Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 481
Filtrar
1.
Fungal Biol ; 128(7): 2089-2093, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39384278

RESUMO

Arbuscular mycorrhizal (AM) fungi can sequester different potentially toxic elements, such as trace elements (TEs), within their structures to alleviate the toxicity for its host plant and themselves. To elucidate the role of AM fungi in TEs immobilization in the rhizosphere of host plants, it is important to know the TEs distribution in AM fungal structures. In the present study, we investigated the distribution and concentration of TEs within extraradical spores and mycelium of the AM fungus Rhizophagus intraradices, collected from the rhizosphere of Senecio bonariensis plants grown in a soil polluted with multiple TEs, by using Particle-Induced X-ray Emission with a micro-focused beam (micro PIXE). This technique enabled the simultaneous micrometric mapping of elements in a sample. The calculated values were compared with those in the polluted substrate, measured by the Wavelength Dispersive X-ray Fluorescence technique. The highest concentrations of Fe, P, Ti, Mn, Cr, Cu and Zn were found in AM fungal spores, where they were accumulated, while extraradical mycelium was enriched in Cu. Finally, we demonstrated that AM fungi can simultaneously accumulate high amounts of different TEs in their structures, thus reducing the toxicity of these elements to its host plant.


Assuntos
Glomeromycota , Micorrizas , Espectrometria por Raios X , Oligoelementos , Oligoelementos/análise , Oligoelementos/metabolismo , Micorrizas/química , Micorrizas/metabolismo , Glomeromycota/química , Rizosfera , Esporos Fúngicos/química , Esporos Fúngicos/crescimento & desenvolvimento , Micélio/química , Micélio/crescimento & desenvolvimento , Micélio/metabolismo , Microbiologia do Solo , Raízes de Plantas/microbiologia
2.
Food Chem ; 459: 140366, 2024 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38991440

RESUMO

To address the lengthy cycles, complex operations, high costs, and insufficient sensitivity of biomarker detection in traditional biological control agents, photonic crystal treated with PEI was developed for highly sensitive detection of Sclerotinia sclerotiorum microbial spores. By incorporating gelatin molecules, photonic crystal is endowed with excellent photothermal stability and high stability in aqueous solutions. The photonic crystal surface is conferred a positive charge by PEI, which can be used to enhance the adsorption of spores. Efficient enrichment of Sclerotinia sclerotiorum and Purpureocillium lilacinum spores is achieved, with coefficients of determination 0.963 and 0.971, respectively. The detection range is from 102 to 106 spores/ml, and the photonic crystal exhibited good reusability. The prepared photonic crystal enables rapid, non-destructive, and accurate quantitative detection of microbial spores.


Assuntos
Ascomicetos , Esporos Fúngicos , Ascomicetos/química , Esporos Fúngicos/química , Polietilenoimina/química , Dispositivos Lab-On-A-Chip
3.
Biotechnol Bioeng ; 121(10): 3128-3143, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38943490

RESUMO

Controlling the morphology of filamentous fungi is crucial to improve the performance of fungal bioprocesses. Microparticle-enhanced cultivation (MPEC) increases productivity, most likely by changing the fungal morphology. However, due to a lack of appropriate methods, the exact impact of the added microparticles on the structural development of fungal pellets is mostly unexplored. In this study synchrotron radiation-based microcomputed tomography and three-dimensional (3D) image analysis were applied to unveil the detailed 3D incorporation of glass microparticles in nondestructed pellets of Aspergillus niger from MPEC. The developed method enabled the 3D analysis based on 375 pellets from various MPEC experiments. The total and locally resolved volume fractions of glass microparticles and hyphae were quantified for the first time. At increasing microparticle concentrations in the culture medium, pellets with lower hyphal fraction were obtained. However, the total volume of incorporated glass microparticles within the pellets did not necessarily increase. Furthermore, larger microparticles were less effective than smaller ones in reducing pellet density. However, the total volume of incorporated glass was larger for large microparticles. In addition, analysis of MPEC pellets from different times of cultivation indicated that spore agglomeration is decisive for the development of MPEC pellets. The developed 3D morphometric analysis method and the presented results will promote the general understanding and further development of MPEC for industrial application.


Assuntos
Aspergillus niger , Imageamento Tridimensional , Microtomografia por Raio-X , Imageamento Tridimensional/métodos , Aspergillus niger/crescimento & desenvolvimento , Microtomografia por Raio-X/métodos , Esporos Fúngicos/química , Esporos Fúngicos/citologia , Esporos Fúngicos/crescimento & desenvolvimento , Microesferas , Hifas/química , Hifas/crescimento & desenvolvimento
4.
ACS Appl Mater Interfaces ; 16(26): 33182-33191, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38903013

RESUMO

Direct observation by the naked eye of fluorescence-stained microbes adsorbed on surface imprinted polymers (SIPs) is highly challenging and limited by speed, accuracy and the semiquantitative nature of the method. In this study, we tested for the presence of spores of Fusarium oxysporum f. sp. cubense race 4 (Foc4), which cause severe banana Fusarium wilt disease and reduces the area of banana plants. This kind of spore can become dormant in soil, which means that the detection of secreted molecules (molecular imprinting) in soil may be inaccurate; detection methods such as polymerase chain reaction (PCR) and Raman spectroscopy are more accurate but time-consuming and inconvenient. Therefore, a semiquantitative and rapid SIP detection method for Foc4 was proposed. Based on the ITO conductive layer, a reusable and naked-eye-detectable Foc4-PDMS SIP film was prepared with a site density of approximately 9000 mm-2. Adsorption experiments showed that when the Foc4 spore concentration was between 104 to 107 CFU/mL, the number of Foc4 spores adsorbed and the fluorescence intensity were strongly correlated with the concentration and could be fully distinguished by the naked eye after fluorescence staining. Adsorption tests on other microbes showed that the SIP film completely recognized only the Foc series. All the results were highly consistent with the naked-eye observations after fluorescence staining, and the results of the Foc4-infected soil experiment were also close to the ideal situation. Taken together, these results showed that Foc4-PDMS SIPs have the ability to rapidly and semiquantitatively detect the concentration of Foc in soil, which can provide good support for banana cultivation. This method also has potential applications in the detection of other fungal diseases.


Assuntos
Fusarium , Fusarium/isolamento & purificação , Fusarium/química , Siloxanas/química , Esporos Fúngicos/isolamento & purificação , Esporos Fúngicos/química , Musa/microbiologia , Musa/química , Doenças das Plantas/microbiologia , Adsorção , Impressão Molecular , Propriedades de Superfície , Microbiologia do Solo
5.
Langmuir ; 40(23): 12159-12166, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38815139

RESUMO

Microbial biological control agents are believed to be a potential alternative to classical fertilizers to increase the sustainability of agriculture. In this work, the formulation of Trichoderma afroharzianum T22 (T22) spores with carboxymethyl cellulose (CMC) and Pluronic F-127 (PF-127) solutions was investigated. Rheological and microscopical analysis were performed on T22-based systems at three different CMC/PF-127 concentrations, showing that polymer aggregates tend to surround T22 spores, without viscosity, and the viscoelastic properties of the formulations were affected. Contact angle measurements showed the ability of PF-127 to increase the wettability of the systems, and the effect of the formulations on the viability of the spores was evaluated. The viability of the spores was higher over 21 days in all the formulations, compared to the control in water, at 4 and 25 °C. Finally, the effectiveness of the formulations on sweet basil was estimated by greenhouse tests. The results revealed a beneficial effect of the CMC/PF-127 mixture, but none on the formulation with T22. The data show the potential of CMC/PF-127 mixtures for the future design of microorganism-based formulations.


Assuntos
Carboximetilcelulose Sódica , Poloxâmero , Trichoderma , Poloxâmero/química , Trichoderma/química , Carboximetilcelulose Sódica/química , Agricultura , Esporos Fúngicos/química
6.
J Sci Food Agric ; 104(11): 6657-6666, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38545871

RESUMO

BACKGROUND: The hard double-walled structure of Ganoderma lucidum spore powder (GLSP) is difficult for the human body to digest, so it is very important to break the wall of GLSP. In this study, the wall of GLSP was broken by mechanical milling at room temperature (MM-R) and ultra-fine grinding at low temperature (UFG-L), respectively. RESULTS: Compared with MM-R, UFG-L could better retain the sporangium powder's morphological and structural integrity. During in vitro digestion, compared with unbroken GLSP, the released amounts of polysaccharides and triterpenes from broken GLSP were significantly increased, and they increased with the increase of specific surface area. The bioaccessibility of polysaccharide and triterpene from unbroken GLSP after the intestinal stage were 29.52% and 5.37%, respectively. The bioaccessibility of polysaccharides and triterpene from broken GLSP by MM-R after the intestinal phase were 39.73-72.45% and 16.44-24.97%, while those by UFG-L were 44.53-104.18% and 12.96-32.90%, respectively. CONCLUSION: The active ingredients of broken GLSP showed better digestion and absorption abilities than unbroken GLSP. Moreover, the specific surface area of GLSP by UFG-L was lower than that by MM-R, and the bioaccessibility of GLSP by UFG-L was higher than that by MM-R. © 2024 Society of Chemical Industry.


Assuntos
Digestão , Polissacarídeos , Pós , Reishi , Esporos Fúngicos , Reishi/metabolismo , Reishi/química , Reishi/crescimento & desenvolvimento , Esporos Fúngicos/metabolismo , Esporos Fúngicos/química , Pós/química , Humanos , Polissacarídeos/química , Polissacarídeos/metabolismo , Triterpenos/metabolismo , Triterpenos/química , Nutrientes/metabolismo , Modelos Biológicos , Manipulação de Alimentos/métodos
7.
Biomed Chromatogr ; 38(2): e5787, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38038157

RESUMO

Previous studies have found that removing the sporoderm significantly enhanced antitumor and immunoregulatory activities of Ganoderma lucidum spore (GLS) compared with breaking the sporoderm. However, the pharmacokinetics of sporoderm-removed GLS (RGLS) and sporoderm-broken GLS (BGLS) remain elusive. To compare the pharmacokinetic differences between the two products, we developed a UPLC-QqQ MS method for determining nine representative triterpenoid concentrations. Chloramphenicol was used as an internal standard. The samples were separated on a reversed-phase column using acetonitrile-0.1% formic acid and water-0.1% formic acid as mobile phases. Nine triterpenoids were analyzed using multiple reaction monitoring mode. The results showed that the area under the concentration-time curve from dosing to time t of all nine components was increased in RGLS compared with BGLS. And the time to the maximum concentration in BGLS was delayed compared with that of RGLS. These indicated that the absorption of RGLS was better than that of BGLS, and the sporoderm might hinder the absorption of the active components. These results increase our understanding of the bioavailability of BGLS and RGLS and indicate that increased bioavailability is one of the main reasons for the enhanced efficacy of RGLS.


Assuntos
Reishi , Triterpenos , Ratos , Animais , Cromatografia Líquida de Alta Pressão , Esporos Fúngicos/química , Formiatos , Triterpenos/análise
8.
Int J Med Mushrooms ; 25(6): 87-98, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37522535

RESUMO

To investigate the differences between Korean Ganoderma lucidum spore powder (KP), broken-spo-roderm KP (BSKP), Chinese traditional G. lucidum spore powder (CP), and broken-sporoderm CP (BSCP), they were identified by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), second derivative infrared spectroscopy (SD-IR), dual-index sequence analysis (DISA) and X-ray diffraction (XRD). SEM showed that there were no significant differences in microstructure between the two kinds of spore powders. FT-IR spectra showed that the four spore powders appeared with characteristic peaks of 3400, 3006, 2925, 1745, 1535, 1454, 1249, 1074, 1049, and 896 cm-1, respectively, they were contained the characteristic peaks of total triterpenes, polysaccharides and fatty acids. DISA showed that the same species of spore powders, the overall similarity of before and broken the sporoderm was high with minor differences and there were no differences between the different kinds of spore powders. Similarity analysis showed that the four spore powders were in high agreement and were no differences. The polysaccharide, total triterpene, spore oil and protein content of the four spore powders were determined separately. The results showed that the active ingredients content of the batch of KP were lower than that of CP, that of BSKP were lower than that of BSCP, while the active ingredients content of both broken-sporoderm spore powders were higher than that of before broken-sporoderm. It is inferred that the structure of the main chemical and component of KP is the same as that of CP. This study provides a reference for the future development and application of G. lucidum.


Assuntos
Agaricales , Reishi , Triterpenos , China , Polissacarídeos/análise , Pós , Reishi/química , República da Coreia , Espectrofotometria Infravermelho , Espectroscopia de Infravermelho com Transformada de Fourier , Esporos Fúngicos/química , Triterpenos/química
9.
Biomaterials ; 299: 122177, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37262935

RESUMO

Ganoderma lucidum spores (GLSs) have been suggested to provide optimal structures for transporting orally bioavailable drugs. However, the double-layer wall and cavities of GLSs are naturally closed. This study aimed to modify GLSs into porous carriers by opening the layers and internal cavity with iturin A (IA) followed by potassium hydroxide (KOH) or hydrochloric acid (HCl). The (IA + KOH)- and (IA + HCl)-treated GLS carriers exhibited a high loading rate of 301.50 ± 2.33 and 268.18 ± 7.72 mg/g for the hydrophilic methylene blue (MB) and hydrophobic rifampicin (RF), respectively. The mechanisms underlying the modification involved the enhancement of the specific surface area with IA and the exposure of hydrophilic groups or hydrophobic groups of the GLSs with KOH or HCl. The sustained 48-h molecule-release profiles of the MB- and RF-loaded GLS carriers were best fitted using a first-order kinetics model in simulated gastric (or intestinal) fluid compared with other models. In mice, the designed GLS carriers had high adhesion capacities onto the mucosa of the digestive tract and long retention times (120 h), and even promoted the secretion of mucus and expression of several key intestinal barrier proteins. This study provided a new method to modify GLSs into oral carriers with selective drug affinity, high loading capacity, sustained drug release, and high adhesion to the digestive tract.


Assuntos
Reishi , Animais , Camundongos , Reishi/química , Porosidade , Esporos Fúngicos/química , Interações Hidrofóbicas e Hidrofílicas
10.
Phytochem Anal ; 34(4): 431-442, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36958357

RESUMO

INTRODUCTION: The spores of the medicinal fungus Ganoderma lucidum possess hepatoprotective properties. The main components, triterpenes, are particularly beneficial, making the screening and preparation of active triterpenes from Ganoderma lucidum significant. OBJECTIVES: We aimed to screen and verify cyclooxygenase-2 inhibitors from G. lucidum spores, establish a rapid online hyphenated technique for the preparation of active ingredients, and analyze the structures of the active ingredients. METHODS: Ultrafiltration LC combined with an enzyme inhibition assay and molecular docking was employed to screen and evaluate cyclooxygenase-2 ligands, which were prepared by pressurized liquid extraction coupled online with countercurrent chromatography and semi-preparative LC. The structures of the compounds were identified by nuclear magnetic resonance spectroscopy. RESULTS: Six cyclooxygenase-2 inhibitors, namely, ganoderic acids I, C2 , G, B, and A and ganoderenic acid A, were screened and evaluated. They were prepared using the online hyphenated technique, following which their structures were identified. CONCLUSION: This study provides opportunities for the discovery and development of new therapeutic drugs from other natural resources, as the present instrumental setup achieved efficient and systematic extraction and isolation of natural products compared with reference separation methods, thus exhibiting significant potential for industrial applications.


Assuntos
Reishi , Triterpenos , Reishi/química , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/análise , Simulação de Acoplamento Molecular , Esporos Fúngicos/química , Triterpenos/análise , Distribuição Contracorrente
11.
Protein J ; 41(6): 596-612, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36282463

RESUMO

SWPs are the major virulence component of microsporidian spores. In microsporidia, SWPs can be found either in exospore or endospore to serve as a putative virulence factor for host cell invasion. SWP5 is a vital protein that involves in exospore localization and supports the structural integrity of the spore wall and this action potentially modulates the course of infection in N. bombycis. Here we report recombinant SWP5 purification using Ni-NTA IMAC and SEC. GFC analysis reveals SWP5 to be a monomer which correlates with the predicted theoretical weight and overlaps with ovalbumin peak in the chromatogram. The raised polyclonal anti-SWP5 antibodies was confirmed using blotting and enterokinase cleavage experiments. The resultant fusion SWP5 and SWP5 in infected silkworm samples positively reacts to anti-SWP5 antibodies is shown in ELISA. Immunoassays and Bioinformatic analysis reveal SWP5 is found to be localized on exospore and this action could indicate the probable role of SWP5 in host pathogen interactions during spore germination and its contribution to microsporidian pathogenesis. This study will support development of a field-based diagnostic kit for the detection N. bombycis NIK-1S infecting silkworms. The analysis will also be useful for the formulation of drugs against microsporidia and pebrine disease.


Assuntos
Bombyx , Nosema , Animais , Esporos Fúngicos/genética , Esporos Fúngicos/química , Esporos Fúngicos/metabolismo , Proteínas Fúngicas/química , Nosema/genética , Nosema/química , Nosema/metabolismo , Bombyx/genética , Clonagem Molecular
12.
J Appl Microbiol ; 133(2): 1063-1077, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35598181

RESUMO

AIMS: The leaf-feeding pest Cerotoma arcuata tingomariana (Bechyné) (Coleoptera: Chrysomelidae) produces huge economic losses in different crops. This study aimed to produce conidia by semisolid-state fermentation and to establish the insecticidal activity of two formulation prototypes based on a native Beauveria bassiana isolate for controlling this pest. METHODS AND RESULTS: A novel fabric-based semisolid-state fermentation strategy for quick and large-scale conidia production was performed and characterized. Conidia were formulated as an emulsifiable concentrate (EC) and a water-dispersible granulate (WG). Afterwards, the mortality of C. a. tingomariana adults was assessed. A conidia concentration of 2.9 × 109 conidia cm-2 was obtained after 9 days-course fermentation and a yield of 33.4 g kg-1 dry-substrate. CONCLUSIONS: The polyester fabric-based fermentation is an efficient technique for producing and collecting B. bassiana spores. Regarding LC90 , the potency analysis showed that the EC was 21-fold more potent than the non-formulated conidia, and ~ 2.6-fold more potent than the WG. SIGNIFICANCE AND IMPACT OF STUDY: A high throughput fermentation based on polyester fabric as support for B. bassiana conidia production and subsequent formulation as an EC comprises a promising strategy for obtaining a bioproduct to control adults of C. a. tingomariana and other Chrysomelidae pests.


Assuntos
Beauveria , Besouros , Animais , Beauveria/química , Controle Biológico de Vetores/métodos , Poliésteres , Esporos Fúngicos/química
13.
Exp Suppl ; 114: 179-213, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35544004

RESUMO

Microsporidia are obligate intracellular pathogens that were initially identified about 160 years ago. Current phylogenetic analysis suggests that they are grouped with Cryptomycota as a basal branch or sister group to the fungi. Microsporidia are found worldwide and can infect a wide range of animals from invertebrates to vertebrates, including humans. They are responsible for a variety of diseases once thought to be restricted to immunocompromised patients but also occur in immunocompetent individuals. The small oval spore containing a coiled polar filament, which is part of the extrusion and invasion apparatus that transfers the infective sporoplasm to a new host, is a defining characteristic of all microsporidia. When the spore becomes activated, the polar filament uncoils and undergoes a rapid transition into a hollow tube that will transport the sporoplasm into a new cell. The polar tube has the ability to increase its diameter from approximately 100 nm to over 600 nm to accommodate the passage of an intact sporoplasm and penetrate the plasmalemma of the new host cell. During this process, various polar tube proteins appear to be involved in polar tube attachment to host cell and can interact with host proteins. These various interactions act to promote host cell infection.


Assuntos
Microsporídios , Animais , Citoplasma , Humanos , Microsporídios/genética , Microsporídios/metabolismo , Filogenia , Esporos Fúngicos/química
14.
Environ Res ; 212(Pt B): 113327, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35472464

RESUMO

The use of magnetic biosorbents for the remediation of heavy metals has attracted increasing attention due to their ease of separation and reusability. We developed a method for preparing superparamagnetic biosorbent materials using water-based magnetic fluids. Water-based magnetic fluid-spores (WMFSs) were obtained by combining water-based magnetic fluid (WMF) with Aspergillus niger spores at ratios of 0.6:1 (WMFS1), 0.8:1 (WMFS2), 1:1 (WMFS3), 1.2:1 (WMFS4), and 1.4:1 (WMFS5). A magnetic composite material was prepared from magnetic nanoparticles and spores in a ratio of 1:1 as a control. The adsorption efficiency and separation effect of WMFS3 were significantly better than those of the magnetic composite material. The morphology and structure of WMFS3 were characterized by performing transmission electron microscopy. The results showed that Fe3O4 magnetic particles were uniformly coated on the spore surface. The superparamagnetism of WMFS3 was tested using a vibrating sample magnetometer. At pH 2.0, the maximum adsorption capacity of WMFS3 for Cr(VI) was 105 mg/g; in the pH range of 2.0-3.0, the adsorption equilibrium time of WMFS3 was 60 min. Thus, the adsorption process conformed to the pseudo-second-order kinetic model and Freundlich isotherm. Thermodynamic studies showed that the process was spontaneous and endothermic. The adsorption mechanisms of WMF3 for Cr(VI) included electrostatic, reduction, and complexation adsorption. This biosorbent material showed excellent adsorption performance for Cr(VI) and is promising for wastewater resource applications.


Assuntos
Poluentes Químicos da Água , Água , Adsorção , Aspergillus niger , Cromo/análise , Concentração de Íons de Hidrogênio , Cinética , Fenômenos Magnéticos , Esporos Fúngicos/química , Poluentes Químicos da Água/análise
15.
Carbohydr Polym ; 278: 118939, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34973757

RESUMO

Ganoderma lucidum spore serves as a well-known immunomodulatory functional food in Asia. The polysaccharides in G. lucidum spore are responsible for the claimed immunomodulatory activity. However, the structural information of polysaccharides remains unclear. In this work, the leading water-soluble polysaccharide in G. lucidum spore (GLSP-I) with a molecular weight of 128.0 kDa was isolated and purified. The monosaccharide composition analysed by gas chromatography indicated that GLSP-I was a glucan. Three side chains, including Glc-(1 â†’ 3)-Glc-(1 â†’ 3)-Glc-(1 â†’ 6)-Glc, Glc-(1 â†’ 6)-Glc-(1 â†’ 6)-Glc-(1 â†’ 6)-Glc and Glc-(1 â†’ 3)-Glc-(1 â†’ 3)-Glc-(1 â†’ 3)-Glc-(1 â†’ 3)-Glc, were identified by UPLC-MS/MS. The structural characteristics were further identified by NMR spectra. The results indicated that the backbone of GLSP-I was (1 â†’ 3)-ß-D-glucan, with side chains linking at O-6. The proposed structure was drawn as below. The immunomodulatory activity assay indicated that GLSP-I could activate macrophages in a dose-dependent manner.


Assuntos
Fatores Imunológicos/farmacologia , Imunomodulação/efeitos dos fármacos , Polissacarídeos/farmacologia , Reishi/química , Esporos Fúngicos/química , Configuração de Carboidratos , Fatores Imunológicos/química , Polissacarídeos/química
16.
Mol Microbiol ; 116(6): 1512-1532, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34797006

RESUMO

Numerous transcription factors (TFs) in ascomycete fungi play crucial roles in cellular processes; however, how most of them function is poorly understood. Here, we identified and characterized a novel TF, CxrC (POX01387), acting downstream of the key TF CxrA, which is essential for plant-biomass-degrading-enzyme (PBDE) production in Penicillium oxalicum. Deletion of cxrC in P. oxalicum significantly affected the production of PBDEs, as well as mycelial growth and conidiospore production. CxrA directly repressed the expression of cxrC after about 12 hr following switch to Avicel culture. CxrC bound the promoters of major PBDE genes and genes involved in conidiospore development. CxrC was found to bind the TSSGTYR core sequence (S: C and G; Y: T and C; R: G and A) of the important cellulase genes cbh1 and eg1. Both N- and C-terminal peptides of CxrC and the CxrC phosphorylation were found to mediate its homodimerization. The conserved motif LPSVRSLLTP (65-74) in CxrC was found to be required for regulating cellulase production. This study reveals novel mechanisms of TF-mediated regulation of the expression of PBDE genes and genes involved in cellular processes in an ascomycete fungus.


Assuntos
Proteínas Fúngicas/metabolismo , Penicillium/metabolismo , Fatores de Transcrição/metabolismo , Motivos de Aminoácidos , Celulase/antagonistas & inibidores , Celulase/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Penicillium/química , Penicillium/genética , Penicillium/crescimento & desenvolvimento , Regiões Promotoras Genéticas , Esporos Fúngicos/química , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética
17.
Biotechnol Lett ; 43(7): 1503-1512, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33856593

RESUMO

Botrytis cinerea cause postharvest diseases on fruit and lead economic losses. Application of environment-friendly natural compounds is an alternative for synthetic fungicides to control postharvest disease. Lycorine is an indolizidine alkaloid which is widely used for human drug design, however, application of lycorine in controlling postharvest disease and the underlying mechanisms have not been reported. In this study, the effects of lycorine on mycelium growth, spore germination, disease development in apple fruit, cell viability, cell membrane integrity, cell wall deposition, and expression of mitogen-activated protein kinase (MAPK) and GTPase of B. cinerea were investigated. Our results showed that lycorine was effective in controlling postharvest gray mold caused by B. cinerea on apple fruit. In the in vitro tests, lycorine strongly inhibited spore germination and mycelium spreading in culture medium. Investigation via fluorescein diacetate and propidium iodide staining suggested that lycorine could damage the membrane integrity and impair cell viability of B. cinerea. Furthermore, the expression levels of several MAPK and GTPase coding genes were reduced upon the lycorine treatment. Taken together, lycorine is an effective and promising way to control postharvest disease caused by B. cinerea.


Assuntos
Alcaloides de Amaryllidaceae/farmacologia , Antifúngicos/farmacologia , Botrytis/fisiologia , Malus/crescimento & desenvolvimento , Fenantridinas/farmacologia , Alcaloides de Amaryllidaceae/isolamento & purificação , Antifúngicos/isolamento & purificação , Botrytis/química , Resistência à Doença , Proteínas Fúngicas/genética , GTP Fosfo-Hidrolases/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Germinação , Malus/efeitos dos fármacos , Malus/microbiologia , Proteínas Quinases Ativadas por Mitógeno/genética , Fenantridinas/isolamento & purificação , Esporos Fúngicos/química , Esporos Fúngicos/fisiologia
18.
Int J Biol Macromol ; 180: 484-493, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33689774

RESUMO

Two polysaccharide fractions (GLSB50 and GLSB70) with total sugar content of 82.07 wt% and 53.79 wt%, respectively, were obtained from the water extracts of unbroken Ganoderma lucidum spores by sequential ethanol precipitation treatment. Compared with GLSB70, GLSB50 exhibited better activity on stimulation of humoral immune responses in immunosuppressed mice. A novel ß-D-glucan (GLSB50A-III-1) with weight average molecular weight (Mw) of 1.93 × 105 g/mol was purified from GLSB50 through chromatography separation. The exponent α value of Mark-Houwink-Sakurada equation was calculated to be 0.13, indicating that GLSB50A-III-1 presented globular spheres conformation in aqueous solution. Structural analysis showed that GLSB50A-III-1 mainly consisted of (1 â†’ 3), (1 â†’ 4), (1 â†’ 6)-linked ß-d-glucose residues in the backbone, with two single ß-D-Glcp attached at O-6 of ß-(1 â†’ 3) and ß-(1 â†’ 4)-linked residues separately as side chains. The repeat unit of GLSB50A-III-1 was deduced as follows.


Assuntos
Polissacarídeos/química , Reishi/química , Esporos Fúngicos/química , beta-Glucanas/química , Animais , Sequência de Carboidratos , Cromatografia Gasosa-Espectrometria de Massas , Espectroscopia de Ressonância Magnética , Metilação , Camundongos Endogâmicos ICR , Conformação Molecular , Dados de Sequência Molecular , Estrutura Molecular , Peso Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química , beta-Glucanas/isolamento & purificação
19.
Environ Geochem Health ; 43(5): 1761-1782, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33090369

RESUMO

Studies focused on the seasonal distribution of pollen and spores in semiarid cities are scarce. At these sites, climate change potentiates the emission and transport of fine (PM10) to ultrafine particles (PM2.5), easily attached to pollen surfaces, causing allergen's release. This study examines the potential correlation of seasonal variations of pollen, fungal spores, PM10, and meteorological parameters with allergic reactions of 150 people living in a Sonoran desert city. We collected PM10, airborne pollen, and spores during a year. We also studied topsoil and road dust samples as potential PM-emission sources. We obtained dust-mineralogy, chemistry, and particle size attached to pollen by X-ray diffraction and scanning electron microscope. Results show that seasonal high PM-loading in the urban atmosphere coincides with aeroallergens promoting micro- to nanoparticles' attachment to pollen's surface. A collapsed membrane was observed in several samples after individual grains show the following maximum wall coverage: Poaceae 28%, Asteraceae 40%, Chenopodiaceae-Amaranthacea 29%, Fabaceae 18%. Most of the particles covering pollen's surface have a geogenic origin mixed with metals linked to traffic (bromide, chlorine, and antimony). Mineralogical, granulometric analysis, and main wind-direction show that two local soil-types are the main contributors to PM. A high frequency of positive sensitization to pollen with high particle loading was detected. These results suggest that climate-driven dust emissions may alter pollen and spore surfaces' physicochemical characteristics with the further consequences in their allergenic potential.


Assuntos
Hipersensibilidade/epidemiologia , Material Particulado/toxicidade , Pólen , Esporos Fúngicos , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Alérgenos/análise , Cidades , Poeira/análise , Monitoramento Ambiental/métodos , Humanos , Hipersensibilidade/etiologia , Incidência , México/epidemiologia , Tamanho da Partícula , Material Particulado/análise , Pólen/química , Pólen/toxicidade , Estações do Ano , Solo/química , Esporos Fúngicos/química , Saúde da População Urbana , Urbanização , Vento
20.
J Microbiol ; 59(1): 64-75, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33201436

RESUMO

Aspergillus fumigatus is a well-known opportunistic pathogen that causes invasive aspergillosis (IA) infections with high mortality in immunosuppressed individuals. Morphogenesis, including hyphal growth, conidiation, and cell wall biosynthesis is crucial in A. fumigatus pathogenesis. Based on a previous random insertional mutagenesis library, we identified the putative polysaccharide synthase gene Afcps1 and its para-log Afcps2. Homologs of the cps gene are commonly found in the genomes of most fungal and some bacterial pathogens. Afcps1/cpsA is important in sporulation, cell wall composition, and virulence. However, the precise regulation patterns of cell wall integrity by Afcps1/cpsA and further effects on the immune response are poorly understood. Specifically, our in-depth study revealed that Afcps1 affects cell-wall stability, showing an increased resistance of ΔAfcps1 to the chitinmicrofibril destabilizing compound calcofluor white (CFW) and susceptibility of ΔAfcps1 to the ß-(1,3)-glucan synthase inhibitor echinocandin caspofungin (CS). Additionally, deletion of Afcps2 had a normal sporulation phenotype but caused hypersensitivity to Na+ stress, CFW, and Congo red (CR). Specifically, quantitative analysis of cell wall composition using high-performance anion exchange chromatography-pulsed amperometric detector (HPAEC-PAD) analysis revealed that depletion of Afcps1 reduced cell wall glucan and chitin contents, which was consistent with the down-regulation of expression of the corresponding biosynthesis genes. Moreover, an elevated immune response stimulated by conidia of the ΔAfcps1 mutant in marrow-derived macrophages (BMMs) during phagocytosis was observed. Thus, our study provided new insights into the function of polysaccharide synthase Cps1, which is necessary for the maintenance of cell wall stability and the adaptation of conidia to the immune response of macrophages in A. fumigatus.


Assuntos
Aspergilose/imunologia , Aspergilose/microbiologia , Aspergillus fumigatus/enzimologia , Proteínas Fúngicas/metabolismo , Macrófagos/imunologia , Esporos Fúngicos/crescimento & desenvolvimento , Sequência de Aminoácidos , Animais , Aspergillus fumigatus/química , Aspergillus fumigatus/genética , Aspergillus fumigatus/crescimento & desenvolvimento , Parede Celular/genética , Parede Celular/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Imunidade , Macrófagos/microbiologia , Masculino , Camundongos , Alinhamento de Sequência , Esporos Fúngicos/química , Esporos Fúngicos/enzimologia , Esporos Fúngicos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA