Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Nucleic Acids Res ; 52(2): 856-871, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38084890

RESUMO

Shiga toxin (Stx) released by Shiga toxin producing Escherichia coli (STEC) causes life-threatening illness. Its production and release require induction of Stx-encoding prophage resident within the STEC genome. We identified two different STEC strains, PA2 and PA8, bearing Stx-encoding prophage whose sequences primarily differ by the position of an IS629 insertion element, yet differ in their abilities to kill eukaryotic cells and whose prophages differ in their spontaneous induction frequencies. The IS629 element in ϕPA2, disrupts an ORF predicted to encode a DNA adenine methyltransferase, whereas in ϕPA8, this element lies in an intergenic region. Introducing a plasmid expressing the methyltransferase gene product into ϕPA2 bearing-strains increases both the prophage spontaneous induction frequency and virulence to those exhibited by ϕPA8 bearing-strains. However, a plasmid bearing mutations predicted to disrupt the putative active site of the methyltransferase does not complement either of these defects. When complexed with a second protein, the methyltransferase holoenzyme preferentially uses 16S rRNA as a substrate. The second subunit is responsible for directing the preferential methylation of rRNA. Together these findings reveal a previously unrecognized role for rRNA methylation in regulating induction of Stx-encoding prophage.


Assuntos
Metiltransferases , Prófagos , Escherichia coli Shiga Toxigênica , Humanos , Infecções por Escherichia coli/microbiologia , Metiltransferases/genética , Prófagos/genética , RNA Ribossômico 16S , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/patogenicidade , Escherichia coli Shiga Toxigênica/virologia , Virulência
2.
Microbiol Spectr ; 10(1): e0222021, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35107386

RESUMO

Application of lytic bacteriophages is a promising and alternative intervention technology to relieve antibiotic resistance pressure and control bacterial pathogens in the food industry. Despite the increase of produce-associated outbreaks caused by non-O157 Shiga toxin-producing E. coli (STEC) serogroups, the information of phage application on sprouts to mitigate these pathogens is lacking. Therefore, the objective of this study was to characterize a T4-like Escherichia phage vB_EcoM-Sa45lw (or Sa45lw) for the biocontrol potential of STEC O45 on mung bean seeds. Phage Sa45lw belongs to the Tequatrovirus genus under the Myoviridae family and displays a close evolutionary relationship with a STEC O157-infecting phage AR1. Sa45lw contains a long-tail fiber gene (gp37), sharing high genetic similarity with the counterpart of Escherichia phage KIT03, and a unique tail lysozyme (gp5) to distinguish its host range (STEC O157, O45, ATCC 13706, and Salmonella Montevideo and Thompson) from phage KIT03 (O157 and Salmonella enterica). No stx, antibiotic resistance, and lysogenic genes were found in the Sa45lw genome. The phage has a latent period of 27 min with an estimated burst size of 80 PFU/CFU and is stable at a wide range of pH (pH 3 to pH 10.5) and temperatures (-80°C to 50°C). Phage Sa45lw is particularly effective in reducing E. coli O45:H16 both in vitro (MOI = 10) by 5 log and upon application (MOI = 1,000) on the contaminated mung bean seeds for 15 min by 2 log at 25°C. These findings highlight the potential of phage application against non-O157 STEC on sprout seeds. IMPORTANCE Seeds contaminated with foodborne pathogens, such as Shiga toxin-producing E. coli, are the primary sources of contamination in produce and have contributed to numerous foodborne outbreaks. Antibiotic resistance has been a long-lasting issue that poses a threat to human health and the food industry. Therefore, developing novel antimicrobial interventions, such as bacteriophage application, is pivotal to combat these pathogens. This study characterized a lytic bacteriophage Sa45lw as an alternative antimicrobial agent to control pathogenic E. coli on the contaminated mung bean seeds. The phage exhibited antimicrobial effects against both pathogenic E. coli and Salmonella without containing virulent or lysogenic genes that could compromise the safety of phage application. In addition, after 15 min of phage treatment, Sa45lw mitigated E. coli O45:H16 on the contaminated mung bean seeds by a 2-log reduction at room temperature, demonstrating the biocontrol potential of non-O157 Shiga toxin-producing E. coli on sprout seeds.


Assuntos
Bacteriófagos/fisiologia , Contaminação de Alimentos/prevenção & controle , Conservação de Alimentos/métodos , Myoviridae/fisiologia , Sementes/microbiologia , Escherichia coli Shiga Toxigênica/virologia , Vigna/microbiologia , Bacteriófagos/classificação , Bacteriófagos/genética , Contaminação de Alimentos/análise , Filogenia , Toxina Shiga/metabolismo , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/metabolismo
3.
Toxins (Basel) ; 13(9)2021 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-34564648

RESUMO

Shiga toxin-producing Escherichia coli (STEC) can cause severe infections in humans, leading to serious diseases and dangerous complications, such as hemolytic-uremic syndrome. Although cattle are a major reservoir of STEC, the most commonly occurring source of human infections are food products (e.g., vegetables) contaminated with cow feces (often due to the use of natural fertilizers in agriculture). Since the use of antibiotics against STEC is controversial, other methods for protection of food against contaminations by these bacteria are required. Here, we propose a validation system for selection of bacteriophages against STEC contamination. As a model system, we have employed a STEC-specific bacteriophage vB_Eco4M-7 and the E. coli O157:H7 strain no. 86-24, bearing Shiga toxin-converting prophage ST2-8624 (Δstx2::cat gfp). When these bacteria were administered on the surface of sliced cucumber (as a model vegetable), significant decrease in number viable E. coli cells was observed after 6 h of incubation. No toxicity of vB_Eco4M-7 against mammalian cells (using the Balb/3T3 cell line as a model) was detected. A rapid decrease of optical density of STEC culture was demonstrated following addition of a vB_Eco4M-7 lysate. However, longer incubation of susceptible bacteria with this bacteriophage resulted in the appearance of phage-resistant cells which predominated in the culture after 24 h incubation. Interestingly, efficiency of selection of bacteria resistant to vB_Eco4M-7 was higher at higher multiplicity of infection (MOI); the highest efficiency was evident at MOI 10, while the lowest occurred at MOI 0.001. A similar phenomenon of selection of the phage-resistant bacteria was also observed in the experiment with the STEC-contaminated cucumber after 24 h incubation with phage lysate. On the other hand, bacteriophage vB_Eco4M-7 could efficiently develop in host bacterial cells, giving plaques at similar efficiency of plating at 37, 25 and 12 °C, indicating that it can destroy STEC cells at the range of temperatures commonly used for vegetable short-term storage. These results indicate that bacteriophage vB_Eco4M-7 may be considered for its use in food protection against STEC contamination; however, caution should be taken due to the phenomenon of the appearance of phage-resistant bacteria.


Assuntos
Bacteriófagos/fisiologia , Infecções por Escherichia coli/prevenção & controle , Microbiologia de Alimentos/métodos , Escherichia coli Shiga Toxigênica/virologia , Toxina Shiga/metabolismo , Escherichia coli Shiga Toxigênica/fisiologia
4.
Methods Mol Biol ; 2291: 119-144, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33704751

RESUMO

Shiga toxin (Stx) phages can be induced from Stx-producing Escherichia coli strains (STEC) or can be isolated as free virions from different samples. Here we describe methods used for the detection, enumeration, and isolation of Stx bacteriophages. Stx phages are temperate phages located in the genome of STEC. Their induction from the host strain cultures is achieved by different inducing agents, mitomycin C being one of the most commonly used. Detection of infectious Stx phages requires the production of visible plaques in a confluent lawn of the host strain using a double agar layer method. However, as the plaques produced by Stx phages are often barely visible and there is a possibility that non-Stx phages can also be induced from the strain, a hybridization step should be added to recognize and properly enumerate the lysis plaques generated after induction. Molecular methods can also be used to identify and enumerate Stx phages. Real-time quantitative PCR (qPCR) is the most accurate method for absolute quantification, although it cannot determine the infectivity of Stx phages. qPCR can also be useful for the detection of free Stx phage virions in different sample types.Stx phages induced from lysogenic bacterial strains can be purified by cesium chloride density gradients; this protocol also helps to specifically discriminate Stx phages from other prophages present in the genome of the host strain by selecting the phages expressing the Stx gene. High titer suspensions of Stx phages obtained after induction of large volumes of bacterial cultures and lysate concentration permits phage characterization by electron microscopy studies and genomic analysis.


Assuntos
Bacteriófagos , Reação em Cadeia da Polimerase em Tempo Real , Toxina Shiga , Escherichia coli Shiga Toxigênica , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Bacteriófagos/metabolismo , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/virologia , Toxina Shiga/biossíntese , Toxina Shiga/genética , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/metabolismo , Escherichia coli Shiga Toxigênica/virologia
5.
Sci Rep ; 11(1): 3035, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542282

RESUMO

Acquisition of new prophages that are able to increase the bacterial fitness by the lysogenic conversion is believed to be an important strategy of bacterial adaptation to the changing environment. However, in contrast to the factors determining the range of bacteriophage lytic activity, little is known about the factors that define the lysogenization host range. Bacteriophage phi24B is the paradigmal model of Stx-converting phages, encoding the toxins of the Shiga-toxigenic E. coli (STEC). This virus has been shown to lysogenize a wide range of E. coli strains that is much broader than the range of the strains supporting its lytic growth. Therefore, phages produced by the STEC population colonizing the small or large intestine are potentially able to lysogenize symbiotic E. coli in the hindgut, and these secondary lysogens may contribute to the overall patient toxic load and to lead to the emergence of new pathogenic STEC strains. We demonstrate, however, that O antigen effectively limit the lysogenization of the wild E. coli strains by phi24B phage. The lysogens are formed from the spontaneous rough mutants and therefore have increased sensitivity to other bacteriophages and to the bactericidal activity of the serum if compared to their respective parental strains.


Assuntos
Bacteriófagos/genética , Infecções por Escherichia coli/genética , Lisogenia/genética , Antígenos O/genética , Bacteriófagos/metabolismo , DNA Viral/genética , Infecções por Escherichia coli/virologia , Escherichia coli O157/genética , Escherichia coli O157/virologia , Humanos , Antígenos O/metabolismo , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/virologia
6.
Food Microbiol ; 96: 103722, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33494894

RESUMO

We previously reported a distinct methylome between the two Shiga toxin-producing Escherichia coli (STEC) O145:H28 strains linked to the 2010 U.S. lettuce-associated outbreak (RM13514) and the 2007 Belgium ice cream-associated outbreak (RM13516), respectively. This difference was thought to be attributed to a prophage encoded type II restriction-modification system (PstI R-M) in RM13514. Here, we characterized this PstI R-M system in comparison to DNA adenine methylase (Dam), a highly conserved enzyme in γ proteobacteria, by functional genomics. Deficiency in Dam led to a differential expression of over 1000 genes in RM13514, whereas deficiency in PstI R-M only impacted a few genes transcriptionally. Dam regulated genes involved in diverse functions, whereas PstI R-M regulated genes mostly encoding transporters and adhesins. Dam regulated a large number of genes located on prophages, pathogenicity islands, and plasmids, including Shiga toxin genes, type III secretion system (TTSS) genes, and enterohemolysin genes. Production of Stx2 in dam mutant was significantly higher than in RM13514, supporting a role of Dam in maintaining lysogeny of Stx2-prophage. However, following mitomycin C treatment, Stx2 in RM13514 was significantly higher than that of dam or PstI R-M deletion mutant, implying that both Dam and PstI R-M contributed to maximum Stx2 production.


Assuntos
Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Infecções por Escherichia coli/microbiologia , Prófagos/enzimologia , Escherichia coli Shiga Toxigênica/enzimologia , Proteínas Virais/metabolismo , Fatores de Virulência/genética , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Prófagos/genética , Toxina Shiga II/genética , Toxina Shiga II/metabolismo , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/patogenicidade , Escherichia coli Shiga Toxigênica/virologia , DNA Metiltransferases Sítio Específica (Adenina-Específica)/genética , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo , Proteínas Virais/genética , Virulência , Fatores de Virulência/metabolismo
7.
Food Microbiol ; 92: 103572, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32950157

RESUMO

Shiga toxigenic Escherichia coli (STEC) can form biofilms and frequently cause serious foodborne illnesses. A strain of STEC O145:H25 (EC19990166) known to be a strong biofilm former was used to evaluate the efficacy of bacteriophage AZO145A against biofilms formed on stainless steel (SS) coupons. Exposure of STEC O145:H25 to phage AZO145A (1010 PFU/mL) for 2 h resulted in a 4.0 log10 reduction (P < 0.01) of planktonic cells grown in M9 broth at 24 °C for 24 h, while reductions were 2.0 log10 CFU/mL if these cells were grown for 48 h or 72 h prior to phage treatment. STEC O145 biofilms formed on SS coupons for 24, 48 and 72 h were reduced (P < 0.01) 2.9, 1.9 and 1.9 log10 CFU/coupon by phages. STEC O145 cells in biofilms were readily transferred from the surface of the SS coupon to beef (3.6 log10 CFU/coupon) even with as little as 10 s of contact with the meat surface. However, transfer of STEC O145 cells from biofilms that formed on SS coupons for 48 h to beef was reduced (P < 0.01) by 3.1 log10 CFU by phage (2 × 1010 PFU/mL) at 24 °C. Scanning electron microscopy revealed that bacterial cells within indentations on the surface of SS coupons were reduced by phage. These results suggest that bacteriophage AZO145A could be effective in reducing the viability of biofilm-adherent STEC O145 on stainless steel in food industry environments.


Assuntos
Bacteriófagos/fisiologia , Contaminação de Equipamentos/prevenção & controle , Carne/microbiologia , Escherichia coli Shiga Toxigênica/virologia , Aço Inoxidável/análise , Animais , Biofilmes , Bovinos , Manipulação de Alimentos/instrumentação , Escherichia coli Shiga Toxigênica/crescimento & desenvolvimento , Escherichia coli Shiga Toxigênica/fisiologia
8.
Crit Rev Biotechnol ; 40(8): 1081-1097, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32811194

RESUMO

Shiga toxin-producing Escherichia coli (STEC) are usually found on food products due to contamination from the fecal origin, as their main environmental reservoir is considered to be the gut of ruminants. While this pathogen is far from the incidence of other well-known foodborne bacteria, the severity of STEC infections in humans has triggered global concerns as far as its incidence and control are concerned. Major control strategies for foodborne pathogens in food-related settings usually involve traditional sterilization/disinfection techniques. However, there is an increasing need for the development of further strategies to enhance the antimicrobial outcome, either on food-contact surfaces or directly in food matrices. Phages are considered to be a good alternative to control foodborne pathogens, with some phage-based products already cleared by the Food and Drug Administration (FDA) to be used in the food industry. In European countries, phage-based food decontaminants have already been used. Nevertheless, its broad use in the European Union is not yet possible due to the lack of specific guidelines for the approval of these products. Furthermore, some safety concerns remain to be addressed so that the regulatory requirements can be met. In this review, we present an overview of the main virulence factors of STEC and introduce phages as promising biocontrol agents for STEC control. We further present the regulatory constraints on the approval of phages for food applications and discuss safety concerns that are still impairing their use.


Assuntos
Bacteriófagos/fisiologia , Toxinas Shiga/metabolismo , Escherichia coli Shiga Toxigênica/virologia , Animais , Europa (Continente) , Fezes/microbiologia , Microbiologia de Alimentos , Inocuidade dos Alimentos , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Estágios do Ciclo de Vida , Toxinas Shiga/genética , Escherichia coli Shiga Toxigênica/genética , Fatores de Virulência
9.
Sci Rep ; 10(1): 11738, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32678145

RESUMO

Since the Shiga toxin-producing enteroaggregative Escherichia coli (Stx-EAEC) O104:H4 strain caused a massive outbreak across Europe in 2011, the importance of Stx-EAEC has attracted attention from a public health perspective. Two Stx-EAEC O86 isolates were obtained from patients with severe symptoms in Japan in 1999 and 2015. To characterize the phylogeny and pathogenic potential of these Stx-EAEC O86 isolates, whole-genome sequence analyses were performed by short-and long-read sequencing. Among genetically diverse E. coli O86, the Stx-EAEC O86 isolates were clustered with the EAEC O86:H27 ST3570 subgroup. Strikingly, there were only two loci with single nucleotide polymorphisms (SNPs) between the Stx2a phage of a Japanese O86:H27 isolate and that of the European epidemic-related Stx-EAEC O104:H4 isolate. These results provide evidence of global distribution of epidemic-related Stx2a phages among various lineages of E. coli with few mutations.


Assuntos
Escherichia coli Enteropatogênica/genética , Escherichia coli Enteropatogênica/virologia , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Toxina Shiga II/genética , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/virologia , Surtos de Doenças , Epidemias , Ordem dos Genes , Genoma Bacteriano , Humanos , Japão/epidemiologia , Virulência , Sequenciamento Completo do Genoma
10.
Meat Sci ; 170: 108243, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32688222

RESUMO

According to the United States Food and Drug Administration (FDA) agency, bacteriophage solutions targeting the serotype O157:H7 are Generally Recognized as Safe (GRAS) to control STEC during beef processing. However, outbreaks involving the "Big Six" STEC increased the industry concern about those serotypes. The objective of this study was to test the efficacy of MS bacteriophages to reduce the "Big Six" non-O157 STEC in beef. The lysing efficacy of phages isolated for each specific serotype varied from 96.2% to 99.9% in vitro. When applied to contaminated trim, reductions ranging from 0.7 to 1.3 Log of all STEC were observed in ground beef. Bacteriophages may provide an additional barrier against the "Big Six" STEC in ground beef. Results of this research provide support documentation to the FDA to extend GRAS status for bacteriophages as processing aids against all adulterant STEC.


Assuntos
Bacteriófagos , Escherichia coli O157/virologia , Produtos da Carne/microbiologia , Escherichia coli Shiga Toxigênica/virologia , Animais , Agentes de Controle Biológico , Bovinos , Microbiologia de Alimentos , Inocuidade dos Alimentos/métodos , Sorogrupo
11.
PLoS One ; 15(6): e0234438, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32525945

RESUMO

Shiga toxin-producing Escherichia coli (STECs) contamination of produce, as a result of contact with ruminant fecal material, has been associated with serious foodborne illness. Bacteriophages (phages) that infect STECs have primarily been reported to be of cattle origin. However, they likely exist in other environments or in animals that share habitats with cattle, such as goats. To explore the presence and diversity of phages specific to STEC O157 and the top six non-O157 STECs in goat-associated environments, environmental samples consisting of feces (goat and cattle) and soil samples were collected monthly for six months from an organic produce farm. A variety of phages belonging to the Myoviridae, Siphoviridae, and Podoviridae families were isolated from all goat fecal and half of the soil samples. The most commonly isolated phages belonged to Myoviridae and were lytic against STEC O103. The isolated phages had different host ranges, but collectively, showed lytic activity against O157 and the top six non-O157 STEC strains excluding O121. Two non-O157 STECs (O174: H21 and O-antigen-negative: H18) were isolated from soil and cattle feces, respectively. Although prior studies have reported that goats shed STEC into the environment, the findings of the current study suggest that goat feces may also contain lytic STEC-specific phages. The phages of goat origin have the capacity to infect STECs implicated in causing foodborne outbreaks, making them potential candidates for biocontrol pending additional characterization steps. Further work is needed to determine if the addition of goats to the farm environment could potentially reduce the presence of STECs.


Assuntos
Bacteriófagos/isolamento & purificação , Fezes/virologia , Cabras/microbiologia , Escherichia coli Shiga Toxigênica/virologia , Criação de Animais Domésticos/métodos , Animais , Bacteriófagos/genética , California , Bovinos/microbiologia , DNA Viral/isolamento & purificação , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/prevenção & controle , Fazendas , Alimentos Orgânicos/microbiologia , Doenças Transmitidas por Alimentos/microbiologia , Doenças Transmitidas por Alimentos/prevenção & controle , Microbiologia do Solo
12.
Appl Environ Microbiol ; 86(9)2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32111587

RESUMO

Shiga toxin-producing Escherichia coli (STEC) strains are important zoonotic foodborne pathogens, causing diarrhea, hemorrhagic colitis, and life-threatening hemolytic uremic syndrome (HUS) in humans. However, antibiotic treatment of STEC infection is associated with an increased risk of HUS. Therefore, there is an urgent need for early and effective therapeutic strategies. Here, we isolated lytic T7-like STEC phage PHB19 and identified a novel O91-specific polysaccharide depolymerase (Dep6) in the C terminus of the PHB19 tailspike protein. Dep6 exhibited strong hydrolase activity across wide ranges of pH (pH 4 to 8) and temperature (20 to 60°C) and degraded polysaccharides on the surface of STEC strain HB10. In addition, both Dep6 and PHB19 degraded biofilms formed by STEC strain HB10. In a mouse STEC infection model, delayed Dep6 treatment (3 h postinfection) resulted in only 33% survival, compared with 83% survival when mice were treated simultaneously with infection. In comparison, pretreatment with Dep6 led to 100% survival compared with that of the control group. Surprisingly, a single PHB19 treatment resulted in 100% survival in all three treatment protocols. Moreover, a significant reduction in the levels of proinflammatory cytokines was observed at 24 h postinfection in Dep6- or PHB19-treated mice. These results demonstrated that Dep6 or PHB19 might be used as a potential therapeutic agent to prevent STEC infection.IMPORTANCE Shiga toxin-producing Escherichia coli (STEC) is an important foodborne pathogen worldwide. The Shiga-like toxin causes diarrhea, hemorrhagic colitis, and life-threatening hemolytic uremic syndrome (HUS) in humans. Although antibiotic therapy is still used for STEC infections, this approach may increase the risk of HUS. Phages or phage-derived depolymerases have been used to treat bacterial infections in animals and humans, as in the case of the "San Diego patient" treated with a phage cocktail. Here, we showed that phage PHB19 and its O91-specific polysaccharide depolymerase Dep6 degraded STEC biofilms and stripped the lipopolysaccharide (LPS) from STEC strain HB10, which was subsequently killed by serum complement in vitro In a mouse model, PHB19 and Dep6 protected against STEC infection and caused a significant reduction in the levels of proinflammatory cytokines. This study reports the use of an O91-specific polysaccharide depolymerase for the treatment of STEC infection in mice.


Assuntos
Colífagos/fisiologia , Glicosídeo Hidrolases/genética , Escherichia coli Shiga Toxigênica/virologia , Proteínas Virais/genética , Colífagos/genética , Glicosídeo Hidrolases/metabolismo , Proteínas Virais/metabolismo
13.
Virol J ; 17(1): 3, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31910855

RESUMO

A previously isolated a bacteriophage, vB_EcoS_AKFV33 of T5virus, demonstrated great potential in biocontrol of Shiga toxigenic Escherichia coli (STEC) O157. This study further evaluated its potential as a biocontrol agent in broth culture against other important non-O157 serogroups of STEC and Salmonella. AKFV33 was capable of lysing isolates of STEC serogroups O26 (n = 1), O145 (n = 1) and Salmonella enterica serovars (n = 6). In a broth culture microplate system, efficacy of AKFV33 for killing STEC O26:H11, O145:NM and Salmonella was improved (P < 0.05) at a lower multiplicity of infection and sampling time (6-10 h), when STEC O157:H7 was also included in the culture. This phage was able to simultaneously reduce numbers of STEC and Salmonella in mixtures with enhanced activity (P < 0.05) against O157:H7 and O26:H11, offering great promise for control of multiple zoonotic pathogens at both pre and post-harvest.


Assuntos
Salmonella/crescimento & desenvolvimento , Salmonella/virologia , Escherichia coli Shiga Toxigênica/crescimento & desenvolvimento , Escherichia coli Shiga Toxigênica/virologia , Siphoviridae/fisiologia , Técnicas Bacteriológicas , Agentes de Controle Biológico , Salmonella/classificação , Sorogrupo
14.
Zoonoses Public Health ; 67(1): 44-53, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31868306

RESUMO

Shiga toxin-producing Escherichia coli (STEC) can cause diarrhoea and severe diseases in humans, such as haemolytic uraemic syndrome. STEC virulence is considered to correlate with the amount of Shiga toxins (Stx) produced, especially Stx2, whose subtype Stx2a is most frequently associated with high virulence. Stx are encoded in prophages, which play an important role in STEC pathogenesis. The aim of this study was to evaluate stx2a expression levels and Stx2a phage production using qPCR and the double-agar-layer method in 29 STEC strains, corresponding to serotypes O26:H11 (6), O91:H21 (1), O145:H- (11) and O157:H7 (11), isolated from cattle and humans. Results were then tested for possible associations with serotype, origin or some genetic features. We observed heterogeneous levels of stx2a expression and Stx2a phage production. However, statistical comparisons identified a higher stx2a expression in response to mitomycin C in strains isolated from cattle than in those from humans. At the same time, compared to stx2a /stx2c strains, stx2a strains showed a higher increase in phage production under induced conditions. Notably, most of the strains studied, regardless of serotype and origin, carried inducible Stx2a phages and evidenced expression of stx2a that increased along with phage production levels under induced conditions.


Assuntos
Bacteriófagos/fisiologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Toxina Shiga II/metabolismo , Escherichia coli Shiga Toxigênica/metabolismo , Escherichia coli Shiga Toxigênica/virologia , Alquilantes/farmacologia , Animais , Bovinos , Humanos , Mitomicina/farmacologia , Prófagos , RNA Bacteriano , Toxina Shiga , Toxina Shiga II/química , Toxina Shiga II/genética , Escherichia coli Shiga Toxigênica/efeitos dos fármacos , Escherichia coli Shiga Toxigênica/genética
15.
Food Microbiol ; 86: 103332, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31703888

RESUMO

Drying processes do not eliminate pathogenic Escherichia coli in foods but induce sublethal injury, which may also induce the Shiga toxin (Stx) prophage. This study investigated the effect of drying on membrane lipid oxidation and stx expression in E. coli. Lipid peroxidation was probed with C11-BODIPY581/591; and stx expression was assayed by quantification of GFP in E. coli O104:H4 Δstx2a:gfp:ampr. Treatment of E. coli with H2O2 oxidized the probe; probe oxidation was also observed after drying and rehydration. Lipid oxidation and the lethality of drying were reduced when cells were dried with trehalose under anaerobic condition; in addition, viability and probe oxidation differed between E. coli AW1.7 and E. coli AW1.7Δcfa. Desiccation tolerance thus relates to membrane lipid oxidation. Drying also resulted in expression of GFP in 5% of the population. Overexpression of gfp and recA after drying and rehydration suggested that the expression of Stx prophage was regulated by the SOS response. Overall, C11-BODIPY581/591 allowed investigation of lipid peroxidation in bacteria. Drying causes lipid oxidation, DNA damage and induction of genes encoded by the Stx prophage in E. coli.


Assuntos
Lipídeos de Membrana/química , Prófagos/fisiologia , Escherichia coli Shiga Toxigênica/química , Dessecação , Manipulação de Alimentos , Microbiologia de Alimentos , Peróxido de Hidrogênio/farmacologia , Lipídeos de Membrana/metabolismo , Oxirredução , Toxina Shiga/metabolismo , Escherichia coli Shiga Toxigênica/efeitos dos fármacos , Escherichia coli Shiga Toxigênica/metabolismo , Escherichia coli Shiga Toxigênica/virologia
16.
Acta Biochim Pol ; 66(4): 589-596, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31769953

RESUMO

Shiga toxin-producing Escherichia coli (STEC) is a group of pathogenic strains responsible for human infections that result in bloody diarrhea and hemorrhagic colitis, often with severe complications. The main virulence factors of STEC are Shiga toxins encoded by stx genes located in genomes of Shiga toxin-converting bacteriophages (Stx phages). These bacterial viruses are clustered in the lambdoid bacteriophages family represented by phage λ. Here, we report that expression of orf73 from the exo-xis region of the phage genome promotes the lysogenic pathway of development of λ and Φ24B phages. We demonstrated that the mutant phages with deletions of orf73 revealed higher burst size during the lytic cycle. Moreover, survival rates of E. coli infected with mutant bacteriophages were lower relative to wild-type viruses. Additionally, orf73 deletion negatively influenced the lysogenization process of E. coli host cells. We conclude that orf73 plays an important biological role in the development of lambdoid viruses, and probably it is involved in the network of molecular mechanism of the lysis-vs.-lysogenization decision.


Assuntos
Bacteriófagos/genética , Infecções por Escherichia coli/genética , Escherichia coli Shiga Toxigênica/genética , Proteínas Virais/genética , Bacteriófago lambda/genética , Bacteriófago lambda/patogenicidade , Bacteriófagos/patogenicidade , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/virologia , Regulação Viral da Expressão Gênica/genética , Genoma/genética , Humanos , Escherichia coli Shiga Toxigênica/virologia , Fatores de Virulência/genética
17.
Arch Virol ; 164(12): 3111-3113, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31531744

RESUMO

The complete genome of the novel phage vB_EcoS_PHB17, which infects Shiga-toxin-producing Escherichia coli, was sequenced, revealing a linear double-stranded DNA genome of 48,939 bp with 46% GC content and protruding 150-bp 5' cohesive termini. The genome contained 85 open reading frames, 28 of which were annotated with known functions. No tRNA-encoding genes were detected. Phylogenetic analysis suggested that phage PHB17 is a novel phage of family Siphoviridae.


Assuntos
Escherichia coli Shiga Toxigênica/virologia , Siphoviridae/classificação , Sequenciamento Completo do Genoma/métodos , Composição de Bases , Tamanho do Genoma , Genoma Viral , Fases de Leitura Aberta , Filogenia , Siphoviridae/genética , Siphoviridae/isolamento & purificação
18.
Arch Virol ; 164(12): 3115-3119, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31535209

RESUMO

A virulent phage, named ST20, infecting Escherichia coli O165:H8 was isolated from wastewater and subjected to genomic sequencing using the Illumina HiSeq system. Genomic analysis revealed that it contains double-stranded DNA, and its complete genome consists of 44,517 nucleotides with an average GC content of 50.81%. Morphological observations showed that phage ST20 belongs to the order Caudovirales and the family Siphoviridae due to its characteristic icosahedral capsid and a long noncontractile tail. This phage was further characterized by one-step growth curve analysis and measurement of its stability at 4 °C. The study has implications for the development of potential biocontrol agents.


Assuntos
Escherichia coli Shiga Toxigênica/virologia , Siphoviridae/classificação , Sequenciamento Completo do Genoma/métodos , Bacteriófagos/classificação , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Bacteriófagos/patogenicidade , Composição de Bases , Tamanho do Genoma , Siphoviridae/genética , Siphoviridae/isolamento & purificação , Siphoviridae/patogenicidade , Virulência , Águas Residuárias/microbiologia
19.
Rev. argent. microbiol ; 51(1): 32-38, mar. 2019. ilus
Artigo em Inglês | LILACS | ID: biblio-1003278

RESUMO

The objectives of this study were: (1) to estimate STEC frequency in hide and carcass samples taken from beef slaughterhouses supplying the domestic market in Argentina, (2) to establish the pheno-genotypic characteristics of STEC and non-toxigenic Escherichia coli of serogroups O26, O45, O103, O121, O111, O145 or O157 isolated from the analyzed samples and, (3) to study their clonal relatedness. Sixty hides and 60 carcasses were analyzed. At the screening step, 48% of hide and 80% of carcass samples tested positive for the stx gene by endpoint PCR. The STEC isolation rate was 5% for hides and 8% for carcasses. The isolation rate of STEC-positive for O26, O45, O103, O111, O145 or O157 serogroups was 0% for hides and 2% for carcasses. With the purpose of studying the clonal relatedness of isolates, macrorestriction fragment analysis by pulsed-field gel electrophoresis was performed. The results indicated cross-contamination between hides and between carcasses of animals in the same lot and, that the origin of carcass contamination was their own hide, or the hides of other animals in the same lot. The high detection rate at the screening step, especially in carcasses, and the evidence of cross-contamination show the need to apply additional in-plant intervention strategies aimed at preventing carcass contamination.


Los objetivos del presente estudio fueron tres: 1) estimar la frecuencia de Escherichia coli productor de toxina Shiga (STEC) en muestras de cuero y carcasa de bovinos en frigoríficos de consumo interno de Argentina; 2) realizar la caracterización feno-genotípica de las cepas STEC y de Escherichia coli no toxigénicas pertenecientes a los serogrupos O26, O45, 0103, O121, O145 u O157 aisladas a partir de las muestras analizadas; 3) establecer la relación clonal de ese conjunto de cepas. Se analizaron 60 cueros y 60 carcasas. En la etapa de tamizaje, el gen stx se detectó en el 48% de las muestras de cuero y en el 80% de las muestras de carcasa por una PCR de punto final. La frecuencia de recuperación de cepas STEC fue del 5% en cueros y del 8% en carcasas, y la de cepas STEC positivas para los serogrupos O26, O45, O103, O121, O111, O145 u O157 fue del 0% en los cueros y del 2% en las carcasas. La relación clonal de las cepas aisladas se investigó a través de electroforesis de campo pulsado y análisis de los patrones de macrorrestricción generados. Los resultados demostraron la existencia de contaminación cruzada entre cueros y carcasas de animales pertenecientes a un mismo lote, y también que el origen de la contaminación fue el propio cuero del animal o el cuero de otros animales pertenecientes al mismo lote. Los altos porcentajes de detección en la etapa de tamizaje, especialmente en carcasas, y la evidencia de contaminación cruzada ponen de manifiesto la necesidad de evaluar la implementación de estrategias de intervención tendientes a evitar la contaminación de carcasas.


Assuntos
Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/virologia , Técnicas de Genotipagem/métodos , Carne Vermelha/microbiologia , Argentina , Programas de Rastreamento/veterinária , Matadouros
20.
Viruses ; 10(11)2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30384416

RESUMO

Shiga-toxin producing Escherichia coli (STEC) causes human illness ranging from mild diarrhea to death. The bacteriophage encoded stx genes are located in the late transcription region, downstream of the antiterminator Q. The transcription of the stx genes is directly under the control of the late promoter pR', thus the sequence diversity of the region between Q and stx, here termed the pR' region, may affect Stx toxin production. Here, we compared the gene structure of the pR' region and the stx subtypes of nineteen STECs. The sequence alignment and phylogenetic analysis suggested that the pR' region tends to be more heterogeneous than the promoter itself, even if the prophages harbor the same stx subtype. Furthermore, we established and validated transcriptional fusions of the pR' region to the DsRed reporter gene using mitomycin C (MMC) induction. Finally, these constructs were transformed into native and non-native strains and examined with flow cytometry. The results showed that induction levels changed when pR' regions were placed under different regulatory systems. Moreover, not every stx gene could be induced in its native host bacteria. In addition to the functional genes, the diversity of the pR' region plays an important role in determining the level of toxin induction.


Assuntos
Genoma Viral , Genômica , Regiões Promotoras Genéticas , Prófagos/fisiologia , Escherichia coli Shiga Toxigênica/virologia , Citometria de Fluxo , Genômica/métodos , Humanos , Filogenia , Prófagos/classificação , Reprodutibilidade dos Testes , Análise de Sequência de DNA , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA