RESUMO
Ecosystem restoration interventions often utilize visible elements to restore an ecosystem (e.g. replanting native plant communities and reintroducing lost species). However, using acoustic stimulation to help restore ecosystems and promote plant growth has received little attention. Our study aimed to assess the effect of acoustic stimulation on the growth rate and sporulation of the plant growth-promoting fungus Trichoderma harzianum Rifai, 1969. We played a monotone acoustic stimulus (80 dB sound pressure level (SPL) at a peak frequency of 8 kHz and a bandwidth at -10 dB from the peak of 6819 Hz-parameters determined via review and pilot research) over 5 days to T. harzianum to assess whether acoustic stimulation affected the growth rate and sporulation of this fungus (control samples received only ambient sound stimulation less than 30 dB). We show that the acoustic stimulation treatments resulted in increased fungal biomass and enhanced T. harzianum conidia (spore) activity compared to controls. These results indicate that acoustic stimulation influences plant growth-promoting fungal growth and potentially facilitates their functioning (e.g. stimulating sporulation). The mechanism responsible for this phenomenon may be fungal mechanoreceptor stimulation and/or potentially a piezoelectric effect; however, further research is required to confirm this hypothesis. Our novel study highlights the potential of acoustic stimulation to alter important fungal attributes, which could, with further development, be harnessed to aid ecosystem restoration and sustainable agriculture.
Assuntos
Estimulação Acústica , Trichoderma , Trichoderma/fisiologia , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/fisiologia , Biomassa , EcossistemaRESUMO
This memoir takes a whimsical ride through my professional adventures, spotlighting my fungal stress research on the insect-pathogenic fungus Metarhizium robertsii, which transformed many of my wildest dreams into reality. Imagine the magic of fungi meeting science and me, a happy researcher, arriving at Utah State University ready to dive deep into studies with the legendary insect pathologist, my advisor Donald W. Roberts, and my co-advisor Anne J. Anderson. From my very first "Aha!" moment in the lab, I plunged into a vortex of discovery, turning out research like a mycelium on a mission. Who knew 18 h/day, seven days a week, could be so exhilarating? I was fueled by an insatiable curiosity, boundless creativity, and a perhaps slightly alarming level of motivation. Years later, I managed to bring my grandest vision to life: the International Symposium on Fungal Stress-ISFUS. This groundbreaking event has attracted 162 esteemed speakers from 29 countries to Brazil, proving that fungi can be both fun and globally fascinating. ISFUS is celebrating its fifth edition in 2024, a decade after its 2014 debut.
Assuntos
Metarhizium , Metarhizium/fisiologia , Micélio/fisiologia , Esporos Fúngicos/fisiologia , Estresse FisiológicoRESUMO
Purple blotch disease is a major fungal disease of Allium cepa L. plants which is caused by the fungus Alternaria porri. The best conditions for the growth of Alternaria porri are temperatures between 22 °C and 25 °C and relatively high humidity. The Hydrotime, Thermal Time, and Hydrothermal Time models were used to measure different parameters of seed germination; therefore, we used them to measure the interactive effects of temperature and water potential on the germination conidia of Alternaria porri. The laboratory experiments were carried out at five constant temperatures, between 5 and 30 °C, and five different water potentials between 0 MPa and - 6 MPa. The germination of Alternaria porri conidia was highest at 25 °C and 0 MPa and lowest at 5 °C and - 6 MPa. The percentage of conidia germination decreased rapidly after 25 oC. Conidia germination was also affected by different water potentials, decreasing at lower water potential. Models based on HTT showed a reasonable fit to the germination and growth rate datasets. The best fitting model for conidia germination (R2 = 0.98491) was based on variable base and maximum temperature as a function of water potential. Based on the TT, HT, and models, the highest and lowest values for θT1 were observed at -6.0 MPa at 30 °C, and 0 MPa at 5 °C and the highest and lowest θT2 values were recorded at -6.0 MPa at 5 °C and 0 MPa at 30 °C while the lowest and highest θH values were recorded at -6.0 MPa at 5 °C and 0 MPa at 25 °C, respectively, for the HTT model, the predicted θHTT average value is 16.32 (MPa°Ch-1). Based on the statistical analysis, the cardinal hydrothermal time constant (θHTT) accurately explains the interactive effect of T and Ψ on the germination of Alternaria porri conidia under different environmental conditions.
Assuntos
Alternaria , Esporos Fúngicos , Temperatura , Alternaria/fisiologia , Alternaria/crescimento & desenvolvimento , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/fisiologia , Água , Germinação , Análise de Regressão , Doenças das Plantas/microbiologia , Cebolas/microbiologiaRESUMO
Many species of soil fungi grow in the form of branched networks that enable long-range communication and mass flow of nutrient. These networks play important roles in the soil ecosystem as a major decomposer of organic materials. While there have been investigations on the branching of the fungal networks, their long-term growth dynamics in space and time is still not very well understood. In this study, we monitor the spatio-temporal growth dynamics of the plant-promoting filamentous fungus Serendipita indica for several days in a controlled environment within a microfluidic chamber. We find that S. indica cells display synchronized growth oscillations with the onset of sporulation and at a period of 3 h. Quantifying this experimental synchronization of oscillatory dynamics, we show that the synchronization can be recapitulated by the nearest neighbour Kuramoto model with a millimetre-scale cell-cell coupling. The microfluidic set-up presented in this work may aid the future characterization of the molecular mechanisms of the cell-cell communication, which could lead to biophysical approaches for controlling fungi growth and reproductive sporulation in soil and plant health management.
Assuntos
Modelos Biológicos , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/fisiologia , Basidiomycota/crescimento & desenvolvimento , Basidiomycota/fisiologia , Fungos/fisiologia , Fungos/crescimento & desenvolvimentoRESUMO
Zoosporic fungi, also called chytrids, produce single-celled motile spores with flagellar swimming tails (zoospores).1,2 These fungi are key components of aquatic food webs, acting as pathogens, saprotrophs, and prey.3,4,5,6,7,8 Little is known about the swimming behavior of fungal zoospores, a crucial factor governing dispersal, biogeographical range, ecological function, and infection dynamics.6,9 Here, we track the swimming patterns of zoospores from 12 evolutionarily divergent species of zoosporic fungi from across seven orders of the Chytridiomycota and the Blastocladiomycota. We report two major swimming patterns that correlate with the cytoskeletal ultrastructure of these zoospores. Specifically, we show that species without major cytoplasmic tubulin components swim in a circular fashion, while species with prominent cytoplasmic tubulin structures swim in a pattern akin to a random walk (move-stop-redirect-move). We confirm cytoskeletal architecture by performing fluorescence confocal microscopy across all 12 species. We then treat representative species with variant swimming behaviors and cytoplasmic-cytoskeletal arrangements with tubulin-stabilizing (Taxol) and depolymerizing (nocodazole) pharmacological compounds. We observed that when treating the "random walk" species with nocodazole, their swimming behavior changed to a circular-swimming pattern. Confocal imaging of the nocodazole-treated zoospores demonstrates that these cells maintain flagellum tubulin structures but lack their characteristic cytoplasmic tubulin structures. Our data demonstrate that the capability of zoospores to perform "complex" random-walk movement is linked to the presence of prominent cytoplasmic tubulin structures and suggest a link between cytology, sensory systems, and swimming behavior in a diversity of zoosporic fungi.
Assuntos
Evolução Biológica , Esporos Fúngicos , Esporos Fúngicos/fisiologia , Esporos Fúngicos/ultraestrutura , Citoesqueleto/fisiologia , Blastocladiomycota/fisiologia , Tubulina (Proteína)/metabolismo , Flagelos/fisiologia , Flagelos/ultraestruturaRESUMO
Rust fungi (Pucciniales) are plant pathogens that can cause devastating yield losses to economically important crops and threaten native plants with extinction. Rusts are usually controlled with fungicides when rust-resistant plant varieties are unavailable. However, natural enemies may offer an alternative to chemicals by acting as biological controls. The larvae of Mycodiplosis Rübsaamen (49 spp.) feed on the spores of rusts and powdery mildew fungi and have been suggested as a potential biocontrol candidate for disease-causing rusts. However, little is known about the phylogenetic relationships, biogeography, and host range of this genus. We screened 5,665 rust specimens from fungarium specimens and field collections and recovered a total of 363 larvae on 315 rust specimens from 17 countries. Three mitochondrial and 2 nuclear loci were amplified and sequenced for the phylogenetic reconstruction of 129 individuals. We recovered 12 clades, of which 12 and 10 were supported with maximum likelihood and Bayesian inference, respectively. Of the 12 clades, 7 comprised species from multiple continents and climatic regions, and 5 comprised species from a single region. Individuals forming clades were collected from 2 to 18 rust species, suggesting that Mycodiplosis species have a broad host range. In total, Mycodiplosis larvae were identified on 44 different rust species collected from 18 plant families. Future studies should focus on expanding field sampling efforts, including data from additional gene regions, and incorporating morphological data to further elucidate species diversity and distribution patterns.
Assuntos
Basidiomycota , Especificidade de Hospedeiro , Larva , Filogenia , Animais , Basidiomycota/fisiologia , Basidiomycota/genética , Larva/microbiologia , Larva/crescimento & desenvolvimento , Larva/fisiologia , Dípteros/microbiologia , Filogeografia , Esporos Fúngicos/fisiologiaRESUMO
Hot deserts impose extreme conditions on plants growing in arid soils. Deserts are expanding due to climate change, thereby increasing the vulnerability of ecosystems and the need to preserve them. Arbuscular mycorrhizal fungi (AMF) improve plant fitness by enhancing plant water/nutrient uptake and stress tolerance. However, few studies have focused on AMF diversity and community composition in deserts, and the soil and land use parameters affecting them. This study aimed to comprehensively describe AMF ecological features in a 5,000 km2 arid hyperalkaline region in AlUla, Saudi Arabia. We used a multimethod approach to analyse over 1,000 soil and 300 plant root samples of various species encompassing agricultural, old agricultural, urban and natural ecosystems. Our method involved metabarcoding using 18S and ITS2 markers, histological techniques for direct AMF colonization observation and soil spore extraction and observation. Our findings revealed a predominance of AMF taxa assigned to Glomeraceae, regardless of the local conditions, and an almost complete absence of Gigasporales taxa. Land use had little effect on the AMF richness, diversity and community composition, while soil texture, pH and substantial unexplained stochastic variance drove these compositions in AlUla soils. Mycorrhization was frequently observed in the studied plant species, even in usually non-mycorrhizal plant taxa (e.g. Amaranthaceae, Urticaceae). Date palms and Citrus trees, representing two major crops in the region, however, displayed a very low mycorrhizal frequency and intensity. AlUla soils had a very low concentration of spores, which were mostly small. This study generated new insight on AMF and specific behavioral features of these fungi in arid environments.
Assuntos
Clima Desértico , Micorrizas , Microbiologia do Solo , Micorrizas/fisiologia , Arábia Saudita , Esporos Fúngicos/fisiologia , Solo/química , Glomeromycota/fisiologia , Raízes de Plantas/microbiologiaRESUMO
Germicidal UV light (UV-C) has been shown to effectively suppress several plant pathogens as well as some arthropod pests. Recent reports describe the efficacy of nighttime applications of UV-C at doses from 100 to 200 J/m2 in vineyards to reduce grape powdery mildew (Erysiphe necator). Our in vitro studies confirmed the efficacy of UV-C to inhibit germination of E. necator and Botrytis cinerea conidia, demonstrated a range of tolerances to UV-C within a collection of E. necator isolates, and showed growth stage-specific effects of UV-C on B. cinerea. Nighttime use of UV-C was evaluated at 48 to 96 J/m2 in small plot trials (<1,000 vines) from 2020 to 2023. Once- or twice-weekly UV-C applications significantly reduced the incidence of foliar powdery mildew compared with non-UV-C-treated controls (P < 0.02). Suppression of powdery mildew on fruit was less consistent, where once or twice weekly UV-C exposure reduced powdery mildew disease severity in 2020 (P = 0.04), 2021 (P = 0.02), and 2023 (P = 0.003) but less so in 2022 (P = 0.07). Bunch rot severity was not significantly reduced with UV-C treatment in any year of the study. Application of UV-C until the onset of fruit color change (veraison) also had a minimal effect on the fruit-soluble solids, pH, anthocyanins, or phenolics in harvested fruit at any UV-C dose or frequency (P > 0.10). Suppression of powdery mildew by nighttime application of UV-C at lower doses in small plots suggests that such treatments merit further evaluation in larger-scale studies in Western Oregon.
Assuntos
Ascomicetos , Botrytis , Doenças das Plantas , Raios Ultravioleta , Vitis , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Vitis/microbiologia , Vitis/efeitos da radiação , Botrytis/efeitos da radiação , Botrytis/fisiologia , Ascomicetos/fisiologia , Ascomicetos/efeitos da radiação , Oregon , Esporos Fúngicos/efeitos da radiação , Esporos Fúngicos/fisiologiaRESUMO
The cytoplasm is a complex, crowded environment that influences myriad cellular processes including protein folding and metabolic reactions. Recent studies have suggested that changes in the biophysical properties of the cytoplasm play a key role in cellular homeostasis and adaptation. However, it still remains unclear how cells control their cytoplasmic properties in response to environmental cues. Here, we used fission yeast spores as a model system of dormant cells to elucidate the mechanisms underlying regulation of the cytoplasmic properties. By tracking fluorescent tracer particles, we found that particle mobility decreased in spores compared to vegetative cells and rapidly increased at the onset of dormancy breaking upon glucose addition. This cytoplasmic fluidization depended on glucose-sensing via the cyclic adenosine monophosphate-protein kinase A pathway. PKA activation led to trehalose degradation through trehalase Ntp1, thereby increasing particle mobility as the amount of trehalose decreased. In contrast, the rapid cytoplasmic fluidization did not require de novo protein synthesis, cytoskeletal dynamics, or cell volume increase. Furthermore, the measurement of diffusion coefficients with tracer particles of different sizes suggests that the spore cytoplasm impedes the movement of larger protein complexes (40 to 150 nm) such as ribosomes, while allowing free diffusion of smaller molecules (~3 nm) such as second messengers and signaling proteins. Our experiments have thus uncovered a series of signaling events that enable cells to quickly fluidize the cytoplasm at the onset of dormancy breaking.
Assuntos
Citoplasma , Schizosaccharomyces , Esporos Fúngicos , Trealose , Esporos Fúngicos/metabolismo , Esporos Fúngicos/fisiologia , Schizosaccharomyces/metabolismo , Schizosaccharomyces/fisiologia , Citoplasma/metabolismo , Trealose/metabolismo , Glucose/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Transdução de SinaisRESUMO
Grapevine anthracnose, caused by Elsinoë ampelina, is one of the most devastating diseases for wine and table grapes, particularly in hot, humid regions. This study explores how temperature and leaf age affect incubation and how temperature affects lesion development and sporulation. The influence of temperature and leaf age on incubation period (days) was tested under controlled conditions. Leaves from 1 to 8 days old were inoculated and maintained at temperatures of 5, 10, 15, 20, 25, and 30°C. The time elapsed between inoculation and the emergence of initial lesions was recorded. The effect of temperature on lesion development and sporulation was investigated under vineyard conditions. This was achieved through artificial inoculations, with 17, 11, and 11 inoculations conducted in 2016, 2017, and 2018, respectively. The average incubation period, considering all leaf ages, was 27.50 days at 5°C, 15.10 days at 10°C, 9.70 days at 15°C, 5.90 days at 20°C, 3.70 days at 25°C, and 2.26 days at 30°C. Regardless of temperature, the average incubation period was 3.6, 5.9, 8.3, 9.8, 11.9, 13.4, 15.6, and 17.1 days for leaves 1, 2, 3, 4, 5, 6, 7, and 8 days old, respectively. The exponential decay model accurately describes the incubation period as a function of both temperature and leaf age. On average, the relative lesion development (RLD) was 0.00, 0.00, 0.23, 0.47, 0.72, 0.93, 0.92, 0.90, 0.94, and 1.0 at 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 days after inoculation, respectively. The average relative sporulation (RSPO) was 0.03, 0.36, 0.82, 0.96, and 1.0 at 5, 10, 15, 20, and 25 days after inoculation, respectively. Both RLD and RSPO as a function of degree-days (Tbase = 0°C) since inoculation were well described by the logistic function. The rates of change in RLD and RSPO were 0.055 and 0.032, respectively. The results of this study provide new quantitative insights into three important stages (monocyclic processes) in the development of grapevine anthracnose caused by E. ampelina.
Assuntos
Doenças das Plantas , Folhas de Planta , Temperatura , Vitis , Vitis/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Ascomicetos/fisiologia , Esporos Fúngicos/fisiologiaRESUMO
Plants have evolved finely regulated defense systems to counter biotic and abiotic threats. In the natural environment, plants are typically challenged by simultaneous stresses and, amid such conditions, crosstalk between the activated signaling pathways becomes evident, ultimately altering the outcome of the defense response. As an example of combined biotic and abiotic stresses, inorganic phosphate (Pi) deficiency, common in natural and agricultural environments, can occur along with attack by the fungus Botrytis cinerea, a devastating necrotrophic generalist pathogen responsible for massive crop losses. We report that Pi deficiency in Arabidopsis thaliana increases its susceptibility to infection by B. cinerea by influencing the early stages of pathogen infection, namely spore adhesion and germination on the leaf surface. Remarkably, Pi-deficient plants are more susceptible to B. cinerea despite displaying the appropriate activation of the jasmonic acid and ethylene signaling pathways, as well as producing secondary defense metabolites and reactive oxygen species. Conversely, the callose deposition in response to B. cinerea infection is compromised under Pi-deficient conditions. The levels of abscisic acid (ABA) are increased in Pi-deficient plants, and the heightened susceptibility to B. cinerea observed under Pi deficiency can be reverted by blocking ABA biosynthesis. Furthermore, high level of leaf ABA induced by overexpression of NCED6 in Pi-sufficient plants also resulted in greater susceptibility to B. cinerea infection associated with increased spore adhesion and germination, and reduced callose deposition. Our findings reveal a link between the enhanced accumulation of ABA induced by Pi deficiency and an increased sensitivity to B. cinerea infection.
Assuntos
Ácido Abscísico , Arabidopsis , Botrytis , Fosfatos , Doenças das Plantas , Transdução de Sinais , Botrytis/fisiologia , Ácido Abscísico/metabolismo , Arabidopsis/microbiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Fosfatos/metabolismo , Fosfatos/deficiência , Folhas de Planta/microbiologia , Folhas de Planta/metabolismo , Etilenos/metabolismo , Ciclopentanos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Oxilipinas/metabolismo , Esporos Fúngicos/fisiologia , Regulação da Expressão Gênica de Plantas , Espécies Reativas de Oxigênio/metabolismo , Suscetibilidade a DoençasRESUMO
Cladosporium spp. are known to be mycoparasites and inhibit phytopathogenic fungi. However, so far, little information is available on the impact of Cladosporium spp. on powdery mildews. Based on the morphological characteristics and molecular analysis, C. sphaerospermum was identified as a mycoparasite on the wheat powdery mildew fungus Blumeria graminis f. sp. tritici (Bgt), recently named B. graminis s. str. C. sphaerospermum was capable of preventing colony formation and conidial distribution of Bgt. The biomasses of Bgt notably decreased by 1.3, 2.2, 3.6, and 3.8 times at 2, 4, 6, and 8 days postinoculation (dpi), respectively. In addition, biomasses of C. sphaerospermum at 2, 4, 6, and 8 dpi significantly increased to 5.6, 13.9, 18.2, and 67.3 times, respectively. In vitro, C. sphaerospermum exudates significantly impaired appressorial formation of Bgt. Thus, C. sphaerospermum acts as a potential biological control agent by suppressing the formation, distribution, and development of Bgt conidia and is a viable alternative for managing the wheat powdery mildew. These results suggest that C. sphaerospermum is an antagonistic parasite of the wheat powdery mildew fungus and, hence, provide new knowledge about the biological control of phytopathogenic fungi.
Assuntos
Ascomicetos , Cladosporium , Doenças das Plantas , Triticum , Ascomicetos/fisiologia , Cladosporium/fisiologia , Triticum/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Esporos Fúngicos/fisiologia , Controle Biológico de Vetores , BiomassaRESUMO
The fungal pathogen Calonectria pseudonaviculata causes boxwood blight and is a significant threat to the boxwood industry, as well as historic boxwood gardens. The pathogen produces conidia in sticky masses that are splash dispersed, which germinate and infect through stomata on the leaves or stems, causing leaf spots and stem lesions. Despite its ability to cause severe infections on boxwood plants, the pathogen often has a low germination rate on artificial media under lab conditions. To identify cues that stimulate germination, we explored whether host factors could induce high germination rates. In this study, we demonstrate that C. pseudonaviculata spores achieve high germination rates when they are placed on detached leaves of boxwood and other known hosts, compared to potato dextrose agar and glass coverslips. We also demonstrate that germination is induced by volatiles from detached leaves of boxwood, as well as the nonhost Berberis thunbergii. When C. pseudonaviculata spores were exposed to volatiles from boxwood leaves in the presence of ethylene scrubber packs that contained potassium permanganate, the stimulatory effect on spore germination was reduced. However, ethylene, a regulator of leaf senescence, did not stimulate germination of C. pseudonaviculata spores. This suggests that the pathogen may have evolved to recognize one or more host volatiles, other than ethylene to induce germination, thus limiting its growth until it senses the presence of a host plant.
Assuntos
Doenças das Plantas , Folhas de Planta , Esporos Fúngicos , Compostos Orgânicos Voláteis , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/fisiologia , Esporos Fúngicos/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Compostos Orgânicos Voláteis/farmacologia , Ascomicetos/fisiologia , Ascomicetos/efeitos dos fármacos , Ascomicetos/crescimento & desenvolvimentoRESUMO
The fission yeast Schizosaccharomyces pombe is an excellent model organism to explore cellular events owing to rich tools in genetics, molecular biology, cellular biology, and biochemistry. Schizosaccharomyces pombe proliferates continuously when nutrients are abundant but arrests in G1 phase upon depletion of nutrients such as nitrogen and glucose. When cells of opposite mating types are present, cells conjugate, fuse, undergo meiosis, and finally form 4 spores. This sexual differentiation process in S. pombe has been studied extensively. To execute sexual differentiation, the glucose-sensing cAMP-PKA (cyclic adenosine monophosphate-protein kinase A) pathway, nitrogen-sensing TOR (target of rapamycin) pathway, and SAPK (stress-activating protein kinase) pathway are crucial, and the MAPK (mitogen-activating protein kinase) cascade is essential for pheromone sensing. These signals regulate ste11 at the transcriptional and translational levels, and Ste11 is modified in multiple ways. This review summarizes the initiation of sexual differentiation in S. pombe based on results I have helped to obtain, including the work of many excellent researchers.
Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Fatores de Transcrição , Schizosaccharomyces/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/crescimento & desenvolvimento , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Regulação Fúngica da Expressão Gênica , Transdução de Sinais , Meiose , Feromônios/metabolismo , Diferenciação Sexual/genética , Glucose/metabolismo , Nitrogênio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/genética , Esporos Fúngicos/fisiologiaRESUMO
Arbuscular mycorrhizal fungi (AMF) are ubiquitous plant root symbionts, which can house two endobacteria: Ca. Moeniiplasma glomeromycotorum (CaMg) and Ca. Glomeribacter gigasporarum (CaGg). However, little is known about their distribution and population structure in natural AMF populations and whether AMF can harbour other endobacteria. We isolated AMF from two environments and conducted detailed analyses of endobacterial communities associated with surface-sterilised AMF spores. Consistent with the previous reports, we found that CaMg were extremely abundant (80%) and CaGg were extremely rare (2%) in both environments. Unexpectedly, we discovered an additional and previously unknown level of bacterial diversity within AMF spores, which extended beyond the known endosymbionts, with bacteria belonging to 10 other phyla detected across our spore data set. Detailed analysis revealed that: CaGg were not limited in distribution to the Gigasporaceae family of AMF, as previously thought; CaMg population structure was driven by AMF host genotype; and a significant inverse correlation existed between the diversity of CaMg and diversity of all other endobacteria. Based on these data, we generate novel testable hypotheses regarding the function of CaMg in AMF biology by proposing that they might act as conditional mutualists of AMF.
Assuntos
Micorrizas , Esporos Fúngicos , Micorrizas/fisiologia , Esporos Fúngicos/fisiologia , Bactérias/genética , Bactérias/classificação , Biodiversidade , Filogenia , SimbioseRESUMO
Effects of Venturia inaequalis on water relations of apple leaves were studied under controlled conditions without limitation of water supply to elucidate their impact on the non-haustorial biotrophy of this pathogen. Leaf water relations, namely leaf water content and transpiration, were spatially resolved by hyperspectral imaging and thermography; non-imaging techniques-gravimetry, a pressure chamber, and porometry-were used for calibration and validation. Reduced stomatal transpiration 3-4 d after inoculation coincided with a transient increase of water potential. Perforation of the plant cuticle by protruding conidiophores subsequently increased cuticular transpiration even before visible symptoms occurred. With sufficient water supply, cuticular transpiration remained at elevated levels for several weeks. Infections did not affect the leaf water content before scab lesions became visible. Only hyperspectral imaging was suitable to demonstrate that a decreased leaf water content was strictly limited to sites of emerging conidiophores and that cuticle porosity increased with sporulation. Microscopy confirmed marginal cuticle injury; although perforated, it tightly surrounded the base of conidiophores throughout sporulation and restricted water loss. The role of sustained redirection of water flow to the pathogen's hyphae in the subcuticular space above epidermal cells, to facilitate the acquisition and uptake of nutrients by V. inaequalis, is discussed.
Assuntos
Ascomicetos , Malus , Doenças das Plantas , Folhas de Planta , Água , Malus/fisiologia , Malus/microbiologia , Folhas de Planta/fisiologia , Água/metabolismo , Ascomicetos/fisiologia , Transpiração Vegetal , Imageamento Hiperespectral/métodos , Esporos Fúngicos/fisiologiaRESUMO
In this study, we evaluated the effects of gamma irradiation on the germination of Aspergillus conidia and mycelial growth using microscopy and predictive microbiological modeling methods. A dose of 0.4 kGy reduced the germination rate by 20% compared to the untreated control, indicating interphase death due to the high radiation dose. The number of colonies formed (5.5%) was lower than the germination rate (69%), suggesting that most colonies died after germination. Microscopic observations revealed that mycelial elongation ceased completely in the middle of the growth phase, indicating reproductive death. The growth curves of irradiated conidia exhibited a delayed change in the growth pattern, and a decrease in slope during the early stages of germination and growth at low densities. A modified logistic model, which is a general purpose growth model that allows for the evaluation of subpopulations, was used to fit the experimental growth curves. Dose-dependent waveform changes may reflect the dynamics of the subpopulations during germination and growth. These methods revealed the occurrence of two cell death populations resulting from gamma irradiation of fungal conidia and contribute to the understanding of irradiation-induced cell death in fungi.
Assuntos
Aspergillus , Esporos Fúngicos/fisiologia , Ciclo Celular , Proliferação de CélulasRESUMO
Aedes aegypti is a vector of various disease-causing arboviruses. Chemical insecticide-based methods for mosquito control have increased resistance in different parts of the world. Thus, alternative control agents such as the entomopathogenic fungi are excellent candidates to control mosquitoes as part of an ecofriendly strategy. There is evidence of the potential of entomopathogenic fungal conidia and blastospores for biological control of eggs, larval and adult stages, as well as the pathogenicity of fungal microsclerotia against adults and eggs. However, there are no studies on the pathogenicity of microsclerotia against either aquatic insects or insects that develop part of their life cycle in the water, such as the A. aegypti larvae. In this study, we assayed the production of microsclerotia and their pathogenicity against A. aegypti larvae of two isolates of Metarhizium robertsii, i.e., CEP 423 isolated in La Plata, Argentina, and the model ARSEF 2575. Both isolates significantly reduced the survival of A. aegypti exposed to their microsclerotia. The fungus-larva interaction resulted in a delayed response in the host. This was evidenced by the expression of some humoral immune system genes such as defensins and cecropin on the 9th day post-infection, when the fungal infection was consolidated as a successful process that culminates in larvae mortality. In conclusion, M. robertsii microsclerotia are promising propagules to be applied as biological control agents against mosquitoes since they produce pathogenic conidia against A. aegypti larvae.
Assuntos
Aedes , Controle Biológico de Vetores , Animais , Controle Biológico de Vetores/métodos , Aedes/fisiologia , Larva/microbiologia , Virulência , Mosquitos Vetores , Controle de Mosquitos/métodos , Esporos Fúngicos/fisiologiaRESUMO
Metarhizium spp. is used as a biocontrol agent but is limited because of low tolerance to abiotic stress. Metarhizium robertsii is an excellent study model of fungal pathogenesis in insects, and its tolerance to different stress conditions has been extensively investigated. Priming is the time-limited pre-exposure of an organism to specific stress conditions that increases adaptive response to subsequent exposures. Congo red is a water-soluble azo dye extensively used in stress assays in fungi. It induces morphological changes and weakens the cell wall at sublethal concentrations. Therefore, this chemical agent has been proposed as a stressor to induce priming against other stress conditions in entomopathogenic fungi. This study aimed to evaluate the capacity of Congo red to induce priming in M. robertsii. Conidia were grown on potato dextrose agar with or without Congo red.The tolerance of conidia produced from mycelia grown in these three conditions was evaluated against stress conditions, including osmotic, oxidative, heat, and UV-B radiation. Conidia produced on medium supplemented with Congo red were significantly more tolerant to UV-B radiation but not to the other stress conditions assayed. Our results suggest that Congo red confers trans-priming to UV-B radiation but not for heat, oxidative, or osmotic stress.
Assuntos
Metarhizium , Metarhizium/fisiologia , Vermelho Congo , Raios Ultravioleta , Esporos Fúngicos/fisiologiaRESUMO
Trait-based approaches in ecology are powerful tools for understanding how organisms interact with their environment. These approaches show particular promise in disturbance and community ecology contexts for understanding how disturbances like prescribed fire and bison grazing influence interactions between mutualists like arbuscular mycorrhizal (AM) fungi and their plant hosts. In this work we examined how disturbance effects on AM fungal spore community composition and mutualisms were mediated by selection for specific functional spore traits at both the species and community level. We tested these questions by analyzing AM fungal spore communities and traits from a frequently burned and grazed (bison) tallgrass prairie system and using these spores to inoculate a plant growth response experiment. Selection for darker, pigmented AM fungal spores, changes in the abundance and volume of individual AM fungal taxa, and altered sporulation, were indicators of fire and grazing effects on AM fungal community composition. Disturbance associated changes in AM fungal community composition were then correlated with altered growth responses of Schizachyrium scoparium grass. Our work shows that utilization of trait-based approaches in ecology can clarify the mechanisms that underly belowground responses to disturbance, and provide a useful framework for understanding interactions between organisms and their environment.