressin-like peptides are important regulators of physiology and social behavior in vertebrates. However, the function of inotocin, the homologous peptide in arthropods, remains largely unknown. Here, we show that the level of expression of inotocin and inotocin receptor are correlated with task allocation in the ant Camponotus fellah Both genes are up-regulated when workers age and switch tasks from nursing to foraging. in situ hybridization revealed that inotocin receptor is specifically expressed in oenocytes, which are specialized cells synthesizing cuticular hydrocarbons which function as desiccation barriers in insects and for social recognition in ants. dsRNA injection targeting inotocin receptor, together with pharmacological treatments using three identified antagonists blocking inotocin signaling, revealed that inotocin signaling regulates the expression of cytochrome P450 4G1 (CYP4G1) and the synthesis of cuticular hydrocarbons, which play an important role in desiccation resistance once workers initiate foraging.


Assuntos
Escamas de Animais/metabolismo , Formigas/fisiologia , Equilíbrio Hidroeletrolítico/fisiologia , Escamas de Animais/crescimento & desenvolvimento , Animais , Hidrocarbonetos , Insetos/metabolismo , Ocitocina/análogos & derivados , Ocitocina/metabolismo , Comportamento Social , Vasopressinas/análise , Vasopressinas/metabolismo , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA