Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.961
Filtrar
1.
Cell Commun Signal ; 22(1): 251, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698424

RESUMO

Anticancer immune surveillance and immunotherapies trigger activation of cytotoxic cytokine signaling, including tumor necrosis factor-α (TNF-α) and TNF-related apoptosis-inducing ligand (TRAIL) pathways. The pro-inflammatory cytokine TNF-α may be secreted by stromal cells, tumor-associated macrophages, and by cancer cells, indicating a prominent role in the tumor microenvironment (TME). However, tumors manage to adapt, escape immune surveillance, and ultimately develop resistance to the cytotoxic effects of TNF-α. The mechanisms by which cancer cells evade host immunity is a central topic of current cancer research. Resistance to TNF-α is mediated by diverse molecular mechanisms, such as mutation or downregulation of TNF/TRAIL receptors, as well as activation of anti-apoptotic enzymes and transcription factors. TNF-α signaling is also mediated by sphingosine kinases (SphK1 and SphK2), which are responsible for synthesis of the growth-stimulating phospholipid, sphingosine-1-phosphate (S1P). Multiple studies have demonstrated the crucial role of S1P and its transmembrane receptors (S1PR) in both the regulation of inflammatory responses and progression of cancer. Considering that the SphK/S1P/S1PR axis mediates cancer resistance, this sphingolipid signaling pathway is of mechanistic significance when considering immunotherapy-resistant malignancies. However, the exact mechanism by which sphingolipids contribute to the evasion of immune surveillance and abrogation of TNF-α-induced apoptosis remains largely unclear. This study reviews mechanisms of TNF-α-resistance in cancer cells, with emphasis on the pro-survival and immunomodulatory effects of sphingolipids. Inhibition of SphK/S1P-linked pro-survival branch may facilitate reactivation of the pro-apoptotic TNF superfamily effects, although the role of SphK/S1P inhibitors in the regulation of the TME and lymphocyte trafficking should be thoroughly assessed in future studies.


Assuntos
Imunoterapia , Neoplasias , Transdução de Sinais , Esfingolipídeos , Fator de Necrose Tumoral alfa , Humanos , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Neoplasias/patologia , Esfingolipídeos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos
2.
Front Immunol ; 15: 1376629, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715613

RESUMO

ORMDL3 is a prominent member of a family of highly conserved endoplasmic reticulum resident proteins, ORMs (ORM1 and ORM2) in yeast, dORMDL in Drosophila and ORMDLs (ORMDL1, ORMDL2, and ORMDL3) in mammals. ORMDL3 mediates feedback inhibition of de novo sphingolipid synthesis. Expression levels of ORMDL3 are associated with the development of inflammatory and autoimmune diseases including asthma, systemic lupus erythematosus, type 1 diabetes mellitus and others. It has been shown that simultaneous deletions of other ORMDL family members could potentiate ORMDL3-induced phenotypes. To understand the complex function of ORMDL proteins in immunity in vivo, we analyzed mice with single or double deletions of Ormdl genes. In contrast to other single and double knockouts, simultaneous deletion of ORMDL1 and ORMDL3 proteins disrupted blood homeostasis and reduced immune cell content in peripheral blood and spleens of mice. The reduced number of splenocytes was not caused by aberrant immune cell homing. A competitive bone marrow transplantation assay showed that the development of Ormdl1-/-/Ormdl3-/- B cells was dependent on lymphocyte intrinsic factors. Highly increased sphingolipid production was observed in the spleens and bone marrow of Ormdl1-/-/Ormdl3-/- mice. Slight, yet significant, increase in some sphingolipid species was also observed in the spleens of Ormdl3-/- mice and in the bone marrow of both, Ormdl1-/- and Ormdl3-/- single knockout mice. Taken together, our results demonstrate that the physiological expression of ORMDL proteins is critical for the proper development and circulation of lymphocytes. We also show cell-type specific roles of individual ORMDL family members in the production of different sphingolipid species.


Assuntos
Homeostase , Proteínas de Membrana , Camundongos Knockout , Animais , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Esfingolipídeos/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Deleção de Genes , Camundongos Endogâmicos C57BL , Baço/imunologia , Baço/metabolismo
3.
Front Immunol ; 15: 1401294, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720899

RESUMO

Inhibitory natural killer (NK) cell receptors recognize MHC class I (MHC-I) in trans on target cells and suppress cytotoxicity. Some NK cell receptors recognize MHC-I in cis, but the role of this interaction is uncertain. Ly49Q, an atypical Ly49 receptor expressed in non-NK cells, binds MHC-I in cis and mediates chemotaxis of neutrophils and type I interferon production by plasmacytoid dendritic cells. We identified a lipid-binding motif in the juxtamembrane region of Ly49Q and found that Ly49Q organized functional membrane domains comprising sphingolipids via sulfatide binding. Ly49Q recruited actin-remodeling molecules to an immunoreceptor tyrosine-based inhibitory motif, which enabled the sphingolipid-enriched membrane domain to mediate complicated actin remodeling at the lamellipodia and phagosome membranes during phagocytosis. Thus, Ly49Q facilitates integrative regulation of proteins and lipid species to construct a cell type-specific membrane platform. Other Ly49 members possess lipid binding motifs; therefore, membrane platform organization may be a primary role of some NK cell receptors.


Assuntos
Esfingolipídeos , Animais , Humanos , Esfingolipídeos/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Fagocitose , Fagócitos/imunologia , Fagócitos/metabolismo , Subfamília A de Receptores Semelhantes a Lectina de Células NK/metabolismo , Membrana Celular/metabolismo , Ligação Proteica
4.
J Oleo Sci ; 73(5): 695-708, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38692892

RESUMO

This study was to investigate the effects of Smilax China L. saponins (SCS) on non-alcoholic fatty liver disease (NAFLD). Rats were fed a high-fat diet (HFD) for 8 weeks to induce NAFLD, followed by SCS treatment for 8 weeks. The effect of SCS on liver injury was observed by H&E staining and the regulative mechanism of SCS on lipid formation was exposed by detecting Oil red O, insulin resistance (IR), and fatty acids synthesis (FAS). Furthermore, transcriptomics and metabolomics were performed to analyze the potential targets. The experimental results indicated that SCS exerted a positive curative effect in alleviating HFD-induced overweight, hepatic injury, steatosis, and lipid formation and accumulation in rats, and the preliminary mechanism studies showed that SCS could alleviate IR, inhibit FAS expression, and reduce Acetyl-CoA levels. Besides, the integrative analysis of transcriptomics and metabolomics exposed the targets of SCS to regulate lipid production likely being the sphingolipid metabolism and glycerophospholipid metabolism pathways. This study demonstrates that SCS significantly ameliorates lipid metabolic disturbance in rats with NAFLD by relieving insulin resistance, inhibiting the FAS enzymes, and regulating the sphingolipid and glycerophospholipid metabolism pathways.


Assuntos
Dieta Hiperlipídica , Resistência à Insulina , Metabolismo dos Lipídeos , Metabolômica , Hepatopatia Gordurosa não Alcoólica , Saponinas , Smilax , Transcriptoma , Animais , Smilax/química , Saponinas/farmacologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/genética , Masculino , Metabolômica/métodos , Dieta Hiperlipídica/efeitos adversos , Transcriptoma/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Esfingolipídeos/metabolismo , Glicerofosfolipídeos/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Modelos Animais de Doenças
5.
BMC Psychiatry ; 24(1): 355, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741058

RESUMO

BACKGROUND: Sleep disturbances are a common occurrence in patients with schizophrenia, yet the underlying pathogenesis remain poorly understood. Here, we performed a targeted metabolomics-based approach to explore the potential biological mechanisms contributing to sleep disturbances in schizophrenia. METHODS: Plasma samples from 59 drug-naïve patients with schizophrenia and 36 healthy controls were subjected to liquid chromatography-mass spectrometry (LC-MS) targeted metabolomics analysis, allowing for the quantification and profiling of 271 metabolites. Sleep quality and clinical symptoms were assessed using the Pittsburgh Sleep Quality Index (PSQI) and the Positive and Negative Symptom Scale (PANSS), respectively. Partial correlation analysis and orthogonal partial least squares discriminant analysis (OPLS-DA) model were used to identify metabolites specifically associated with sleep disturbances in drug-naïve schizophrenia. RESULTS: 16 characteristic metabolites were observed significantly associated with sleep disturbances in drug-naïve patients with schizophrenia. Furthermore, the glycerophospholipid metabolism (Impact: 0.138, p<0.001), the butanoate metabolism (Impact: 0.032, p=0.008), and the sphingolipid metabolism (Impact: 0.270, p=0.104) were identified as metabolic pathways associated with sleep disturbances in drug-naïve patients with schizophrenia. CONCLUSIONS: Our study identified 16 characteristic metabolites (mainly lipids) and 3 metabolic pathways related to sleep disturbances in drug-naïve schizophrenia. The detection of these distinct metabolites provide valuable insights into the underlying biological mechanisms associated with sleep disturbances in schizophrenia.


Assuntos
Metabolômica , Esquizofrenia , Transtornos do Sono-Vigília , Humanos , Esquizofrenia/sangue , Esquizofrenia/complicações , Metabolômica/métodos , Feminino , Masculino , Adulto , Transtornos do Sono-Vigília/sangue , Transtornos do Sono-Vigília/metabolismo , Cromatografia Líquida , Espectrometria de Massas , Esfingolipídeos/sangue , Esfingolipídeos/metabolismo , Estudos de Casos e Controles , Adulto Jovem , Glicerofosfolipídeos/sangue
6.
Thorac Cancer ; 15(14): 1164-1175, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38587042

RESUMO

BACKGROUND: Sphingolipids not only serve as structural components for maintaining cell membrane fluidity but also function as bioactive molecules involved in cell signaling and the regulation of various biological processes. Their pivotal role in cancer cell development, encompassing cancer cell proliferation, migration, angiogenesis, and metastasis, has been a focal point for decades. However, the contribution of sphingolipids to the complexity of tumor microenvironment promoting cancer progression has been rarely investigated. METHODS: Through the integration of publicly available bulk RNA-seq and single-cell RNA-seq data, we conducted a comprehensive analysis to compare the transcriptomic features between tumors and adjacent normal tissues, thus elucidating the intricacies of the tumor microenvironment (TME). RESULTS: Disparities in sphingolipid metabolism (SLM)-associated genes were observed between normal and cancerous tissues, with the TME characterized by the enrichment of sphingolipid signaling in macrophages. Cellular interaction analysis revealed robust communication between macrophages and cancer cells exhibiting low SLM, identifying the crucial ligand-receptor pair, macrophage inhibitory factor (MIF)-CD74. Pseudo-time analysis unveiled the involvement of SLM in modulating macrophage polarization towards either M1 or M2 phenotypes. Categorizing macrophages into six subclusters based on gene expression patterns and function, the SPP1+ cluster, RGS1+ cluster, and CXCL10+ cluster were likely implicated in sphingolipid-induced M2 macrophage polarization. Additionally, the CXCL10+, AGER+, and FABP4+ clusters were likely to be involved in angiogenesis through their interaction with endothelial cells. CONCLUSION: Based on multiple scRNA-seq datasets, we propose that a MIF-targeted strategy could potentially impede the polarization from M1 to M2 and impair tumor angiogenesis in low-SLM non-small cell lung cancer (NSCLC), demonstrating its potent antitumor efficacy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Neovascularização Patológica , Esfingolipídeos , Macrófagos Associados a Tumor , Humanos , Esfingolipídeos/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Macrófagos Associados a Tumor/metabolismo , Transdução de Sinais , Análise de Célula Única , Camundongos , Fatores Inibidores da Migração de Macrófagos/genética , Fatores Inibidores da Migração de Macrófagos/metabolismo , Animais , Análise de Sequência de RNA , Microambiente Tumoral , Angiogênese
7.
Anal Chim Acta ; 1305: 342527, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38677835

RESUMO

The lipid based ESCRT-independent mechanism, which contributes to MVB formation, is one of the crucial procedures in exosome biogenesis. n-SMase is a key lipid metabolism enzyme in this mechanism and can induce the hydrolysis of sphingomyelins (SMs) to ceramides (Cers), thereby promoting the formation of ILVs inside MVBs. Therefore, the regulation of n-SMase can realize the alteration in exosome release. According to the fact that cancer-associated cells have a tendency to release more exosomes than healthy cells, lipid extracts in exosomes from healthy volunteers, HCC and ICC patients were analyzed by a novel pseudotargeted lipidomics method focused on sphingolipids (SLs) to explore whether cancer-related features regulate the release of exosomes through the above pathway. Multivariate analysis based on the SLs expression could distinguish three groups well indicated that the SLs expression among the three groups were different. In cancer groups, two species of critical Cers were up-regulated, denoted as Cer (d18:1_16:0) and Cer (d18:1_18:0), while 55 kinds of SLs were down-regulated, including 40 species of SMs, such as SM (d18:1_16:0), SM (d18:1_18:1) and SM (d18:1_24:0). Meanwhile, several species of SM/Cer exhibited significant down-regulation. This substantial enhancement of the SMs hydrolysis to Cers process during exosome biogenesis suggested that cancer-related features may potentially promote an increase in exosome release through ESCRT-independent mechanism. Moreover, differential SLs have a capability of becoming potential biomarkers for disease diagnosis and classification with an AUC value of 0.9884 or 0.9806 for the comparison between healthy group and HCC or ICC groups, respectively. In addition, an association analysis conducted on the cell lines showed that changes in the SM/Cer contents in cells and their exosomes were negatively correlated with the levels of released exosomes, implied the regulation of exosome release levels can be achieved by modulating n-SMase and subsequent SL expression.


Assuntos
Exossomos , Lipidômica , Esfingolipídeos , Humanos , Exossomos/metabolismo , Exossomos/química , Esfingolipídeos/metabolismo , Esfingolipídeos/análise , Lipidômica/métodos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Masculino , Feminino , Neoplasias/metabolismo , Pessoa de Meia-Idade
8.
Sci Immunol ; 9(94): eadg8817, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640251

RESUMO

CD4+ regulatory T (Treg) cells accumulate in the tumor microenvironment (TME) and suppress the immune system. Whether and how metabolite availability in the TME influences Treg cell differentiation is not understood. Here, we measured 630 metabolites in the TME and found that serine and palmitic acid, substrates required for the synthesis of sphingolipids, were enriched. A serine-free diet or a deficiency in Sptlc2, the rate-limiting enzyme catalyzing sphingolipid synthesis, suppressed Treg cell accumulation and inhibited tumor growth. Sphinganine, an intermediate metabolite in sphingolipid synthesis, physically interacted with the transcription factor c-Fos. Sphinganine c-Fos interactions enhanced the genome-wide recruitment of c-Fos to regions near the transcription start sites of target genes including Pdcd1 (encoding PD-1), which promoted Pdcd1 transcription and increased inducible Treg cell differentiation in vitro in a PD-1-dependent manner. Thus, Sptlc2-mediated sphingolipid synthesis translates the extracellular information of metabolite availability into nuclear signals for Treg cell differentiation and limits antitumor immunity.


Assuntos
Neoplasias , Esfingosina , Linfócitos T Reguladores , Receptor de Morte Celular Programada 1/metabolismo , Serina/metabolismo , Esfingolipídeos/metabolismo , Esfingosina/análogos & derivados , Microambiente Tumoral
9.
Sci Adv ; 10(17): eadk1045, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38657065

RESUMO

T helper 17 (TH17) cells are implicated in autoimmune diseases, and several metabolic processes are shown to be important for their development and function. In this study, we report an essential role for sphingolipids synthesized through the de novo pathway in TH17 cell development. Deficiency of SPTLC1, a major subunit of serine palmitoyl transferase enzyme complex that catalyzes the first and rate-limiting step of de novo sphingolipid synthesis, impaired glycolysis in differentiating TH17 cells by increasing intracellular reactive oxygen species (ROS) through enhancement of nicotinamide adenine dinucleotide phosphate oxidase 2 activity. Increased ROS leads to impaired activation of mammalian target of rapamycin C1 and reduced expression of hypoxia-inducible factor 1-alpha and c-Myc-induced glycolytic genes. SPTLCI deficiency protected mice from developing experimental autoimmune encephalomyelitis and experimental T cell transfer colitis. Our results thus show a critical role for de novo sphingolipid biosynthetic pathway in shaping adaptive immune responses with implications in autoimmune diseases.


Assuntos
Diferenciação Celular , Encefalomielite Autoimune Experimental , Serina C-Palmitoiltransferase , Esfingolipídeos , Células Th17 , Animais , Esfingolipídeos/metabolismo , Esfingolipídeos/biossíntese , Células Th17/imunologia , Células Th17/metabolismo , Células Th17/citologia , Camundongos , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/imunologia , Serina C-Palmitoiltransferase/metabolismo , Serina C-Palmitoiltransferase/genética , Espécies Reativas de Oxigênio/metabolismo , Glicólise , Camundongos Knockout , Colite/metabolismo , Colite/patologia , Camundongos Endogâmicos C57BL
10.
Exp Eye Res ; 242: 109852, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460719

RESUMO

Oxidative stress plays a pivotal role in the pathogenesis of several neurodegenerative diseases. Retinal degeneration causes irreversible death of photoreceptor cells, ultimately leading to vision loss. Under oxidative stress, the synthesis of bioactive sphingolipid ceramide increases, triggering apoptosis in photoreceptor cells and leading to their death. This study investigates the effect of L-Cycloserine, a small molecule inhibitor of ceramide biosynthesis, on sphingolipid metabolism and the protection of photoreceptor-derived 661W cells from oxidative stress. The results demonstrate that treatment with L-Cycloserine, an inhibitor of Serine palmitoyl transferase (SPT), markedly decreases bioactive ceramide and associated sphingolipids in 661W cells. A nontoxic dose of L-Cycloserine can provide substantial protection of 661W cells against H2O2-induced oxidative stress by reversing the increase in ceramide level observed under oxidative stress conditions. Analysis of various antioxidant, apoptotic and sphingolipid pathway genes and proteins also confirms the ability of L-Cycloserine to modulate these pathways. Our findings elucidate the generation of sphingolipid mediators of cell death in retinal cells under oxidative stress and the potential of L-Cycloserine as a therapeutic candidate for targeting ceramide-induced degenerative diseases by inhibiting SPT. The promising therapeutic prospect identified in our findings lays the groundwork for further validation in in-vivo and preclinical models of retinal degeneration.


Assuntos
Apoptose , Ceramidas , Ciclosserina , Estresse Oxidativo , Esfingolipídeos , Estresse Oxidativo/efeitos dos fármacos , Ciclosserina/farmacologia , Animais , Ceramidas/metabolismo , Ceramidas/farmacologia , Camundongos , Esfingolipídeos/metabolismo , Apoptose/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patologia , Serina C-Palmitoiltransferase/metabolismo , Serina C-Palmitoiltransferase/antagonistas & inibidores , Peróxido de Hidrogênio/toxicidade , Peróxido de Hidrogênio/farmacologia , Linhagem Celular , Degeneração Retiniana/metabolismo , Degeneração Retiniana/prevenção & controle , Degeneração Retiniana/patologia , Degeneração Retiniana/tratamento farmacológico , Western Blotting , Inibidores Enzimáticos/farmacologia , Sobrevivência Celular/efeitos dos fármacos
11.
Elife ; 122024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536872

RESUMO

Membrane contact sites (MCSs) are junctures that perform important roles including coordinating lipid metabolism. Previous studies have indicated that vacuolar fission/fusion processes are coupled with modifications in the membrane lipid composition. However, it has been still unclear whether MCS-mediated lipid metabolism controls the vacuolar morphology. Here, we report that deletion of tricalbins (Tcb1, Tcb2, and Tcb3), tethering proteins at endoplasmic reticulum (ER)-plasma membrane (PM) and ER-Golgi contact sites, alters fusion/fission dynamics and causes vacuolar fragmentation in the yeast Saccharomyces cerevisiae. In addition, we show that the sphingolipid precursor phytosphingosine (PHS) accumulates in tricalbin-deleted cells, triggering the vacuolar division. Detachment of the nucleus-vacuole junction (NVJ), an important contact site between the vacuole and the perinuclear ER, restored vacuolar morphology in both cells subjected to high exogenous PHS and Tcb3-deleted cells, supporting that PHS transport across the NVJ induces vacuole division. Thus, our results suggest that vacuolar morphology is maintained by MCSs through the metabolism of sphingolipids.


Assuntos
Membranas Mitocondriais , Proteínas de Saccharomyces cerevisiae , Membranas Mitocondriais/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Esfingolipídeos/metabolismo , Metabolismo dos Lipídeos , Membrana Celular/metabolismo
12.
Biochem Pharmacol ; 223: 116158, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521475

RESUMO

Adipose derived mesenchymal stem cells (ADMSCs) are a component of adipose tissue that in recent years has gained on importance. The progenitor cells serve as an essentially unlimited source of new adipocytes and therefore are considered to be an important determinant of the tissue's physiology. In this paper we investigated mature adipocytes differentiated from ADMSCs obtained from subcutaneous/visceral fat of patients with different metabolic status (lean, obese without and with metabolic syndrome). We focused our interests on the sphingolipid signaling pathway, i.e.a signal transduction system indispensable for cells functioning, but also implicated in the development of medical conditions associated with obesity. We observed that the cells derived from visceral tissue had significantly greater levels of almost all the examined sphingolipids (especially Cer, dhCer, SM). Moreover, obesity and metabolic syndrome present in donor patients was associated with an increased level of sphingosine kinase (SPHK) and the product of its reaction sphingosine-1-phosphate (S1P). Moreover, the condition appeared to display a tissue specific pattern. Namely, the adipocytes of subcutaneous provenance had an increased activation of ceramide de novo synthesis pathway when the donors of ADMSCs had metabolic syndrome. The above translated into greater accumulation of ceramide in the cells. To our knowledge this is the first study that demonstrated altered sphingolipid profile in the mature adipocytes differentiated from ADMSCs with respect to the stem cells tissue of origin and the donor patient metabolic status.


Assuntos
Células-Tronco Mesenquimais , Síndrome Metabólica , Obesidade Mórbida , Humanos , Feminino , Síndrome Metabólica/metabolismo , Obesidade Mórbida/metabolismo , Tecido Adiposo/metabolismo , Adipócitos/metabolismo , Esfingolipídeos/metabolismo , Ceramidas/metabolismo , Transdução de Sinais , Células-Tronco Mesenquimais/metabolismo
13.
Circ Res ; 134(8): 990-1005, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38456287

RESUMO

BACKGROUND: Growing evidence correlated changes in bioactive sphingolipids, particularly S1P (sphingosine-1-phosphate) and ceramides, with coronary artery diseases. Furthermore, specific plasma ceramide species can predict major cardiovascular events. Dysfunction of the endothelium lining lesion-prone areas plays a pivotal role in atherosclerosis. Yet, how sphingolipid metabolism and signaling change and contribute to endothelial dysfunction and atherosclerosis remain poorly understood. METHODS: We used an established model of coronary atherosclerosis in mice, combined with sphingolipidomics, RNA-sequencing, flow cytometry, and immunostaining to investigate the contribution of sphingolipid metabolism and signaling to endothelial cell (EC) activation and dysfunction. RESULTS: We demonstrated that hemodynamic stress induced an early metabolic rewiring towards endothelial sphingolipid de novo biosynthesis, favoring S1P signaling over ceramides as a protective response. This finding is a paradigm shift from the current belief that ceramide accrual contributes to endothelial dysfunction. The enzyme SPT (serine palmitoyltransferase) commences de novo biosynthesis of sphingolipids and is inhibited by NOGO-B (reticulon-4B), an ER membrane protein. Here, we showed that NOGO-B is upregulated by hemodynamic stress in myocardial EC of ApoE-/- mice and is expressed in the endothelium lining coronary lesions in mice and humans. We demonstrated that mice lacking NOGO-B specifically in EC (Nogo-A/BECKOApoE-/-) were resistant to coronary atherosclerosis development and progression, and mortality. Fibrous cap thickness was significantly increased in Nogo-A/BECKOApoE-/- mice and correlated with reduced necrotic core and macrophage infiltration. Mechanistically, the deletion of NOGO-B in EC sustained the rewiring of sphingolipid metabolism towards S1P, imparting an atheroprotective endothelial transcriptional signature. CONCLUSIONS: These data demonstrated that hemodynamic stress induced a protective rewiring of sphingolipid metabolism, favoring S1P over ceramide. NOGO-B deletion sustained the rewiring of sphingolipid metabolism toward S1P protecting EC from activation under hemodynamic stress and refraining coronary atherosclerosis. These findings also set forth the foundation for sphingolipid-based therapeutics to limit atheroprogression.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Humanos , Animais , Camundongos , Ceramidas/metabolismo , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/prevenção & controle , Proteínas Nogo , Esfingolipídeos/metabolismo , Esfingosina/metabolismo , Lisofosfolipídeos/metabolismo , Endotélio/metabolismo , Aterosclerose/genética , Aterosclerose/prevenção & controle , Apolipoproteínas E
14.
J Cell Sci ; 137(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488070

RESUMO

Sphingolipid dysregulation is involved in a range of rare and fatal diseases as well as common pathologies including cancer, infectious diseases or neurodegeneration. Gaining insights into how sphingolipids are involved in these diseases would contribute much to our understanding of human physiology, as well as the pathology mechanisms. However, scientific progress is hampered by a lack of suitable tools that can be used in intact systems. To overcome this, efforts have turned to engineering modified lipids with small clickable tags and to harnessing the power of click chemistry to localize and follow these minimally modified lipid probes in cells. We hope to inspire the readers of this Review to consider applying existing click chemistry tools for their own aspects of sphingolipid research. To this end, we focus here on different biological applications of clickable lipids, mainly to follow metabolic conversions, their visualization by confocal or superresolution microscopy or the identification of their protein interaction partners. Finally, we describe recent approaches employing organelle-targeted and clickable lipid probes to accurately follow intracellular sphingolipid transport with organellar precision.


Assuntos
Neoplasias , Esfingolipídeos , Humanos , Esfingolipídeos/metabolismo , Química Click , Transporte Biológico
15.
Nat Commun ; 15(1): 2315, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485951

RESUMO

The cellular membrane in male meiotic germ cells contains a unique class of phospholipids and sphingolipids that is required for male reproduction. Here, we show that a conserved membrane fluidity sensor, AdipoR2, regulates the meiosis-specific lipidome in mouse testes by promoting the synthesis of sphingolipids containing very-long-chain polyunsaturated fatty acids (VLC-PUFAs). AdipoR2 upregulates the expression of a fatty acid elongase, ELOVL2, both transcriptionally and post-transcriptionally, to synthesize VLC-PUFA. The depletion of VLC-PUFAs and subsequent accumulation of palmitic acid in AdipoR2 knockout testes stiffens the cellular membrane and causes the invagination of the nuclear envelope. This condition impairs the nuclear peripheral distribution of meiotic telomeres, leading to errors in homologous synapsis and recombination. Further, the stiffened membrane impairs the formation of intercellular bridges and the germ cell syncytium, which disrupts the orderly arrangement of cell types within the seminiferous tubules. According to our findings we propose a framework in which the highly-fluid membrane microenvironment shaped by AdipoR2-ELOVL2 underpins meiosis-specific chromosome dynamics in testes.


Assuntos
Fluidez de Membrana , Telômero , Animais , Masculino , Camundongos , Proteínas de Transporte/metabolismo , Meiose , Membrana Nuclear/metabolismo , Esfingolipídeos/metabolismo , Telômero/genética , Telômero/metabolismo
16.
Int J Mol Sci ; 25(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474268

RESUMO

The human skeleton is a metabolically active system that is constantly regenerating via the tightly regulated and highly coordinated processes of bone resorption and formation. Emerging evidence reveals fascinating new insights into the role of sphingolipids, including sphingomyelin, sphingosine, ceramide, and sphingosine-1-phosphate, in bone homeostasis. Sphingolipids are a major class of highly bioactive lipids able to activate distinct protein targets including, lipases, phosphatases, and kinases, thereby conferring distinct cellular functions beyond energy metabolism. Lipids are known to contribute to the progression of chronic inflammation, and notably, an increase in bone marrow adiposity parallel to elevated bone loss is observed in most pathological bone conditions, including aging, rheumatoid arthritis, osteoarthritis, and osteomyelitis. Of the numerous classes of lipids that form, sphingolipids are considered among the most deleterious. This review highlights the important primary role of sphingolipids in bone homeostasis and how dysregulation of these bioactive metabolites appears central to many chronic bone-related diseases. Further, their contribution to the invasion, virulence, and colonization of both viral and bacterial host cell infections is also discussed. Many unmet clinical needs remain, and data to date suggest the future use of sphingolipid-targeted therapy to regulate bone dysfunction due to a variety of diseases or infection are highly promising. However, deciphering the biochemical and molecular mechanisms of this diverse and extremely complex sphingolipidome, both in terms of bone health and disease, is considered the next frontier in the field.


Assuntos
Doenças Ósseas , Esfingolipídeos , Humanos , Esfingolipídeos/metabolismo , Transdução de Sinais , Ceramidas , Esfingomielinas , Esfingosina/metabolismo , Osso e Ossos/metabolismo
17.
Sci Rep ; 14(1): 5699, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459112

RESUMO

Mass spectrometry-based lipidomics approaches offer valuable tools for the detection and quantification of various lipid species, including sphingolipids. The present study aimed to develop a new method to simultaneously detect various sphingolipid species that applies to diverse biological samples. We developed and validated a measurement system by employing a single-column liquid chromatography-mass spectrometry system utilizing a normal-phase separation mode with positive ionization. The measurement system provided precision with a coefficient of variant below 20% for sphingolipids in all types of samples, and we observed good linearity in diluted serum samples. This system can measure the following sphingolipids: sphingosine 1-phosphate (S1P), sphingosine (Sph), dihydroS1P (dhS1P), dihydroSph (dhSph), ceramide 1-phosphate (Cer1P), hexosylceramide (HexCer), lactosylceramide (LacCer), dh-ceramide, deoxy-ceramide, deoxy-dh-ceramide, and sphingomyelin (SM). By measuring these sphingolipids in cell lysates where S1P lyase expression level was modulated, we could observe significant and dynamic modulations of sphingolipids in a comprehensive manner. Our newly established and validated measurement system can simultaneously measure many kinds of sphingolipids in biological samples. It holds great promise as a valuable tool for laboratory testing applications to detect overall modulations of sphingolipids, which have been proposed to be involved in pathogenesis processes in a series of elegant basic research studies.


Assuntos
Esfingolipídeos , Espectrometria de Massas em Tandem , Esfingolipídeos/metabolismo , Espectrometria de Massas em Tandem/métodos , Ceramidas , Cromatografia Líquida , Esfingomielinas , Esfingosina
18.
J Agric Food Chem ; 72(10): 5247-5257, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38425052

RESUMO

Bioactivity screening revealed that the antifungal activities of EtOAc extracts from coculture broths of Trametes versicolor SY630 with either Vanderbylia robiniophila SY341 or Ganoderma gibbosum SY1001 were significantly improved compared to that of monocultures. Activity-guided isolation led to the discovery of five aromatic compounds (1-5) from the coculture broth of T. versicolor SY630 and V. robiniophila SY341 and two sphingolipids (6 and 7) from the coculture broth of T. versicolor SY630 and G. gibbosum SY1001. Tramevandins A-C (1-3) and 17-ene-1-deoxyPS (6) are new compounds, while 1-deoxyPS (7) is a new natural product. Notably, compound 2 represents a novel scaffold, wherein the highly modified p-terphenyl bears a benzyl substituent. The absolute configurations of those new compounds were elucidated by X-ray diffraction, ECD calculations, and analysis of physicochemical constants. Compounds 1, 2, and 5-7 exhibited different degrees of antimicrobial activity, and the antifungal activities of compounds 6 and 7 against Candida albicans and Cryptococcus neoformans are comparable to those of fluconazole, nystatin, and sphingosine, respectively. Transcriptome analysis, propidium iodide staining, ergosterol quantification, and feeding assays showed that the isolated sphingolipids can extensively downregulate the late biosynthetic pathway of ergosterol in C. albicans, representing a promising mechanism to combat antibiotic-resistant fungi.


Assuntos
Agaricales , Antifúngicos , Antifúngicos/química , Trametes , Técnicas de Cocultura , Candida albicans , Ergosterol , Esfingolipídeos/metabolismo , Testes de Sensibilidade Microbiana
19.
New Phytol ; 242(3): 1189-1205, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38523559

RESUMO

Sphingolipids are widespread, abundant, and essential lipids in plants and in other eukaryotes. Glycosyl inositol phosphorylceramides (GIPCs) are the most abundant class of plant sphingolipids, and are enriched in the plasma membrane of plant cells. They have been difficult to study due to lethal or pleiotropic mutant phenotypes. To overcome this, we developed a CRISPR/Cas9-based method for generating multiple and varied knockdown and knockout populations of mutants in a given gene of interest in the model moss Physcomitrium patens. This system is uniquely convenient due to the predominantly haploid state of the Physcomitrium life cycle, and totipotency of Physcomitrium protoplasts used for transformation. We used this approach to target the INOSITOL PHOSPHORYLCERAMIDE SYNTHASE (IPCS) gene family, which catalyzes the first, committed step in the synthesis of GIPCs. We isolated knockout single mutants and knockdown higher-order mutants showing a spectrum of deficiencies in GIPC content. Remarkably, we also identified two mutant alleles accumulating inositol phosphorylceramides, the direct products of IPCS activity, and provide our best explanation for this unexpected phenotype. Our approach is broadly applicable for studying essential genes and gene families, and for obtaining unusual lesions within a gene of interest.


Assuntos
Plantas , Esfingolipídeos , Alelos , Esfingolipídeos/metabolismo , Plantas/metabolismo , Membrana Celular/metabolismo
20.
JCI Insight ; 9(8)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38451736

RESUMO

Accumulation of sphingolipids, especially sphingosines, in the lysosomes is a key driver of several lysosomal storage diseases. The transport mechanism for sphingolipids from the lysosome remains unclear. Here, we identified SPNS1, which shares the highest homology to SPNS2, a sphingosine-1-phosphate (S1P) transporter, functions as a transporter for lysolipids from the lysosome. We generated Spns1-KO cells and mice and employed lipidomic and metabolomic approaches to reveal SPNS1 ligand identity. Global KO of Spns1 caused embryonic lethality between E12.5 and E13.5 and an accumulation of sphingosine, lysophosphatidylcholines (LPC), and lysophosphatidylethanolamines (LPE) in the fetal livers. Similarly, metabolomic analysis of livers from postnatal Spns1-KO mice presented an accumulation of sphingosines and lysoglycerophospholipids including LPC and LPE. Subsequently, biochemical assays showed that SPNS1 is required for LPC and sphingosine release from lysosomes. The accumulation of these lysolipids in the lysosomes of Spns1-KO mice affected liver functions and altered the PI3K/AKT signaling pathway. Furthermore, we identified 3 human siblings with a homozygous variant in the SPNS1 gene. These patients suffer from developmental delay, neurological impairment, intellectual disability, and cerebellar hypoplasia. These results reveal a critical role of SPNS1 as a promiscuous lysolipid transporter in the lysosomes and link its physiological functions with lysosomal storage diseases.


Assuntos
Modelos Animais de Doenças , Doenças por Armazenamento dos Lisossomos , Lisossomos , Camundongos Knockout , Animais , Feminino , Humanos , Masculino , Camundongos , Fígado/metabolismo , Lisofosfolipídeos/metabolismo , Doenças por Armazenamento dos Lisossomos/metabolismo , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/patologia , Lisossomos/metabolismo , Esfingolipídeos/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA