Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
Diagn Microbiol Infect Dis ; 109(2): 116229, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38507962

RESUMO

Some strains of Escherichia coli are known to be involved in the pathogenesis of colorectal cancer (CRC). The aim of current study was to compare the general characteristics of the E. coli from CRC patients and healthy participants. A total of 96 biopsy samples from 48 CRC patients and 48 healthy participants, were studied. The clonality of the E. coli isolates was analyzed by Enterobacterial repetitive intergenic consensus-based PCR (ERIC-PCR) method. The strains were tested by PCR to determine the prevalence of different virulence factors. According to the results of ERIC-PCR analysis, (from the 860 E. coli isolates) 60 strains from CRC patients and 41 strains from healthy controls were identified. Interestingly, the majority of the strains of both groups were in the same cluster. Enteropathogenic E. coli (EPEC) was detected significantly more often in CRC patients (21.6 %) than in healthy participants (2.4 %) (p < 0.05). The Enteroaggregative E. coli (EAEC) was found in 18.33 % of the strains of CRC patients. However, other pathotypes were not found in the E. coli strains of both groups. Furthermore, all the studied genes encoding for virulence factors seemed to be more prevalent in the strains belonging to CRC patients. Among the virulence genes, the statistical difference regarding the frequency of fuyA, chuA, vat, papC, hlyA and cnf1 genes was found significant (p < 0.05). In conclusion, E. coli strains that carry extraintestinal pathogenic E. coli (ExPEC) and diarrheagenic E. coli (DEC) multiple virulence factors colonize the gut mucosa of CRC patients.


Assuntos
Neoplasias Colorretais , Infecções por Escherichia coli , Escherichia coli , Mucosa Intestinal , Fatores de Virulência , Humanos , Neoplasias Colorretais/microbiologia , Masculino , Feminino , Pessoa de Meia-Idade , Fatores de Virulência/genética , Idoso , Escherichia coli/genética , Escherichia coli/patogenicidade , Escherichia coli/isolamento & purificação , Escherichia coli/classificação , Infecções por Escherichia coli/microbiologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Adulto , Idoso de 80 Anos ou mais , Reação em Cadeia da Polimerase , Escherichia coli Enteropatogênica/genética , Escherichia coli Enteropatogênica/patogenicidade , Escherichia coli Enteropatogênica/isolamento & purificação , Escherichia coli Enteropatogênica/classificação
2.
Braz. J. Pharm. Sci. (Online) ; 58: e20015, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1403744

RESUMO

Abstract This study assessed the inhibitory potential of the probiotics Lactobacillus (LB) exopolysaccharides (EPS) with or without extracts of Satureja calamintha on enteropathogenic Escherichia coli (EPEc) responsible for gastroenteritis. Methanolic and hydromethanolic extracts were prepared by cold maceration and subjected to phytochemical screening. The compounds of the extracts were determined with the colorimetric assays and identified using high-performance liquid chromatography coupled with diode array detector (HPLC-DAD). Antioxidant activities of the extracts were also evaluated by using 2,2-diphenyl-1-picrylhydrazil (DPPH) radical scavenging. Antibacterial effect on EPEc was evaluated by using both agar disc diffusion and microdilution methods. The in vitro test of auto-aggregation was investigated. Microbiological analysis showed that 63% of the isolated LB were producing EPS, with the amount ranging from 8.21 to 43.13 mg/L. Chemical analysis of the extracts revealed the presence of polyphenols and flavonoids, more abundant in the hydromethanolic extract, which presented the highest content with 2.11 mg EGA/g of polyphenol and 1.64 mg EC/g of flavonoids and 1.71 mg EGA/g of polyphenol and 1.15 mg EC/g of flavonoids in the methanolic extract. Hydromethanolic extracts and EPS exhibited a more important activity than did the methanolic extract against EPEc. The combined action of EPS and extracts reduced the aggregation ability of EPEc and decreased the rate of their adhesion.


Assuntos
Probióticos/efeitos adversos , Satureja/efeitos adversos , Escherichia coli Enteropatogênica/classificação , Lactobacillus/classificação , Extratos Vegetais/análise , Cromatografia Líquida de Alta Pressão/métodos , Nepeta/efeitos adversos , Compostos Fitoquímicos , Gastroenterite , Antioxidantes/farmacologia
3.
Braz J Microbiol ; 52(4): 2075-2079, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34448133

RESUMO

Enteropathogenic (EPEC) and enteroaggregative (EAEC) Escherichia coli are two of the major pathotypes of diarrheagenic E. coli causing disease worldwide. Here, we report a diarrheal outbreak caused by E. coli of serotype O3:H2, harboring virulence markers from EPEC (eae) and/or EAEC (aggR). This is likely the first E. coli diarrheal outbreak caused by a hybrid atypical-EPEC/EAEC clone reported in Brazil.


Assuntos
Escherichia coli Enteropatogênica , Infecções por Escherichia coli , Brasil/epidemiologia , Células Clonais , Diarreia/epidemiologia , Diarreia/etiologia , Diarreia/microbiologia , Surtos de Doenças , Escherichia coli Enteropatogênica/classificação , Escherichia coli Enteropatogênica/genética , Escherichia coli Enteropatogênica/isolamento & purificação , Escherichia coli Enteropatogênica/patogenicidade , Infecções por Escherichia coli/complicações , Infecções por Escherichia coli/epidemiologia , Humanos , Sorogrupo , Fatores de Virulência
4.
Microbiology (Reading) ; 167(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34061018

RESUMO

A continued rise in leafy green-linked outbreaks of disease caused by pathogenic Escherichia coli or Salmonella, particularly strains exhibiting multidrug resistance (MDR), has emerged as a major threat to human health and food safety worldwide. Thus, the present study was conducted to examine antimicrobial resistance, including MDR, in diarrhoeagenic E. coli (DEC) and Salmonella isolates obtained from leafy greens from rural and urban areas of India. Of the collected samples (830), 14.1 and 6.5% yielded 117 E. coli (40 DEC and 77 non-DEC) and 54 Salmonella isolates, respectively. Among the DEC pathotypes, enteroaggregative E. coli was the most prevalent (10.2 %), followed by enteropathogenic E. coli (9.4 %), enteroinvasive E. coli (7.6 %) and enterohemorrhagic E. coli (6.8 %). Antimicrobial susceptibility testing of all bacterial isolates with respect to drugs categorized as critically or highly important in both human and veterinary medicine revealed moderate to high (30-90%) resistance for amoxicillin/clavulanic acid, ampicillin, gentamycin and colistin, but relatively low resistance (>30 %) for ciprofloxacin, trimethoprim/sulfamethoxazole and fosfomycin. Notably, all DEC and more than 90% non-DEC or Salmonella isolates were found to be multidrug-resistant to drugs of both human and animal importance. Overall, the results of the present study suggest that leafy greens are potential reservoirs or sources of multidrug-resistant DEC and Salmonella strains in the rural or urban areas of India.


Assuntos
Farmacorresistência Bacteriana Múltipla , Escherichia coli Enteropatogênica/efeitos dos fármacos , Infecções por Escherichia coli/microbiologia , Folhas de Planta/microbiologia , Infecções por Salmonella/microbiologia , Salmonella/efeitos dos fármacos , Verduras/microbiologia , Antibacterianos/farmacologia , Diarreia/microbiologia , Reservatórios de Doenças/microbiologia , Escherichia coli Enteropatogênica/classificação , Escherichia coli Enteropatogênica/genética , Escherichia coli Enteropatogênica/isolamento & purificação , Contaminação de Alimentos/análise , Humanos , Índia , Testes de Sensibilidade Microbiana , Salmonella/classificação , Salmonella/genética , Salmonella/isolamento & purificação
6.
mBio ; 12(1)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33653937

RESUMO

The genotoxin colibactin is a secondary metabolite produced by the polyketide synthase (pks) island harbored by extraintestinal pathogenic E. coli (ExPEC) and other members of the Enterobacteriaceae that has been increasingly reported to have critical implications in human health. The present study entails a high-throughput whole-genome comparison and phylogenetic analysis of such pathogenic E. coli isolates to gain insights into the patterns of distribution, horizontal transmission, and evolution of the island. For the current study, 23 pks-positive ExPEC genomes were newly sequenced, and their virulome and resistome profiles indicated a preponderance of virulence encoding genes and a reduced number of genes for antimicrobial resistance. In addition, 4,090 E. coli genomes from the public domain were also analyzed for large-scale screening for pks-positive genomes, out of which a total of 530 pks-positive genomes were studied to understand the subtype-based distribution pattern(s). The pks island showed a significant association with the B2 phylogroup (82.2%) and a high prevalence in sequence type 73 (ST73; n = 179) and ST95 (n = 110) and the O6:H1 (n = 110) serotype. Maximum-likelihood (ML) phylogeny of the core genome and intergenic regions (IGRs) of the ST95 model data set, which was selected because it had both pks-positive and pks-negative genomes, displayed clustering in relation to their carriage of the pks island. Prevalence patterns of genes encoding RM systems in the pks-positive and pks-negative genomes were also analyzed to determine their potential role in pks island acquisition and the maintenance capability of the genomes. Further, the maximum-likelihood phylogeny based on the core genome and pks island sequences from 247 genomes with an intact pks island demonstrated horizontal gene transfer of the island across sequence types and serotypes, with few exceptions. This study vitally contributes to understanding of the lineages and subtypes that have a higher propensity to harbor the pks island-encoded genotoxin with possible clinical implications.IMPORTANCE Extraintestinal pathologies caused by highly virulent strains of E. coli amount to clinical implications with high morbidity and mortality rates. Pathogenic E. coli strains are evolving with the horizontal acquisition of mobile genetic elements, including pathogenicity islands such as the pks island, which produces the genotoxin colibactin, resulting in severe clinical outcomes, including colorectal cancer progression. The current study encompasses high-throughput comparative genomics and phylogenetic analyses to address the questions pertaining to the acquisition and evolution pattern of the genomic island in different E. coli subtypes. It is crucial to gain insights into the distribution, transfer, and maintenance of pathogenic islands, as they harbor multiple virulence genes involved in pathogenesis and clinical implications of the infection.


Assuntos
Escherichia coli Enteropatogênica/genética , Infecções por Escherichia coli/microbiologia , Evolução Molecular , Genoma Bacteriano , Ilhas Genômicas , Genômica , Biologia Computacional/métodos , DNA Intergênico , Escherichia coli Enteropatogênica/classificação , Escherichia coli Enteropatogênica/patogenicidade , Infecções por Escherichia coli/epidemiologia , Estudo de Associação Genômica Ampla , Fenótipo , Filogenia , Prevalência , Virulência/genética , Fatores de Virulência/genética
7.
J Appl Microbiol ; 130(1): 258-264, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32599678

RESUMO

AIM: The purpose of this work was to identify and genetically characterize enterohemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) O80:H2 from diarrhoeic and septicaemic calves in Belgium and to comparing them with human EHEC after whole genome sequencing. METHODS AND RESULTS: Ten EHEC and 21 EPEC O80 identified by PCR between 2009 and 2018 from faeces, intestinal content and a kidney of diarrhoeic or septicaemic calves were genome sequenced and compared to 19 human EHEC identified between 2008 and 2019. They all belonged to the O80:H2 serotype and ST301, harboured the eaeξ gene, and 23 of the 29 EHEC contained the stx2d gene. Phylogenetically, they were distributed in two major sub-lineages: one comprised a majority of bovine EPEC whereas the second one comprised a majority of stx2d bovine and human EHEC. CONCLUSIONS: Not only EPEC but also EHEC O80:H2 are present in diarrhoeic and septicaemic calves in Belgium and are genetically related to human EHEC. SIGNIFICANCE AND IMPACT OF THE STUDY: These findings support the need to assess cattle as potential source of contamination of humans by EHEC O80:H2 and to understand the evolution of bovine and human EHEC and EPEC O80:H2.


Assuntos
Doenças dos Bovinos/microbiologia , Escherichia coli Êntero-Hemorrágica/isolamento & purificação , Escherichia coli Enteropatogênica/isolamento & purificação , Infecções por Escherichia coli/veterinária , Animais , Bélgica/epidemiologia , Bovinos , Doenças dos Bovinos/epidemiologia , Diarreia/epidemiologia , Diarreia/microbiologia , Diarreia/veterinária , Escherichia coli Êntero-Hemorrágica/classificação , Escherichia coli Êntero-Hemorrágica/genética , Escherichia coli Enteropatogênica/classificação , Escherichia coli Enteropatogênica/genética , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Genoma Bacteriano/genética , Humanos , Filogenia , Sepse/epidemiologia , Sepse/microbiologia , Sepse/veterinária , Sorogrupo
8.
Indian J Med Microbiol ; 38(3 & 4): 421-429, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33154257

RESUMO

Background: Horizontal gene transfer of virulence genes (VGs) from different Escherichia coli pathotypes results in the evolution of hybrid strains. Hybrid genotypes of enteroaggregative E. coli and uropathogenic E. coli (EAEC/UPEC) have been reported in sporadic infections and outbreaks of extraintestinal origin. Yet, their association with routine infections is still underrated. Materials and Methods: In this study, we analysed 163 isolates of E. coli from cases of urinary tract infection seeking hybrid (EAEC/UPEC) strains. Using multiplex polymerase chain reaction, we investigated VGs (adhesive and toxin genes) of UPEC along with EAEC marker genes (aap and agg R), ast A (toxin genes) and serine protease autotransporters of Enterobacteriaceae, pet (plasmid-encoded toxin) and pic (mucinase gene). Those UPEC strains which had characteristic defining genes of EAEC (agg R/aap or their combination) were considered UPEC/EAEC hybrids. Results: Molecular predictors of EAEC (aap and aggR) were detected in 20.2% (33/163) of the strains. The pap C was also detected in 36% of the EAEC/UPEC hybrid strains. Phylogenetic analysis revealed that hybrid strains belonged to Group D (60.6%). Nearly 73.8% of UPEC and 75.7% of UPEC/EAEC hybrid strains were multidrug-resistant. Among UPEC isolates, 72.3% and in hybrid UPEC/EAEC, 78.7% isolates were able to produce biofilm. Conclusions: Our results indicated a closer relationship among EAEC and UPEC, which suggested that some EAEC strains can be potential uropathogens. Ours is a first study documenting the existence of EAEC pathotypes VGs in UPEC strains of nosocomial origin; further studies are required to understand the diarrhoeagenic potential of these hybrids.


Assuntos
Escherichia coli Enteropatogênica/classificação , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/classificação , Resistência Microbiana a Medicamentos , Escherichia coli Enteropatogênica/efeitos dos fármacos , Escherichia coli Enteropatogênica/genética , Genótipo , Humanos , Filogenia , Escherichia coli Uropatogênica/efeitos dos fármacos , Escherichia coli Uropatogênica/genética
9.
BMC Microbiol ; 20(1): 192, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620076

RESUMO

BACKGROUND: Diarrhoeagenic Escherichia coli (DEC) infections are common in children in low-middle income countries (LMICs). However, detecting the various DEC pathotypes is complex as they cannot be differentiated by classical microbiology. We developed four multiplex real-time PCR assays were to detect virulence markers of six DEC pathotypes; specificity was tested using DEC controls and other enteric pathogens. PCR amplicons from the six E. coli pathotypes were purified and amplified to be used to optimize PCR reactions and to calculate reproducibility. After validation, these assays were applied to clinical samples from healthy and diarrhoeal Vietnamese children and associated with clinical data. RESULTS: The multiplex real-time PCRs were found to be reproducible, and specific. At least one DEC variant was detected in 34.7% (978/2815) of the faecal samples from diarrhoeal children; EAEC, EIEC and atypical EPEC were most frequent Notably, 41.2% (205/498) of samples from non-diarrhoeal children was positive with a DEC pathotype. In this population, only EIEC, which was detected in 34.3% (99/289) of diarrhoeal samples vs. 0.8% (4/498) non-diarrhoeal samples (p < 0.001), was significantly associated with diarrhoea. Multiplex real-time PCR when applied to clinical samples is an efficient and high-throughput approach to DEC pathotypes. CONCLUSIONS: This approach revealed high carriage rates of DEC pathotypes among Vietnamese children. We describe a novel diagnostic approach for DEC, which provides baseline data for future surveillance studies assessing DEC burden in LMICs.


Assuntos
Diarreia/microbiologia , Escherichia coli Enteropatogênica/classificação , Infecções por Escherichia coli/diagnóstico , Infecções por Escherichia coli/epidemiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Adolescente , Criança , Pré-Escolar , Diarreia/epidemiologia , Escherichia coli Enteropatogênica/genética , Escherichia coli Enteropatogênica/isolamento & purificação , Escherichia coli Enteropatogênica/patogenicidade , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Reação em Cadeia da Polimerase Multiplex , Prevalência , Sensibilidade e Especificidade , Vietnã/epidemiologia , Fatores de Virulência de Bordetella
10.
PLoS Negl Trop Dis ; 14(6): e0008373, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32479541

RESUMO

BACKGROUND: Atypical enteropathogenic Escherichia coli (aEPEC) are one of the most frequent intestinal E. coli pathotypes isolated from diarrheal patients in Brazil. Isolates of aEPEC contain the locus of enterocyte effacement, but lack the genes of the bundle-forming pilus of typical EPEC, and the Shiga toxin of enterohemorrhagic E. coli (EHEC). The objective of this study was to evaluate the phylogeny and the gene content of Brazilian aEPEC genomes compared to a global aEPEC collection. METHODOLOGY: Single nucleotide polymorphism (SNP)-based phylogenomic analysis was used to compare 106 sequenced Brazilian aEPEC with 221 aEPEC obtained from other geographic origins. Additionally, Large-Scale BLAST Score Ratio was used to determine the shared versus unique gene content of the aEPEC studied. PRINCIPAL FINDINGS: Phylogenomic analysis demonstrated the 106 Brazilian aEPEC were present in phylogroups B1 (47.2%, 50/106), B2 (23.6%, 25/106), A (22.6%, 24/106), and E (6.6%, 7/106). Identification of EPEC and EHEC phylogenomic lineages demonstrated that 42.5% (45/106) of the Brazilian aEPEC were in four of the previously defined lineages: EPEC10 (17.9%, 19/106), EPEC9 (10.4%, 11/106), EHEC2 (7.5%, 8/106) and EPEC7 (6.6%, 7/106). Interestingly, an additional 28.3% (30/106) of the Brazilian aEPEC were identified in five novel lineages: EPEC11 (14.2%, 15/106), EPEC12 (4.7%, 5/106), EPEC13 (1.9%, 2/106), EPEC14 (5.7%, 6/106) and EPEC15 (1.9%, 2/106). We identified 246 genes that were more frequent among the aEPEC isolates from Brazil compared to the global aEPEC collection, including espG2, espT and espC (P<0.001). Moreover, the nleF gene was more frequently identified among Brazilian aEPEC isolates obtained from diarrheagenic patients when compared to healthy subjects (69.7% vs 41.2%, P<0.05). CONCLUSION: The current study demonstrates significant genomic diversity among aEPEC from Brazil, with the identification of Brazilian aEPEC isolates to five novel EPEC lineages. The greater prevalence of some virulence genes among Brazilian aEPEC genomes could be important to the specific virulence strategies used by aEPEC in Brazil to cause diarrheal disease.


Assuntos
Hibridização Genômica Comparativa/métodos , Escherichia coli Enteropatogênica/classificação , Escherichia coli Enteropatogênica/genética , Genoma Bacteriano , Filogenia , Fatores de Virulência/genética , Brasil , Infecções por Escherichia coli , Proteínas de Escherichia coli/genética , Humanos , Tipagem de Sequências Multilocus , Sorotipagem , Virulência
11.
Acta Microbiol Immunol Hung ; 67(2): 100-106, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32223306

RESUMO

This study aimed to evaluate the routine identification tools available in Lebanon for differentiation of Escherichia coli and Shigella spp. The identification of 43 isolates defined as Shigella spp. by Api 20E was accessed using MALDI-TOF, serological testing, duplex PCR targeting ipaH (present in Shigella spp. and enteroinvasive E. coli "EIEC") and lacY (found in E. coli including EIEC but not Shigella spp.) as well as gyrB gene sequencing. Antibiotic susceptibility was investigated as well as Shiga-toxin production. All isolates were identified as E. coli by MALDI-TOF while the PCR showed a disparate group of 26 EIEC, 11 Shigella spp., 5 E. coli and 1 inactive E. coli. However, the sequencing of gyrB gene, which was recently described as a suitable marker for distinguishing E. coli and Shigella spp., identified all isolates as E. coli. Antibiotic resistance was noticeable against ß-lactams, rifampicin, trimethoprim-sulfamethoxazole, gentamicin, and ciprofloxacin. The most common variants of beta-lactamase genes were blaTEM-1, blaCTX-M-15, and blaCTX-M-3. A great discordance between the used methods in identification was revealed herein. An accurate identification technique able to distinguish E. coli from Shigella spp. in routine laboratories is a pressing need in order to select the appropriate treatment and assess the epidemiology of these bacteria.


Assuntos
Disenteria Bacilar/diagnóstico , Escherichia coli Enteropatogênica/isolamento & purificação , Tipagem Molecular/métodos , Shigella/isolamento & purificação , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , DNA Girase/genética , Farmacorresistência Bacteriana Múltipla/genética , Disenteria Bacilar/microbiologia , Escherichia coli Enteropatogênica/classificação , Escherichia coli Enteropatogênica/genética , Proteínas de Escherichia coli/genética , Humanos , Líbano , Testes de Sensibilidade Microbiana , Proteínas de Transporte de Monossacarídeos/genética , Toxina Shiga/metabolismo , Shigella/classificação , Shigella/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Simportadores/genética
12.
BMC Microbiol ; 20(1): 54, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32143566

RESUMO

BACKGROUND: The treatment of Enterobacteriaceae family including diarrheagenic E. coli (DEC) has been increasingly complicated due to the emergence of resistant strains. Here we report on the phenotypic resistance profiles and ESBL genotype and virulence profiles of Enteroaggregative E. coli (EAEC) and Enteropathogenic E. coli (EPEC) isolated from children hospitalized with acute gastroenteritis in Qatar (AGE). RESULTS: E. coli were isolated and characterized from 76 diarrheagenic stool positive samples, collected from hospitalized children less than 10 years old. Isolates were tested for antibiotic susceptibility against eighteen clinically relevant antibiotics using E-test method. Conventional PCR was performed to detect genes encoding ESBL and virulence factors. Chi-square test was performed to compare the individual antibiotic resistance between EPEC and EAEC. A significant percentage (73.7%) of isolates were resistant to at least one antibiotic. Overall, high resistance (70%) was reported to the first-line antibiotics such as ampicillin, tetracycline (46.4%), and sulfamethoxazole-trimethoprim (42.9%). Further, 39.5% of the isolates were multidrug resistant (MDR), with 22.4% being ESBL producers. On the other hand, all isolates were susceptible to carbapenem, fosfomycin, amikacin and colistin. The incidences of resistance to the 18 antibiotics between EPEC and EAEC were not significantly different by Pearson chi -square test (P > 0.05). Genetic analysis revealed that 88.23% of ESBL production was blaCTX-M-G1 (blaCTX-M-15, blaCTX-M-3) - encoded. Several different combinations of virulence markers were observed, however, there was no specific trend among the isolates apart from absence of the bundle-forming pilus (bfpA) gene, which encodes the type IV fimbriae in EPEC adherence factor (EAF) plasmid (pEAF), among all EPEC (atypical). 15% of the EAEC strains were positive for a combination of astA, aap & capU, while 10% were positive for three different combinations. The aap, aatA, capU and aggR virulence genes showed the highest frequency of 65, 60, 55 and 55% respectively. Others genes, east, astA, and aai, showed frequencies of 35, 30 and 20% respectively. CONCLUSIONS: Atypical EPEC and EAEC were the primary etiological agents of diarrhea in children among DEC pathotypes. Our results indicated high rate of antimicrobial resistance pattern of DEC strains, which necessities the development of regulatory programs and reporting systems of antimicrobial resistance in DEC and other AGE-associated bacteria to insure effective control of diarrheal diseases. Results from this study demand a further research on identifying the phenotypic and genotypic profiles of more DEC pathotypes in various clinical samples.


Assuntos
Antibacterianos/farmacologia , Diarreia/microbiologia , Resistência Microbiana a Medicamentos , Escherichia coli Enteropatogênica/isolamento & purificação , Infecções por Escherichia coli/diagnóstico , Gastroenterite/microbiologia , Fatores de Virulência/genética , Criança , Pré-Escolar , Diarreia/epidemiologia , Escherichia coli Enteropatogênica/classificação , Escherichia coli Enteropatogênica/efeitos dos fármacos , Escherichia coli Enteropatogênica/patogenicidade , Infecções por Escherichia coli/epidemiologia , Fezes/microbiologia , Feminino , Gastroenterite/epidemiologia , Humanos , Incidência , Lactente , Recém-Nascido , Pacientes Internados , Masculino , Testes de Sensibilidade Microbiana , Catar/epidemiologia , Análise de Sequência de DNA
13.
Genome Med ; 12(1): 10, 2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31955713

RESUMO

BACKGROUND: Carbapenem-resistant Enterobacteriaceae are considered by WHO as "critical" priority pathogens for which novel antibiotics are urgently needed. The dissemination of carbapenemase-producing Escherichia coli (CP-Ec) in the community is a major public health concern. However, the global molecular epidemiology of CP-Ec isolates remains largely unknown as well as factors contributing to the acquisition of carbapenemase genes. METHODS: We first analyzed the whole-genome sequence and the evolution of the E. coli sequence type (ST) 410 and its disseminated clade expressing the carbapenemase OXA-181. We reconstructed the phylogeny of 19 E. coli ST enriched in CP-Ec and corresponding to a total of 2026 non-redundant isolates. Using the EpiCs software, we determined the significance of the association between specific mutations and the acquisition of a carbapenemase gene and the most probable order of events. The impact of the identified mutations was assessed experimentally by genetic manipulations and phenotypic testing. RESULTS: In 13 of the studied STs, acquisition of carbapenemase genes occurred in multidrug-resistant lineages characterized by a combination of mutations in ftsI encoding the penicillin-binding protein 3 and in the porin genes ompC and ompF. Mutated ftsI genes and a specific ompC allele related to that from ST38 inducing reduced susceptibility to diverse ß-lactams spread across the species by recombination. We showed that these mutations precede in most cases the acquisition of a carbapenemase gene. The ompC allele from ST38 might have contributed to the selection of CP-Ec disseminated lineages within this ST. On the other hand, in the pandemic ST131 lineage, CP-Ec were not associated with mutations in ompC or ftsI and show no signs of dissemination. CONCLUSIONS: Lineages of CP-Ec have started to disseminate globally. However, their selection is a multistep process involving mutations, recombination, acquisition of antibiotic resistance genes, and selection by ß-lactams from diverse families. This process did not yet occur in the high-risk lineage ST131.


Assuntos
Proteínas de Bactérias/genética , Escherichia coli Enteropatogênica/genética , Evolução Molecular , Transferência Genética Horizontal , Resistência beta-Lactâmica , beta-Lactamases/genética , Proteínas de Bactérias/metabolismo , Escherichia coli Enteropatogênica/classificação , Escherichia coli Enteropatogênica/efeitos dos fármacos , Proteínas de Escherichia coli/genética , Mutação , Proteínas de Ligação às Penicilinas/genética , Peptidoglicano Glicosiltransferase/genética , Filogenia , Porinas/genética , beta-Lactamases/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-31608246

RESUMO

Atypical enteropathogenic E. coli (aEPEC) is a group of diarrhoeagenic Escherichia coli with high diversity of serogroups, which lack the bundle-forming pili (BFP) and genes encoding for shiga toxins. The aim of this study was to isolate, identify and determine virulence and antibiotic resistance profiles of aEPEC O177 strains from cattle feces. A total of 780 samples were collected from beef and dairy cattle and analyzed for the presence of E. coli O177. One thousand two hundred and seventy-two (1272) presumptive isolates were obtained and 915 were confirmed as E. coli species. Three hundred and seventy-six isolates were positively confirmed as E. coli O177 through amplification of rmlB and wzy gene sequences using multiplex PCR. None of these isolates harbored bfpA gene. A larger proportion (12.74%) of the isolates harbored hlyA gene while 11.20, 9.07, 7.25, 2.60, and 0.63% possessed stx2, stx1, eaeA, stx2a , and stx2d , respectively. Most of E. coli O177 isolates carried stx2/hlyA (9.74%). Furthermore, 7.40% of the isolates harbored stx1/stx2 while 7.09% possessed stx1/stx2/hlyA genes. Only one isolate harbored stx1/stx2/hly/eaeA/stx2a/stx2d while 5.11% of the isolates harbored all the four major virulence genes stx1/stx2/hlyA/eaeA, simultaneously. Further analysis revealed that the isolates displayed varied antimicrobial resistance to erythromycin (63.84%), ampicillin (21.54%), tetracycline (13.37%), streptomycin (17.01%), kanamycin (2.42%), chloramphenicol (1.97%), and norfloxacin (1.40%). Moreover, 20.7% of the isolates exhibited different phenotypic multi-drug resistance patterns. All 73 isolates harbored at least one antimicrobial resistance gene. The aadA, streA, streB, erm, and tetA resistance genes were detected separately and/or concurrently. In conclusion, our findings indicate that environmental isolates of aEPEC O177 strains obtained from cattle in South Africa harbored virulence and antimicrobial resistance gene determinants similar to those reported in other shiga-toxin producing E. coli strains and suggest that these determinants may contribute to the virulence of the isolates.


Assuntos
Antibacterianos/farmacologia , Doenças dos Bovinos/microbiologia , Farmacorresistência Bacteriana Múltipla , Escherichia coli Enteropatogênica/efeitos dos fármacos , Escherichia coli Enteropatogênica/genética , Infecções por Escherichia coli/veterinária , Toxina Shiga/genética , Animais , Antibacterianos/uso terapêutico , Bovinos , Doenças dos Bovinos/tratamento farmacológico , Escherichia coli Enteropatogênica/classificação , Escherichia coli Enteropatogênica/isolamento & purificação , Fezes/microbiologia , Genótipo , Testes de Sensibilidade Microbiana , Reação em Cadeia da Polimerase Multiplex , Sorogrupo , Toxina Shiga/biossíntese , África do Sul , Virulência/genética , Fatores de Virulência/genética
16.
Appl Environ Microbiol ; 85(24)2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31562173

RESUMO

Escherichia coli segregates into phylogenetic groups, with group B2 containing both extraintestinal pathogenic E. coli (ExPEC) and enteropathogenic E. coli (EPEC) strains. Ten main B2 subgroups (subgroups I to X)/sequence type complexes (STcs), as well as EPEC lineages, have been identified. In the current study, we characterized ExPEC and EPEC strains of E. coli B2 phylogenetic subgroups/STcs that colonize Swedish and Pakistani infants. Gut commensal E. coli B2 strains, 120 from Swedish infants (n = 87) and 19 from Pakistani infants (n = 12), were assigned to B2 subgroups. Carriage of the bundle-forming pili and intimin adhesin was examined in the EPEC lineages. The ExPEC virulence markers and the time of persistence of the strains in the microbiota were previously determined. In total, 84% of the Swedish strains and 47% of the Pakistani strains belonged to 1 of the 10 main B2 subgroups (P = 0.001). Among the Swedish strains, the most common B2 subgroups were IX/STc95 (19%), II/STc73 (17%), VI/STc12 (13%), and III/STc127 (11%), with each subgroup carrying distinctive sets of ExPEC virulence markers. EPEC lineages with few ExPEC features constituted 47% of the Pakistani B2 strains but only 7% of the Swedish B2 strains (P = 0.0001). The subgroup distribution within phylogenetic group B2 strains colonizing the gut differed between Swedish and Pakistani infants. B2 subgroups with uropathogenic characteristics dominated the gut microbiota of Swedish infants, while EPEC lineage 1 strains frequently colonized the intestines of Pakistani infants. Moreover, within the B2 subgroups, ExPEC virulence genes were more prevalent in Swedish strains than in Pakistani strains. Thus, ExPEC traits exemplify the intestinal B2 strains from Western populations.IMPORTANCE The intestinal microbiota is an important reservoir for bacteria that cause extraintestinal infections. Escherichia coli is found ubiquitously in the gut microbiota, and it also causes urinary tract infections, infantile septicemia, and meningitis. Urinary tract infections are usually caused by E. coli strains that originate in the intestinal microbiota. E. coli also causes gastrointestinal infections and is a major cause of diarrhea in infants worldwide. The abilities of certain E. coli strains to cause infections are attributed to their virulence factors, i.e., bacterial components that contribute to the development of different diseases. Our study shows that different subtypes of potentially pathogenic E. coli strains dominate in the gut microbiota of infants in different geographical areas and expands our knowledge of the interplay between bacterial commensalism and pathogenicity.


Assuntos
Infecções por Escherichia coli/microbiologia , Escherichia coli/classificação , Escherichia coli Extraintestinal Patogênica/classificação , Microbioma Gastrointestinal , Filogenia , Fatores de Virulência/genética , Escherichia coli Enteropatogênica/classificação , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Lactente , Intestinos/microbiologia , Paquistão/epidemiologia , Suécia/epidemiologia , Infecções Urinárias/microbiologia , Virulência/genética
17.
Genome Res ; 29(9): 1495-1505, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31439690

RESUMO

How pathogens evolve their virulence to humans in nature is a scientific issue of great medical and biological importance. Shiga toxin (Stx)-producing Escherichia coli (STEC) and enteropathogenic E. coli (EPEC) are the major foodborne pathogens that can cause hemolytic uremic syndrome and infantile diarrhea, respectively. The locus of enterocyte effacement (LEE)-encoded type 3 secretion system (T3SS) is the major virulence determinant of EPEC and is also possessed by major STEC lineages. Cattle are thought to be the primary reservoir of STEC and EPEC. However, genome sequences of bovine commensal E. coli are limited, and the emerging process of STEC and EPEC is largely unknown. Here, we performed a large-scale genomic comparison of bovine commensal E. coli with human commensal and clinical strains, including EPEC and STEC, at a global level. The analyses identified two distinct lineages, in which bovine and human commensal strains are enriched, respectively, and revealed that STEC and EPEC strains have emerged in multiple sublineages of the bovine-associated lineage. In addition to the bovine-associated lineage-specific genes, including fimbriae, capsule, and nutrition utilization genes, specific virulence gene communities have been accumulated in stx- and LEE-positive strains, respectively, with notable overlaps of community members. Functional associations of these genes probably confer benefits to these E. coli strains in inhabiting and/or adapting to the bovine intestinal environment and drive their evolution to highly virulent human pathogens under the bovine-adapted genetic background. Our data highlight the importance of large-scale genome sequencing of animal strains in the studies of zoonotic pathogens.


Assuntos
Infecções por Escherichia coli/microbiologia , Escherichia coli/classificação , Fatores de Virulência/genética , Sequenciamento Completo do Genoma/métodos , Animais , Bovinos , Escherichia coli Enteropatogênica/classificação , Escherichia coli Enteropatogênica/genética , Escherichia coli/genética , Escherichia coli/patogenicidade , Proteínas de Escherichia coli/genética , Evolução Molecular , Redes Reguladoras de Genes , Genoma Bacteriano , Humanos , Filogenia , Escherichia coli Shiga Toxigênica/classificação , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/patogenicidade , Simbiose
18.
Infect Immun ; 87(10)2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31358567

RESUMO

Enteropathogenic Escherichia coli (EPEC) is a leading cause of moderate to severe diarrhea among young children in developing countries, and EPEC isolates can be subdivided into two groups. Typical EPEC (tEPEC) bacteria are characterized by the presence of both the locus of enterocyte effacement (LEE) and the plasmid-encoded bundle-forming pilus (BFP), which are involved in adherence and translocation of type III effectors into the host cells. Atypical EPEC (aEPEC) bacteria also contain the LEE but lack the BFP. In the current report, we describe the complete genome of outbreak-associated aEPEC isolate E110019, which carries four plasmids. Comparative genomic analysis demonstrated that the type III secreted effector EspT gene, an autotransporter gene, a hemolysin gene, and putative fimbrial genes are all carried on plasmids. Further investigation of 65 espT-containing E. coli genomes demonstrated that different espT alleles are associated with multiple plasmids that differ in their overall gene content from the E110019 espT-containing plasmid. EspT has been previously described with respect to its role in the ability of E110019 to invade host cells. While other type III secreted effectors of E. coli have been identified on insertion elements and prophages of the chromosome, we demonstrated in the current study that the espT gene is located on multiple unique plasmids. These findings highlight a role of plasmids in dissemination of a unique E. coli type III secreted effector that is involved in host invasion and severe diarrheal illness.


Assuntos
Escherichia coli Enteropatogênica/genética , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Plasmídeos/química , Sistemas de Secreção Tipo III/genética , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Criança , Mapeamento Cromossômico , Escherichia coli Enteropatogênica/classificação , Escherichia coli Enteropatogênica/isolamento & purificação , Escherichia coli Enteropatogênica/metabolismo , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Proteínas de Escherichia coli/metabolismo , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Interações Hospedeiro-Patógeno/genética , Humanos , Filogenia , Plasmídeos/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Sistemas de Secreção Tipo V/genética , Sistemas de Secreção Tipo V/metabolismo
19.
BMC Genomics ; 20(1): 271, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30953471

RESUMO

BACKGROUND: Wild birds, in particular pigeons are considered a natural reservoir for stx2f-carrying E. coli. An extensive comparison of isolates from pigeons and humans from the same region is lacking, which hampers justifiable conclusions on the epidemiology of these pathogens. Over two hundred human and pigeon stx2f-carrying E. coli isolates predominantly from the Netherlands were analysed by whole genome sequencing and comparative genomic analysis including in silico MLST, serotyping, virulence genes typing and whole genome MLST (wgMLST). RESULTS: Serotypes and sequence types of stx2f-carrying E. coli showed a strong non-random distribution among the human and pigeon isolates with O63:H6/ST583, O113:H6/ST121 and O125:H6/ST583 overrepresented among the human isolates and not found among pigeons. Pigeon isolates were characterized by an overrepresentation of O4:H2/ST20 and O45:H2/ST20. Nearly all isolates harboured the locus of enterocyte effacement (LEE) but different eae and tir subtypes were non-randomly distributed among human and pigeon isolates. Phylogenetic core genome comparison demonstrated that the pigeon isolates and clinical isolates largely occurred in separated clusters. In addition, serotypes/STs exclusively found among humans generally were characterized by high level of clonality, smaller genome sizes and lack of several non-LEE-encoded virulence genes. A bundle-forming pilus operon, including bfpA, indicative for typical enteropathogenic E. coli (tEPEC) was demonstrated in 72.0% of the stx2f-carrying serotypes but with distinct operon types between the main pigeon and human isolate clusters. CONCLUSIONS: Comparative genomics revealed that isolates from mild human disease are dominated by serotypes not encountered in the pigeon reservoir. It is therefore unlikely that zoonotic transmission from this reservoir plays an important role in the contribution to the majority of human disease associated with stx2f-producing E. coli in the Netherlands. Unexpectedly, this study identified the common occurrence of STEC2f/tEPEC hybrid pathotype in various serotypes and STs. Further research should focus on the possible role of human-to-human transmission of Stx2f-producing E. coli.


Assuntos
Doenças das Aves/epidemiologia , Escherichia coli Enteropatogênica/patogenicidade , Infecções por Escherichia coli/epidemiologia , Proteínas de Escherichia coli/metabolismo , Genômica/métodos , Toxina Shiga/metabolismo , Fatores de Virulência/metabolismo , Animais , Columbidae , Escherichia coli Enteropatogênica/classificação , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Genoma Bacteriano , Humanos , Filogenia , Toxina Shiga/genética , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA