Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.449
Filtrar
1.
Arch Microbiol ; 206(6): 246, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704767

RESUMO

Shake-flask culture, an aerobic submerged culture, has been used in various applications involving cell cultivation. However, it is not designed for forced aeration. Hence, this study aimed to develop a small-scale submerged shaking culture system enabling forced aeration into the medium. A forced aeration control system for multiple vessels allows shaking, suppresses volatilization, and is attachable externally to existing shaking tables. Using a specially developed plug, medium volatilization was reduced to less than 10%, even after 45 h of continuous aeration (~ 60 mL/min of dry air) in a 50 mL working volume. Escherichia coli IFO3301 cultivation with aeration was completed within a shorter period than that without aeration, with a 35% reduction in the time-to-reach maximum bacterial concentration (26.5 g-dry cell/L) and a 1.25-fold increase in maximum concentration. The maximum bacterial concentration achieved with aeration was identical to that obtained using the Erlenmeyer flask, with a 65% reduction in the time required to reach it.


Assuntos
Meios de Cultura , Escherichia coli , Escherichia coli/crescimento & desenvolvimento , Volatilização , Meios de Cultura/química , Reatores Biológicos/microbiologia , Técnicas Bacteriológicas/métodos
2.
Sci Rep ; 14(1): 10508, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714808

RESUMO

In this study, a novel nanobiocomposite consisting of agar (Ag), tragacanth gum (TG), silk fibroin (SF), and MOF-5 was synthesized and extensively investigated by various analytical techniques and basic biological assays for potential biomedical applications. The performed Trypan blue dye exclusion assay indicated that the proliferation percentage of HEK293T cells was 71.19%, while the proliferation of cancer cells (K-562 and MCF-7) was significantly lower, at 10.74% and 3.33%. Furthermore, the Ag-TG hydrogel/SF/MOF-5 nanobiocomposite exhibited significant antimicrobial activity against both E. coli and S. aureus strains, with growth inhibition rates of 76.08% and 69.19% respectively. Additionally, the hemolytic index of fabricated nanobiocomposite was found approximately 19%. These findings suggest that the nanobiocomposite exhibits significant potential for application in cancer therapy and wound healing.


Assuntos
Ágar , Fibroínas , Hidrogéis , Nanocompostos , Tragacanto , Fibroínas/química , Humanos , Hidrogéis/química , Ágar/química , Nanocompostos/química , Tragacanto/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Staphylococcus aureus/efeitos dos fármacos , Células HEK293 , Zinco/química , Proliferação de Células/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Testes de Sensibilidade Microbiana , Células MCF-7 , Linhagem Celular Tumoral
3.
Elife ; 132024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690805

RESUMO

As the genome encodes the information crucial for cell growth, a sizeable genomic deficiency often causes a significant decrease in growth fitness. Whether and how the decreased growth fitness caused by genome reduction could be compensated by evolution was investigated here. Experimental evolution with an Escherichia coli strain carrying a reduced genome was conducted in multiple lineages for approximately 1000 generations. The growth rate, which largely declined due to genome reduction, was considerably recovered, associated with the improved carrying capacity. Genome mutations accumulated during evolution were significantly varied across the evolutionary lineages and were randomly localized on the reduced genome. Transcriptome reorganization showed a common evolutionary direction and conserved the chromosomal periodicity, regardless of highly diversified gene categories, regulons, and pathways enriched in the differentially expressed genes. Genome mutations and transcriptome reorganization caused by evolution, which were found to be dissimilar to those caused by genome reduction, must have followed divergent mechanisms in individual evolutionary lineages. Gene network reconstruction successfully identified three gene modules functionally differentiated, which were responsible for the evolutionary changes of the reduced genome in growth fitness, genome mutation, and gene expression, respectively. The diversity in evolutionary approaches improved the growth fitness associated with the homeostatic transcriptome architecture as if the evolutionary compensation for genome reduction was like all roads leading to Rome.


Assuntos
Escherichia coli , Genoma Bacteriano , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Mutação , Transcriptoma , Evolução Molecular , Aptidão Genética , Redes Reguladoras de Genes , Evolução Molecular Direcionada
4.
Arch Microbiol ; 206(6): 243, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700700

RESUMO

The antibacterial effect of nanoparticles is mainly studied on the ensembles of the bacteria. In contrast, the optical tweezer technique allows the investigation of similar effects on individual bacterium. E. coli is a self-propelled micro-swimmer and ATP-driven active microorganism. In this work, an optical tweezer is employed to examine the mechanical properties of E. coli incubated with ZnO and Ag nanoparticles (NP) in the growth medium. ZnO and Ag NP with a concentration of 10 µg/ml were dispersed in growth medium during active log-growth phase of E. coli. This E. coli-NP incubation is further continued for 12 h. The E. coli after incubation for 2 h, 6 h and 12 h were separately studied by the optical tweezer for their mechanical property. The IR laser (λ = 975 nm; power = 100 mW) was used for trapping the individual cells and estimated trapping force, trapping stiffness and corner frequency. The optical trapping force on E. coli incubated in nanoparticle suspension shows linear decreases with incubation time. This work brings the importance of optical trapping force measurement in probing the antibacterial stress due to nanoparticles on the individual bacterium.


Assuntos
Antibacterianos , Escherichia coli , Nanopartículas Metálicas , Pinças Ópticas , Prata , Óxido de Zinco , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Antibacterianos/farmacologia
5.
Molecules ; 29(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731399

RESUMO

The antibacterial effects of a selection of volatile fatty acids (acetic, propionic, butyric, valeric, and caproic acids) relevant to anaerobic digestion were investigated at 1, 2 and 4 g/L. The antibacterial effects were characterised by the dynamics of Enterococcus faecalis NCTC 00775, Escherichia coli JCM 1649 and Klebsiella pneumoniae A17. Mesophilic anaerobic incubation to determine the minimum bactericidal concentration (MBC) and median lethal concentration of the VFAs was carried out in Luria Bertani broth at 37 °C for 48 h. Samples collected at times 0, 3, 6, 24 and 48 h were used to monitor bacterial kinetics and pH. VFAs at 4 g/L demonstrated the highest bactericidal effect (p < 0.05), while 1 g/L supported bacterial growth. The VFA cocktail was the most effective, while propionic acid was the least effective. Enterococcus faecalis NCTC 00775 was the most resistant strain with the VFAs MBC of 4 g/L, while Klebsiella pneumoniae A17 was the least resistant with the VFAs MBC of 2 g/L. Allowing a 48 h incubation period led to more log decline in the bacterial numbers compared to earlier times. The VFA cocktail, valeric, and caproic acids at 4 g/L achieved elimination of the three bacteria strains, with over 7 log10 decrease within 48 h.


Assuntos
Antibacterianos , Enterococcus faecalis , Ácidos Graxos Voláteis , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Ácidos Graxos Voláteis/metabolismo , Ácidos Graxos Voláteis/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/crescimento & desenvolvimento , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/crescimento & desenvolvimento , Anaerobiose , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Propionatos/farmacologia , Concentração de Íons de Hidrogênio , Ácidos Pentanoicos/farmacologia
6.
Molecules ; 29(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731501

RESUMO

Bacterial infection is a thorny problem, and it is of great significance to developing green and efficient biological antibacterial agents that can replace antibiotics. This study aimed to rapidly prepare a new type of green antibacterial nanoemulsion containing silver nanoparticles in one step by using Blumea balsamifera oil (BBO) as an oil phase and tea saponin (TS) as a natural emulsifier and reducing agent. The optimum preparation conditions of the AgNPs@BBO-TS NE were determined, as well as its physicochemical properties and antibacterial activity in vitro being investigated. The results showed that the average particle size of the AgNPs@BBO-TS NE was 249.47 ± 6.23 nm, the PDI was 0.239 ± 0.003, and the zeta potential was -35.82 ± 4.26 mV. The produced AgNPs@BBO-TS NE showed good stability after centrifugation and 30-day storage. Moreover, the AgNPs@BBO-TS NE had an excellent antimicrobial effect on Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. These results demonstrated that the AgNPs@BBO-TS NE produced in this study can be used as an efficient and green antibacterial agent in the biomedical field.


Assuntos
Antibacterianos , Emulsões , Química Verde , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Prata , Antibacterianos/farmacologia , Antibacterianos/química , Prata/química , Prata/farmacologia , Nanopartículas Metálicas/química , Staphylococcus aureus/efeitos dos fármacos , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Saponinas/química , Saponinas/farmacologia
7.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38674008

RESUMO

Cysteine and its derivatives, including H2S, can influence bacterial virulence and sensitivity to antibiotics. In minimal sulfate media, H2S is generated under stress to prevent excess cysteine and, together with incorporation into glutathione and export into the medium, is a mechanism of cysteine homeostasis. Here, we studied the features of cysteine homeostasis in LB medium, where the main source of sulfur is cystine, whose import can create excess cysteine inside cells. We used mutants in the mechanisms of cysteine homeostasis and a set of microbiological and biochemical methods, including the real-time monitoring of sulfide and oxygen, the determination of cysteine and glutathione (GSH), and the expression of the Fur, OxyR, and SOS regulons genes. During normal growth, the parental strain generated H2S when switching respiration to another substrate. The mutations affected the onset time, the intensity and duration of H2S production, cysteine and glutathione levels, bacterial growth and respiration rates, and the induction of defense systems. Exposure to chloramphenicol and high doses of ciprofloxacin increased cysteine content and GSH synthesis. A high inverse relationship between log CFU/mL and bacterial growth rate before ciprofloxacin addition was revealed. The study points to the important role of maintaining cysteine homeostasis during normal growth and antibiotic exposure in LB medium.


Assuntos
Antibacterianos , Ciprofloxacina , Cisteína , Escherichia coli , Glutationa , Homeostase , Cisteína/metabolismo , Ciprofloxacina/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/crescimento & desenvolvimento , Homeostase/efeitos dos fármacos , Glutationa/metabolismo , Antibacterianos/farmacologia , Meios de Cultura/química , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Mutação , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos
8.
Bioprocess Biosyst Eng ; 47(5): 713-724, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38627303

RESUMO

The concept of modular synthetic co-cultures holds considerable potential for biomanufacturing, primarily to reduce the metabolic burden of individual strains by sharing tasks among consortium members. However, current consortia often show unilateral relationships solely, without stabilizing feedback control mechanisms, and are grown in a shared cultivation setting. Such 'one pot' approaches hardly install optimum growth and production conditions for the individual partners. Hence, novel mutualistic, self-coordinating consortia are needed that are cultured under optimal growth and production conditions for each member. The heterologous production of the antibiotic violacein (VIO) in the mutually interacting E. coli-E. coli consortium serves as an example of this new principle. Interdependencies for growth control were implemented via auxotrophies for L-tryptophan and anthranilate (ANT) that were satisfied by the respective partner. Furthermore, VIO production was installed in the ANT auxotrophic strain. VIO production, however, requires low temperatures of 20-30 °C which conflicts with the optimum growth temperature of E. coli at 37 °C. Consequently, a two-compartment, two-temperature level setup was used, retaining the mutual interaction of the cells via the filter membrane-based exchange of medium. This configuration also provided the flexibility to perform individualized batch and fed-batch strategies for each co-culture member. We achieved maximum biomass-specific productivities of around 6 mg (g h)-1 at 25 °C which holds great promise for future applications.


Assuntos
Reatores Biológicos , Técnicas de Cocultura , Escherichia coli , Indóis , Escherichia coli/metabolismo , Escherichia coli/crescimento & desenvolvimento , Indóis/metabolismo
9.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38664064

RESUMO

Thermo-acidic pretreatment of lignocellulosic biomass is required to make it amenable to microbial metabolism and results in generation of furfural due to breakdown of pentose sugars. Furfural is toxic to microbial metabolism and results in reduced microbial productivity and increased production costs. This study asks if deletion of yghZ gene which encodes a NADPH-dependent aldehyde reductase enzyme results in improved furfural tolerance in Escherichia coli host. The ∆yghZ strain-SSK201-was tested for tolerance to furfural in presence of 5% xylose as a carbon source in AM1 minimal medium. At 96 h and in presence of 1.0 g/L furfural, the culture harboring strain SSK201 displayed 4.5-fold higher biomass, 2-fold lower furfural concentration and 15.75-fold higher specific growth rate (µ) as compared to the parent strain SSK42. The furfural tolerance advantage of SSK201 was retained when the carbon source was switched to glucose in AM1 medium and was lost in rich LB medium. The findings have potential to be scaled up to a hydrolysate culture medium, which contains furan inhibitors and lack nutritionally rich components, under bioreactor cultivation and observe growth advantage of the ∆yghZ host. It harbors potential to generate robust industrial strains which can convert lignocellulosic carbon into metabolites of interest in a cost-efficient manner.


Assuntos
Carbono , Escherichia coli , Furaldeído , Xilose , Xilose/metabolismo , Furaldeído/metabolismo , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Escherichia coli/efeitos dos fármacos , Carbono/metabolismo , Aldeído Redutase/metabolismo , Aldeído Redutase/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Meios de Cultura/química , Meios de Cultura/metabolismo , Deleção de Genes , Biomassa , Glucose/metabolismo
10.
Microbiol Spectr ; 12(5): e0365023, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38501820

RESUMO

Anaerobic microbes play crucial roles in environmental processes, industry, and human health. Traditional methods for monitoring the growth of anaerobes, including plate counts or subsampling broth cultures for optical density measurements, are time and resource-intensive. The advent of microplate readers revolutionized bacterial growth studies by enabling high-throughput and real-time monitoring of microbial growth kinetics. Yet, their use in anaerobic microbiology has remained limited. Here, we present a workflow for using small-footprint microplate readers and the Growthcurver R package to analyze the kinetic growth metrics of anaerobic bacteria. We benchmarked the small-footprint Cerillo Stratus microplate reader against a BioTek Synergy HTX microplate reader in aerobic conditions using Escherichia coli DSM 28618 cultures. The growth rates and carrying capacities obtained from the two readers were statistically indistinguishable. However, the area under the logistic curve was significantly higher in cultures monitored by the Stratus reader. We used the Stratus to quantify the growth responses of anaerobically grown E. coli and Clostridium bolteae DSM 29485 to different doses of the toxin sodium arsenite. The growth of E. coli and C. bolteae was sensitive to arsenite doses of 1.3 µM and 0.4 µM, respectively. Complete inhibition of growth was achieved at 38 µM arsenite for C. bolteae and 338 µM in E. coli. These results show that the Stratus performs similarly to a leading brand of microplate reader and can be reliably used in anaerobic conditions. We discuss the advantages of the small format microplate readers and our experiences with the Stratus. IMPORTANCE: We present a workflow that facilitates the production and analysis of growth curves for anaerobic microbes using small-footprint microplate readers and an R script. This workflow is a cost and space-effective solution to most high-throughput solutions for collecting growth data from anaerobic microbes. This technology can be used for applications where high throughput would advance discovery, including microbial isolation, bioprospecting, co-culturing, host-microbe interactions, and drug/toxin-microbial interactions.


Assuntos
Bactérias Anaeróbias , Escherichia coli , Ensaios de Triagem em Larga Escala , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/efeitos dos fármacos , Bactérias Anaeróbias/crescimento & desenvolvimento , Bactérias Anaeróbias/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Anaerobiose , Cinética
11.
Microbiol Spectr ; 12(5): e0420923, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38517194

RESUMO

Effective policy to address the global threat of antimicrobial resistance requires robust antimicrobial susceptibility data. Traditional methods for measuring minimum inhibitory concentration (MIC) are resource intensive, subject to human error, and require considerable infrastructure. AIgarMIC streamlines and standardizes MIC measurement and is especially valuable for large-scale surveillance activities. MICs were measured using agar dilution for n = 10 antibiotics against clinical Enterobacterales isolates (n = 1,086) obtained from a large tertiary hospital microbiology laboratory. Escherichia coli (n = 827, 76%) was the most common organism. Photographs of agar plates were divided into smaller images covering one inoculation site. A labeled data set of colony images was created and used to train a convolutional neural network to classify images based on whether a bacterial colony was present (first-step model). If growth was present, a second-step model determined whether colony morphology suggested antimicrobial growth inhibition. The ability of the AI to determine MIC was then compared with standard visual determination. The first-step model classified bacterial growth as present/absent with 94.3% accuracy. The second-step model classified colonies as "inhibited" or "good growth" with 88.6% accuracy. For the determination of MIC, the rate of essential agreement was 98.9% (644/651), with a bias of -7.8%, compared with manual annotation. AIgarMIC uses artificial intelligence to automate endpoint assessments for agar dilution and potentially increases throughput without bespoke equipment. AIgarMIC reduces laboratory barriers to generating high-quality MIC data that can be used for large-scale surveillance programs. IMPORTANCE: This research uses modern artificial intelligence and machine-learning approaches to standardize and automate the interpretation of agar dilution minimum inhibitory concentration testing. Artificial intelligence is currently of significant topical interest to researchers and clinicians. In our manuscript, we demonstrate a use-case in the microbiology laboratory and present validation data for the model's performance against manual interpretation.


Assuntos
Ágar , Antibacterianos , Aprendizado de Máquina , Testes de Sensibilidade Microbiana , Testes de Sensibilidade Microbiana/métodos , Antibacterianos/farmacologia , Humanos , Ágar/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/crescimento & desenvolvimento , Redes Neurais de Computação
12.
Mol Microbiol ; 121(5): 984-1001, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38494741

RESUMO

YbeX of Escherichia coli, a member of the CorC protein family, is encoded in the same operon with ribosome-associated proteins YbeY and YbeZ. Here, we report the involvement of YbeX in ribosomal metabolism. The ΔybeX cells accumulate distinct 16S rRNA degradation intermediates in the 30S particles and the 70S ribosomes. E. coli lacking ybeX has a lengthened lag phase upon outgrowth from the stationary phase. This growth phenotype is heterogeneous at the individual cell level and especially prominent under low extracellular magnesium levels. The ΔybeX strain is sensitive to elevated growth temperatures and to several ribosome-targeting antibiotics that have in common the ability to induce the cold shock response in E. coli. Although generally milder, the phenotypes of the ΔybeX mutant overlap with those caused by ybeY deletion. A genetic screen revealed partial compensation of the ΔybeX growth phenotype by the overexpression of YbeY. These findings indicate an interconnectedness among the ybeZYX operon genes, highlighting their roles in ribosomal assembly and/or degradation.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Óperon , RNA Ribossômico 16S , Proteínas Ribossômicas , Ribossomos , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , RNA Ribossômico 16S/genética , Ribossomos/metabolismo , Óperon/genética , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/genética , Regulação Bacteriana da Expressão Gênica , Antibacterianos/farmacologia
13.
Microbiol Spectr ; 12(5): e0420623, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38534122

RESUMO

Plasmids are the primary vectors of horizontal transfer of antibiotic resistance genes among bacteria. Previous studies have shown that the spread and maintenance of plasmids among bacterial populations depend on the genetic makeup of both the plasmid and the host bacterium. Antibiotic resistance can also be acquired through mutations in the bacterial chromosome, which not only confer resistance but also result in changes in bacterial physiology and typically a reduction in fitness. However, it is unclear whether chromosomal resistance mutations affect the interaction between plasmids and the host bacteria. To address this question, we introduced 13 clinical plasmids into a susceptible Escherichia coli strain and three different congenic mutants that were resistant to nitrofurantoin (ΔnfsAB), ciprofloxacin (gyrA, S83L), and streptomycin (rpsL, K42N) and determined how the plasmids affected the exponential growth rates of the host in glucose minimal media. We find that though plasmids confer costs on the susceptible strains, those costs are fully mitigated in the three resistant mutants. In several cases, this results in a competitive advantage of the resistant strains over the susceptible strain when both carry the same plasmid and are grown in the absence of antibiotics. Our results suggest that bacteria carrying chromosomal mutations for antibiotic resistance could be a better reservoir for resistance plasmids, thereby driving the evolution of multi-drug resistance.IMPORTANCEPlasmids have led to the rampant spread of antibiotic resistance genes globally. Plasmids often carry antibiotic resistance genes and other genes needed for its maintenance and spread, which typically confer a fitness cost on the host cell observed as a reduced growth rate. Resistance is also acquired via chromosomal mutations, and similar to plasmids they also reduce bacterial fitness. However, we do not know whether resistance mutations affect the bacterial ability to carry plasmids. Here, we introduced 13 multi-resistant clinical plasmids into a susceptible and three different resistant E. coli strains and found that most of these plasmids do confer fitness cost on susceptible cells, but these costs disappear in the resistant strains which often lead to fitness advantage for the resistant strains in the absence of antibiotic selection. Our results imply that already resistant bacteria are a more favorable reservoir for multi-resistant plasmids, promoting the ascendance of multi-resistant bacteria.


Assuntos
Antibacterianos , Cromossomos Bacterianos , Farmacorresistência Bacteriana Múltipla , Escherichia coli , Mutação , Plasmídeos , Plasmídeos/genética , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Antibacterianos/farmacologia , Cromossomos Bacterianos/genética , Farmacorresistência Bacteriana Múltipla/genética , Testes de Sensibilidade Microbiana , Aptidão Genética , Ciprofloxacina/farmacologia , Humanos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Farmacorresistência Bacteriana/genética , Estreptomicina/farmacologia
14.
Mol Syst Biol ; 20(5): 573-589, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38531971

RESUMO

Characterising RNA-protein interaction dynamics is fundamental to understand how bacteria respond to their environment. In this study, we have analysed the dynamics of 91% of the Escherichia coli expressed proteome and the RNA-interaction properties of 271 RNA-binding proteins (RBPs) at different growth phases. We find that 68% of RBPs differentially bind RNA across growth phases and characterise 17 previously unannotated proteins as bacterial RBPs including YfiF, a ncRNA-binding protein. While these new RBPs are mostly present in Proteobacteria, two of them are orthologs of human mitochondrial proteins associated with rare metabolic disorders. Moreover, we reveal novel RBP functions for proteins such as the chaperone HtpG, a new stationary phase tRNA-binding protein. For the first time, the dynamics of the bacterial RBPome have been interrogated, showcasing how this approach can reveal the function of uncharacterised proteins and identify critical RNA-protein interactions for cell growth which could inform new antimicrobial therapies.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , RNA Bacteriano , Proteínas de Ligação a RNA , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , RNA Bacteriano/metabolismo , RNA Bacteriano/genética , Proteoma/metabolismo , Ligação Proteica , Regulação Bacteriana da Expressão Gênica , Humanos
15.
Sci Data ; 10(1): 788, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37949936

RESUMO

In this work we analyzed protein-protein interactions (PPIs) formed by E. coli replication proteins under three disparate bacterial growth conditions. The chosen conditions corresponded to fast exponential growth, slow exponential growth and growth cessation at the stationary phase. We performed affinity purification coupled with mass spectrometry (AP-MS) of chromosomally expressed proteins (DnaA, DnaB, Hda, SeqA, DiaA, DnaG, HolD, NrdB), tagged with sequential peptide affinity (SPA) tag. Composition of protein complexes was characterized using MaxQuant software. To filter out unspecific interactions, we employed double negative control system and we proposed qualitative and quantitative data analysis strategies that can facilitate hits identification in other AP-MS datasets. Our motivation to undertake this task was still insufficient understanding of molecular mechanisms coupling DNA replication to cellular growth. Previous works suggested that such control mechanisms could involve physical interactions of replication factors with metabolic or cell envelope proteins. However, the dynamic replication protein interaction network (PIN) obtained in this study can be used to characterize links between DNA replication and various cellular processes in other contexts.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Ciclo Celular , Replicação do DNA , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo
16.
Nature ; 622(7984): 826-833, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37853119

RESUMO

CRISPR systems are widespread in the prokaryotic world, providing adaptive immunity against mobile genetic elements1,2. Type III CRISPR systems, with the signature gene cas10, use CRISPR RNA to detect non-self RNA, activating the enzymatic Cas10 subunit to defend the cell against mobile genetic elements either directly, via the integral histidine-aspartate (HD) nuclease domain3-5 or indirectly, via synthesis of cyclic oligoadenylate second messengers to activate diverse ancillary effectors6-9. A subset of type III CRISPR systems encode an uncharacterized CorA-family membrane protein and an associated NrN family phosphodiesterase that are predicted to function in antiviral defence. Here we demonstrate that the CorA-associated type III-B (Cmr) CRISPR system from Bacteroides fragilis provides immunity against mobile genetic elements when expressed in Escherichia coli. However, B. fragilis Cmr does not synthesize cyclic oligoadenylate species on activation, instead generating S-adenosyl methionine (SAM)-AMP (SAM is also known as AdoMet) by conjugating ATP to SAM via a phosphodiester bond. Once synthesized, SAM-AMP binds to the CorA effector, presumably leading to cell dormancy or death by disruption of the membrane integrity. SAM-AMP is degraded by CRISPR-associated phosphodiesterases or a SAM-AMP lyase, potentially providing an 'off switch' analogous to cyclic oligoadenylate-specific ring nucleases10. SAM-AMP thus represents a new class of second messenger for antiviral signalling, which may function in different roles in diverse cellular contexts.


Assuntos
Trifosfato de Adenosina , Bacteroides fragilis , Sistemas CRISPR-Cas , Escherichia coli , S-Adenosilmetionina , Sistemas do Segundo Mensageiro , Trifosfato de Adenosina/metabolismo , Bacteroides fragilis/enzimologia , Bacteroides fragilis/genética , Bacteroides fragilis/imunologia , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/imunologia , Sistemas CRISPR-Cas/fisiologia , Endonucleases/química , Endonucleases/metabolismo , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/imunologia , Escherichia coli/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , RNA/imunologia , RNA/metabolismo , S-Adenosilmetionina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
17.
Environ Microbiol Rep ; 15(5): 422-425, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37194345

RESUMO

The consumption of coffee and other caffeinated drinks is increasingly popular across the globe. In the United States, 90% of adults consume at least one caffeinated beverage a day. While caffeine consumption of up to 400 mg/d is not generally associated with negative effects on human health, the impact of caffeine on the gut microbiome and individual gut microbiota remains unclear. We examined the effect of caffeine on the growth rate of Escherichia coli, a bacterium commonly found in the human gut, when grown aerobically or anaerobically in nutrient-rich or minimal medium. A significant negative correlation was observed between caffeine concentration and growth rate under all conditions, suggesting that caffeine can act as an antimicrobial agent when ingested. Caffeine reduced growth rates significantly more in nutrient-poor, but not in anoxic, conditions. Given the highly variable nutrient and oxygen conditions of the gut, these results suggest a need to further explore caffeine's inhibitory effects on the gut microbiome and its relation to human health.


Assuntos
Cafeína , Escherichia coli , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Cafeína/farmacologia , Oxigênio/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos
18.
J Biol Chem ; 299(4): 104615, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36931392

RESUMO

Peptidoglycan (PG) is an essential and conserved exoskeletal component in all bacteria that protects cells from lysis. Gram-negative bacteria such as Escherichia coli encode multiple redundant lytic transglycosylases (LTs) that engage in PG cleavage, a potentially lethal activity requiring proper regulation to prevent autolysis. To elucidate the potential effects and cellular regulatory mechanisms of elevated LT activity, we individually cloned the periplasmic domains of two membrane-bound LTs, MltA and MltB, under the control of the arabinose-inducible system for overexpression in the periplasmic space in E. coli. Interestingly, upon induction, the culture undergoes an initial period of cell lysis followed by robust growth restoration. The LT-overexpressing E. coli exhibits altered morphology with larger spherical cells, which is in line with the weakening of the PG layer due to aberrant LT activity. On the other hand, the restored cells display a similar rod shape and PG profile that is indistinguishable from the uninduced control. Quantitative proteomics analysis of the restored cells identified significant protein enrichment in the regulator of capsule synthesis (Rcs) regulon, a two-component stress response known to be specifically activated by PG damage. We showed that LT-overexpressing E. coli with an inactivated Rcs system partially impairs the growth restoration process, supporting the involvement of the Rcs system in countering aberrant PG cleavage. Furthermore, we demonstrated that the elevated LT activity specifically potentiates ß-lactam antibiotics against E. coli with a defective Rcs regulon, suggesting the dual effects of augmented PG cleavage and blocked PG synthesis as a potential antimicrobial strategy.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Peptidoglicano , Parede Celular/genética , Parede Celular/metabolismo , Escherichia coli/citologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Peptidoglicano/metabolismo , Expressão Gênica , Estresse Fisiológico/genética , beta-Lactamas/metabolismo
19.
PLoS One ; 18(2): e0281768, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36795683

RESUMO

OBJECTIVE: To determine whether bupivacaine liposomal injectable suspension (BLIS) supports microbial growth when artificially inoculated and to evaluate liposomal stability in the face of this extrinsic contamination as evidenced by changes in free bupivacaine concentrations. STUDY DESIGN: A randomized, prospective in vitro study in which three vials of each BLIS, bupivacaine 0.5%, and propofol were individually inoculated with known concentrations of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans (n = 36) to quantify bacterial and fungal growth was conducted. Over 120 hours, aliquots from contaminated vials were withdrawn, plated, and incubated to determine microbial concentrations. High-pressure liquid chromatography (HPLC) was used to evaluate free bupivacaine concentrations over time in BLIS. Data were analyzed using a mixed effects model with multiple comparisons. SAMPLE POPULATION: Twelve vials of each BLIS, bupivacaine 0.5%, and propofol. RESULTS: BLIS did not support significant growth of Staphylococcus aureus or Candida albicans at any time. BLIS supported significant growth of Escherichia coli and Pseudomonas aeruginosa beginning at the 24 hour time point. Bupivacaine 0.5% did not support significant growth of any organisms. Propofol supported significant growth of all organisms. Free bupivacaine concentrations changed minimally over time. CONCLUSION: Bacterial and fungal contaminant growth in artificially inoculated BLIS is organism dependent. BLIS supports significant growth of Escherichia coli and Pseudomonas aeruginosa. Extra-label handling of BLIS should only be undertaken with caution and with adherence to strict aseptic technique.


Assuntos
Anestésicos , Contaminação de Medicamentos , Propofol , Anestésicos Locais/administração & dosagem , Bupivacaína/administração & dosagem , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/isolamento & purificação , Propofol/administração & dosagem , Estudos Prospectivos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/isolamento & purificação
20.
Dev Comp Immunol ; 139: 104592, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36414098

RESUMO

Pulmonary collectins have been reported to bind carbohydrates on pathogens and inhibit infection by agglutination, neutralization, and opsonization. In this study, surfactant protein A (SP-A) was identified from goose lung and characterized at expression- and agglutination-functional levels. The deduced amino acid sequence of goose surfactant protein A (gSP-A) has two characteristic structures: a shorter, collagen-like region and a carbohydrate recognition domain. The latter contains two conserved motifs in its Ca2+-binding site: EPN (Glu-Pro-Asn) and WND (Trp-Asn-Asp). Expression analysis using qRT-PCR and fluorescence IHC revealed that gSP-A was highly expressed in the air sac and present in several other tissues, including the lung and trachea. We went on to produce recombinant gSP-A (RgSP-A) using a baculovirus/insect cell system and purified using a Ni2+ affinity column. A biological activity assay showed that all bacterial strains tested in this study were aggregated by RgSP-A, but only Escherichia coli AE17 (E. coli AE17, O2) and E. coli AE158 (O78) were susceptible to RgSP-A-mediated growth inhibition at 2-6 h. Moreover, the swarming motility of the two bacterial strains were weakened with increasing RgSP-A concentration, and their membrane permeability was compromised at 3 h, as determined by flow cytometry and laser confocal microscopy. Therefore, RgSP-A is capable of reducing bacterial viability of E. coli O2 and O78 via an aggregation-dependent mechanism which involves decreasing motility and increasing the bacterial membrane permeability. These data will facilitate detailed studies into the role of gSP-A in innate immune defense as well as for development of antibacterial agents.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Gansos , Imunidade Inata , Proteína A Associada a Surfactante Pulmonar , Animais , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/imunologia , Gansos/imunologia , Gansos/microbiologia , Proteína A Associada a Surfactante Pulmonar/genética , Proteína A Associada a Surfactante Pulmonar/metabolismo , Pulmão/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA